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We reply to the Comment of Becker, Nelissen, Cleuren, Partoens, and Van den Broeck [Phys. Rev. E 93,
046101 (2016)] on our article [Arita, Krapivsky, and Mallick, Phys. Rev. E 90, 052108 (2014)] about the
transport properties of a class of generalized exclusion processes.
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Stochastic lattice gases with symmetric hopping are de-
scribed, on a coarse-grained level, by the diffusion equa-
tion with a density-dependent diffusion coefficient. Density
fluctuations depend in addition on the local conductivity
(which also describes the response to an infinitesimal applied
field). A hydrodynamic description, therefore, requires the
determination of these two transport coefficients. Generally
for lattice gases even with rather simple hopping rules, analytic
results are unattainable; however, when an additional feature,
known as the gradient condition, is satisfied, the Green-Kubo
formula takes a simple form [1] and computations of the
transport coefficients become feasible. For a number of lattice
gases of gradient type, e.g., the Katz-Lebowitz-Spohn model
with symmetric hopping [2], the repulsion processes [3], and
a lattice gas of leap-frogging particles [4,5], the diffusion co-
efficient has been rigorously computed. The gradient property
is also true for the misanthrope process, a class of generalized
exclusion processes [6,7].

For gradient-type lattice gases, an exact expression for the
diffusion coefficient can also be obtained by a perturbation
approach: one writes the formula for the current at the discrete
lattice level and then performs a continuous limit assuming
that the density field is slowly varying.

Generalized exclusion processes with multiple occupan-
cies [8–11], in general, do not obey the gradient condition.
However, we argued in [12] that the perturbation approach
should, nevertheless, lead to an exact prediction for the
diffusion coefficient. For the class of generalized exclusion
processes that we studied [12], simulation results were
indeed very close to the perturbative calculation predic-
tions. The Comment [13] by Becker et al. prompted us to
perform more simulations and to analyze our results more
carefully.

Becker et al. computed numerically the diffusion coefficient
D(ρ). They performed simulations for various system sizes
L and various density differences δρ between the boundary
reservoirs. To extract D(ρ) from simulations, they needed to
take [13] two limits: L → ∞ and δρ → 0. We considered
a system with a large density difference and measured the
stationary current through the system: the advantage is that we
have to take only one limit, L → ∞. We analyzed the gen-
eralized exclusion process GEP(2) with maximal occupancy
k = 2 particles per site and extreme densities at the boundaries:
ρ(0) = 2 and ρ(L) = 0. According to our expectations [12],
the average current should vanish as (1 + π

2 )/L when L � 1.
Simulation results (Fig. 1) demonstrate that the error is smaller

than 0.9%, but this discrepancy does not seem to disappear in
the L → ∞ limit.

The numerical results of Ref. [13] and our simulations
(Fig. 1) show that the perturbation approach does not lead to the
correct analytical results for the GEP(2). We emphasize that the
perturbation approach is not a naive mean-field theory where
correlations are obviously neglected, as argued by Becker et al.
In dense lattice gases, the equilibrium state itself is usually
highly correlated. For example, in the repulsion process
〈τiτi+1〉 = 0 �= ρ2 for 0 � ρ � 1

2 , where τi ∈ {1,0} denotes
the occupation number of site i, the mean-field assumption
is completely wrong. Yet, a careful use of the perturbation
approach leads to the correct result [3].

The gradient condition is thus crucial for the applicability
of the perturbation approach. For GEP(k) with maximal
occupancy k, the gradient condition is obeyed in extreme cases
of k = 1, which reduces to the simple exclusion process, and
k = ∞, which reduces to random walks. Presumably because
GEP(k) is sandwiched between two extreme cases in which
the perturbation approach works, this method provides a very
good approximation when 1 < k < ∞.

We now clarify the underlying assumptions behind the
perturbation approach and suggest some ways to improve our
results. For the GEP(2), the current reads

Ji = 〈τif (τi+1) − f (τi)τi+1〉, (1)

where τi ∈ {0,1,2} and f (n) = 1 − 1
2n(n − 1). In our com-

putation of the diffusion coefficient [12], we used two
assumptions. The first one concerns one-point functions. Let
P[τi = m] be the probability of finding m particles at site i.
The density at i is

ρi = 〈τi〉 = P[τi = 1] + 2P[τi = 2]. (2)

We assumed that one-site probabilities satisfy

P[τi = m] 	 Xm(ρi), (3)

where the Xm’s represent the single-site weights in an infinite
lattice or on a ring:

X0(ρ) = 1

Z
, X1(ρ) = λ

Z
, X2(ρ) = λ2

2Z
(4)

with the fugacity λ and the normalization Z,

λ(ρ) =
√

1 + 2ρ − ρ2 + ρ − 1

2 − ρ
, Z = 1 + λ + 1

2
λ2. (5)
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FIG. 1. Stationary current multiplied by the system size: simu-
lation results (dots) and the prediction from our previous approach.
The latter holds for L = ∞, but is shown as a line.

The second assumption was to rewrite the current as

Ji 	 〈τi〉〈f (τi+1)〉 − 〈f (τi)〉〈τi+1〉. (6)

This is indeed a mean-field-type assumption [13]. The assump-
tions (3) and (6) are asymptotically true in the stationary state

of a large system (L → ∞): We have checked these facts by
performing additional simulations.

Our numerical results suggest more precise expressions
for (3) and (6) with some scaling functions κ and μ:

P[τi = m] = Xm(ρi) + 1

L
κm

( i

L

)
, (7)

Ji = 〈τi〉〈f (τi+1)〉 − 〈f (τi)〉〈τi+1〉 + 1

L
μ

( i

L

)
, (8)

where we omitted o(L−1) terms. Performing the perturbation
approach with the refined expressions (7) and (8), we obtain

J = − 1

L

dρ

dx

(
1 − X2(ρ) + ρ

dX2(ρ)

dρ

)
+ 1

L
μ(x), (9)

where we have switched from the discrete variable i to
x = i/L. The functions κm do not appear in (9), but μ(x)
does, and it was missing in our paper [12], leading to the
wrong expressions for the current and for the stationary density
profile. To calculate μ(x), we are presently examining nearest-
neighbor correlation functions for the GEP(2). Numerically at
least, these nearest-neighbor correlations exhibit a neat scaling
behavior and simple patterns; detailed results will be reported
in [14].
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