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We analyze a large number of high-order discrete velocity models for solving the Boltzmann—Bhatnagar-
Gross-Krook equation for finite Knudsen number flows. Using the Chapman-Enskog formalism, we prove for
isothermal flows a relation identifying the resolved flow regimes for low Mach numbers. Although high-order
lattice Boltzmann models recover flow regimes beyond the Navier-Stokes level, we observe for several models
significant deviations from reference results. We found this to be caused by their inability to recover the Maxwell
boundary condition exactly. By using supplementary conditions for the gas-surface interaction it is shown how
to systematically generate discrete velocity models of any order with the inherent ability to fulfill the diffuse
Maxwell boundary condition accurately. Both high-order quadratures and an exact representation of the boundary
condition turn out to be crucial for achieving reliable results. For Poiseuille flow, we can reproduce the mass
flow and slip velocity up to the Knudsen number of 1. Moreover, for small Knudsen numbers, the Knudsen layer

behavior is recovered.
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I. INTRODUCTION

Fluid flow at very small scales has gained an increasing
amount of attention recently due to its relevance for engi-
neering applications in micro- and nanotechnologies [1,2],
e.g., microelectromechanical systems (MEMS) and porous
media. The characteristic length scale [ of the corresponding
geometries is in the range of the mean free path length A of
the gas molecules. Such flows are often isothermal and char-
acterized by extremely small Mach numbers. Nevertheless,
these flows can become compressible because of considerable
pressure gradients caused by viscous effects [3]. Based
on the Chapman-Enskog (CE) expansion [4], the Knudsen
number, defined as Kn = A /[y, can be considered a measure
for the deviation of the flow behavior from thermodynamic
equilibrium. For sufficiently large Kn nonequilibrium effects
become important and the validity of the Navier-Stokes
equation breaks down. In particular, the gas-surface interaction
is very complex and cannot be described by the usual no-slip
boundary condition. Within the Knudsen layer [5] the notion
of the fluid as a continuum is no longer valid.

A fundamental description of hydrodynamics beyond the
Navier-Stokes equation is provided by the Boltzmann equation
valid for all values of Kn and all flow regimes [6]. Accurate
simulations of finite Kn flows are achieved by low-level meth-
ods solving the Boltzmann equation numerically, e.g., Direct
Simulation Monte Carlo (DSMC), which is traditionally used
for high-Mach-number flows [7]. However, the application of
the DSMC method to low-Mach-number microflows requires
a large number of samples to reduce statistical errors and is
computationally very time consuming.

Therefore, reduced-order models of the Boltzmann equa-
tion, such as the lattice Boltzmann (LB) approach, have be-
come attractive alternatives [8—11]. The LB method is based on
areduction of the molecular velocities to a discrete velocity set
in configuration space. Standard LB models, e.g., the D3 Q19
model with 19 discrete velocities, were developed to describe
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the Navier-Stokes fluid dynamics. Nowadays, they provide a
well-established methodology for the computational modeling
of various flow phenomena [12]. Furthermore, the LB method
achieves promising results for microflow simulations [13-18].
In particular, the diffuse Maxwell boundary condition for the
gas-surface interaction can be implemented at a kinetic level
[19-24].

A systematic extension of the LB method to high-order
hydrodynamics beyond the Navier-Stokes equation has been
derived by Shan et al. [25]. These models are based on an
expansion of the velocity space using Hermite polynomials
in combination with appropriate Gauss-Hermite quadratures.
First analytical solutions of the high-order LB model D2Q16
were presented by Ansumali ef al. [26] for Couette flow and
by Kim and Pitsch [27] for Poiseuille flow. The collection of
LB models in the literature has grown successively (see, e.g.,
Refs. [28,29]), but makes no claim to be complete in any sense.
It was shown [26,27] that a higher Gauss-Hermite quadrature
order significantly improves the simulation accuracy for finite
Kn flows compared to standard LB models. However, several
studies [30-33] of high-order LB methods indicate that the
accuracy for finite Kn flows does not monotonically increase
with a higher Gauss-Hermite order and sensitively depends
on the chosen discrete velocity set. Generally, it was observed
that discrete velocity sets with an even number of velocities
perform better than sets with the same Gauss-Hermite order
but an odd number of velocities. Moreover, there are some
LB models which show considerable deviations from DSMC
results for finite Kn despite a high Gauss-Hermite quadrature
order. It has been suggested that this is caused by gas-
surface interactions [33,34]. The implementation of the diffuse
Maxwell boundary condition using Gauss-Laguerre off-lattice
quadrature models in Ref. [35] shows good results for Couette
flow up to Kn = 0.5. By using an alternative framework, a
high-order LB model with only 27 discrete velocities has been
developed by Yudistiawan et al. [36] and it was shown that
the corresponding moment system is quite similar to Grad’s
26-moment system. This off-lattice D3 Q27 model is able
to represent both Knudsen layer effects and the Knudsen
minimum for Poiseuille flow.

©2016 American Physical Society
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FIG. 1. Normalized mass flow rate for Poiseuille flow. Both LB
models D3Q19 and S)3717 are of quadrature order 5 but differ in
the accuracy of the wall moment W,,, and, consequently, in their
capability to recover the diffuse Maxwell boundary condition.

As an introductory example, we consider the most com-
monly used LB model D3 Q19 accompanied by the diffuse
Maxwell boundary condition for unknown distribution func-
tions at solid walls. It is well-known that the D3 Q19 model
shows deviations from reference results (e.g., DSMC) for
increasing Kn. As shown in Fig. 1, the normalized mass flow
rate for Poiseuille flow becomes inaccurate for Kn 2> 0.05. One
reason for this deficiency is the inability of the D3 Q19 velocity
set to represent the diffuse Maxwell boundary condition
accurately. This drawback can be measured by half-space
integrals at the wall [34]; we show in this paper that the
integral W, [cf. Eq. (62)] is most relevant. The standard
D3 (019 model evaluates the latter yielding an error of 28%,
while an alternative LB model § 3;}5/212 (see Appendix A) with
15 velocities and the same quadrature order of 5 yields an error
of only 2%. Figure 1 shows that the result for the mass flow rate
of the latter model is much more accurate compared to that of
D3Q19. This indicates that the LB model’s representation
of the diffuse Maxwell boundary condition requires high
precision. Furthermore, due to the strong restriction of the
configuration space, the standard LB velocity models capture
only the first order of the CE expansion and therefore the
applicability for describing finite Kn flows is limited [37].
Both models shown in Fig. 1 are not able to reproduce the
Knudsen layer at solid walls where strong nonequilibrium
effects are relevant. The description of finite Knudsen number
flows must incorporate high-order flow regimes. It is therefore
desirable to obtain high-order LB models which additionally
are capable of representing the diffuse Maxwell boundary
condition accurately.

In this work we systematically develop and investigate a
large number of new high-order Gauss-Hermite LB models
(on-lattice), which fulfill a constraint guaranteeing an accurate
implementation of the diffuse Maxwell boundary condition.
Consequently, these models ensure vanishing errors of the
relevant half-space integrals. We prove a theorem using the
CE expansion which specifies for low-Mach-number flows
the recovered flow regimes beyond the Navier-Stokes regime
depending on the Gauss-Hermite quadrature order. First sim-
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ulation results for Poiseuille flow at finite Kn show that those
high-order LB models which recover the diffuse Maxwell
boundary condition exactly achieve excellent agreement with
DSMC results. In particular, these models are able to describe
Knudsen layer effects at solid walls. We emphasize that we
do not resort to slip-boundary models in order to achieve
these results. Finally, we recommend a preferred LB model
with 96 discrete velocities and a seventh-order Gauss-Hermite
quadrature order.

The paper is organized as follows. In Sec. II, a brief
review of LB models and the generation of high-order discrete
velocity models is presented. In Sec. III, we derive the
low-Mach-number theorem mentioned above. In Sec. IV, we
present the systematic generation of high-order LB models
with the inherent ability to capture the diffuse Maxwell
boundary condition accurately. In Sec. V, we discuss the
numerical implementation based on second-order accurate
discretization in space and time. In Sec. VI, we compare
first simulation results for Poiseuille flow at finite Kn with
DSMC data and discuss the ability of the new LB models to
describe the Knudsen layer behavior at solid walls. In Sec. VII,
a summary of the major conclusions is given.

II. DEFINITION OF LATTICE BOLTZMANN MODELS

We consider the one-particle velocity distribution function
f (&) governed by the Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision operator,

1
O +& VIfE) =——[f® - O pwl. (D

The distribution function f(&) relaxes to the equilibrium

function
o (u—§)>
2ro)ypr2 P [_ 20 ] @

SOE pw) =

on the time scale . At each point in space and time the
macroscopic quantities are defined as velocity moments in
D-dimensional space,

M, = f PEF©E . . 3)
such as the density p, the velocity u, and the temperature 6,
10 = M, (48.)
ou; = M;, (4b)
o(DO 4 uju;) = M. (4c)

Repeated indices are summed over. All quantities are
dimensionless and expressed in units of characteristic scales,
i.e., the length scale [y, the reference density pp, and the
isothermal speed of sound ¢y = +/R6y, with the specific gas
constant R and the reference temperature 6. Since we focus on
flows with a low Mach number Ma = |u|, we assume constant
temperature and set & = 1 henceforth. The time ¢ as well as
the relaxation time t are expressed in units of 7y = ly/co.

Following the work of Grad [38,39], Shan and He [11],
and Shan er al. [25], we discretize the velocity space by
expanding the distribution function in the Hilbert space of
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tensorial Hermite polynomials up to an arbitrary order N,
AR
fO~ O =0® ) —a i, @, ©)
—n!

where the Hermite polynomials Hffl)l (&) are introduced by
the recurrence relation

Hil5 ® = (G, —o0)H, @, 6

HOE) = 1. (6b)

The lowest-order term of the expansion (5) is given by the
weight function w,

_ —£/2
w(§) = o’ (7
and the expansion coefficients
s, = [@PErY G, @ ®

correspond to the moments of the distribution function.

In the configuration space of a discrete velocity model the
molecular velocities &, are here restricted to a Cartesian lattice
X with uniform spacing c, called lattice speed, such that the
components &,; /c are integer valued. A subset of X containing
a number V of these velocities, the stencil § C X,

S={,la=1,...,V}, ©)]

is used with the corresponding weights w, to compute the
integral in Eq. (3) by quadrature,

M; i, = /dDEw(i)Pil...in(E)
= wa Py, (Ea). (10)
with the function P; _; (§) = f(&)&,.....&, /w(§). For a

polynomial P;,_; (§) of degree Q the quadrature (10) is exact
as long as it satisfies the orthogonality relation

/ dPE0@H, OH (&)

we M (EJH™ (&)

[
™M=

1'1...1',1 Ji-Jm
a=1
_ 1 if(ila'-'ain)zperm((jh"-ajm))a
“ 10 else,
n+m< 0, (11)

up to the Qth order, where perm(j) denotes a (odd or even)
permutation of the vector j = (jj, . .., ji»). This can be readily
seen by expanding P;, ; (§) using Hermite polynomials

1oodn

0
M; i, = Zpilmin,jl...j,,, /dea)(E)H.(,T?,jm(g), (12)
m=0

with some coefficients p;, ., j..j.- If Eq. (11) holds, the
Qth-order polynomial in Eq. (12) is evaluated exactly by the
quadrature and hence Eq. (10) holds as well. We then refer to
the stencil S along with its weights w, as a discrete velocity
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model (DVM) with quadrature order Q. Note that we write

the moments (10) as sums on discrete velocities, implicitly

assuming a sufficiently high quadrature order, unless indicated.
A LB model solves for the variables

)
fa = Wq (13)

(o)

in the LB-BGK equation
1

O + &aidi) fo = ——(fo = £2); (14)
using a DVM for the evaluation of the macroscopic variables
pP= fu (15a)
pui = ) fubuis (15b)
(15¢)

o(DO + uju;) = Z Jabaibai-

The latter serve the LB model to determine the equilibrium
function

fO%q.0.0)
w(&s)

N

! "
=we ) —ai M €. (16)

n=0

9% u) = w,

expanded to a Hermite order N, where the Hermite coefficients
for isothermal flows are given by

a) . =pui...u;,. (17)

For any stencil S, the weights w, are obtained by solving
the set (11) of linear equations. We decompose the stencil
S = ng 1S¢ into a number G of velocity sets (groups), each
group S, containing V, velocities (such that V = Zg Ve)
generated by the symmetries of the lattice. These groups
S, can be obtained by reflecting a single £¢) € S, on those
hyperplanes of the lattice which reproduce the lattice itself
upon reflection. Hence, the velocity weights must be identical
in each group,'

wy =W, V{a| & € S,). (18)

It is efficient to rewrite Eq. (11) into the form
4
Kap(Swp =0 Yo, Y wa=1, (19)
a=1
where K is a symmetric matrix with elements
Q
Kup(S) =y H", (EDH", (&p) (20)
m=1

and where the Hermite tensor indices are contracted. In view
of Eq. (12), it is sufficient to solve Eq. (11) for n = 0 and

"Note that the metric norm of the velocities, |§|> = &;£;, is not useful
to identify the weights. For example, the velocities (3,0,0) and (2,2,1)
have the same norm; however, they are not part of the same group.
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m < Q. Obviously, Eq. (19) then follows from Eq. (11) by
multiplication of H\"”. (&4) and summing on m. The reverse

i1

is true because Eq. (19) can be written, after multiplication by
Wa, a8

0 2
0 = we Kap(SHws = [Z Hﬁj’?,-m(éa)wa} :

m=1 o

which requires that each part of the sum be zero. To obtain
the matrix K(S), the scalar product of two Hermite tensor
polynomials is obtained by the recurrence formula (no sum on
m)

(m+1) (m+1)

Hl.]wierl(s)Hil---im+l(n)
_ (m (&) &) qm
- (sir71+lnim+l - gimﬂaimﬂ - nin1+laim+1 + 8im+] ai,,,+1)

< H, EVH, o), @1
which follows from Eq. (6).

Finding the weights w, for a stencil reduces to the task
of finding the null space of the symmetric matrix K (S) and
normalizing according to Eq. (19). As a special feature, the
matrix K(S) has a parametric dependence on ¢ (through
S) such that for some discrete values ¢* € R its nullity is
increased. This means that by populating the stencil with
sufficiently many velocity groups, we find for each quadrature
order Q a minimal number G of velocity groups such that for
c=c*

dimker K(S) =1, (22)

while for ¢ # ¢* the matrix K(S) is regular and no solution of
Eq. (19) can be found. The solutions of Eq. (19) which obey
Eq. (22) with ¢ = ¢* are referred to as minimal DVMs. We only
consider DVMs with positive weights. Fixing the quadrature
order Q and the number V of velocities, there is a countable
infinity of minimal DVMs, since S can be chosen from
the (virtually) unbounded lattice X. However, by introducing
the integer-valued energy E of a stencil and limiting it from
above,

E - ZEO{ : Ea g Ema)n (23)

the number of available Qth-order minimal DVMs becomes
finite. We are thus able to determine the complete set of
minimal DVMs inside the energy sphere defined by E < E,y -
The notation

DDV (V)

00 E(E) €& D3019 — SG3L3, (24)

is introduced for the DVMs. As a reminder, we refer to
the spatial dimension as D, the quadrature order as Q, the
stencil’s energy as E, and the number of velocities as V. In the
sequel, we consider three spatial dimensions, D = 3. Although
small values of V are desirable for a high computational
performance, it is unclear which choice of the stencil is the
most accurate for finite Kn number flows. Itis shown in the next
sections what are the essential features of a DVM for the
resolution of high-order hydrodynamic regimes.

PHYSICAL REVIEW E 94, 013304 (2016)

III. LATTICE-BOLTZMANN HYDRODYNAMICS

In this section we study the capability of LB models with
Gauss-Hermite quadrature order Q and Hermite order N to
capture isothermal (¢ = 1) microflows beyond the Navier-
Stokes flow regime by using the CE expansion. We restrict our
analysis to low-Ma flows. The flow phenomena thus described
bear fixed values of the Reynolds number Re, Kn, and Ma,
where Ma « 1 is a small number allowing an expansion.

By taking moments of the discrete LB-BGK equation (14)
with respect to the discrete particle velocities &, macroscopic
moment equations can be derived. For the density p and the
momentum pu, we obtain the evolution equations

0,0 + 9;(pu;) =0, (25a)
0 (pu;)+ 0;I1;; =0, (25b)

with the momentum flux tensor
My =) fobuibe)- (26)

Equations (25a) and (25b) represent mass and momentum
conservation, respectively, guaranteed by invariants of the
BGK collision operator. Corresponding equations for higher
moments, e.g., I;;, are derived by taking moments of Eq. (14)
with more than one particle velocity &,,.

A. Chapman-Enskog analysis

The CE analysis [4,40] is a perturbative method to solve
the Boltzmann equation and is based on the assumption
that the distribution function f, deviates only slightly from
the equilibrium £%. The CE expansion introduces a small
parameter € into the collision time T — et, which controls
the perturbative analysis and is absorbed into t after finishing
the analysis. Physically, the parameter ¢ may be identified
with the Knudsen number, which measures the deviation from
equilibrium. The first, second, and third orders correspond
to the Navier-Stokes, the Burnett, and super-Burnett flow
regimes, respectively. Consequently, the LB-BGK equation
(14) becomes

1
O+ Ewid) fou = ——(fu = £7) 27)
and the distribution function is expanded in powers of €,
fo=fO+efV+fP + - (28)

The CE expansion is a multiple-scale expansion of both f
and ¢,

=004V +e2P 4., (29)
with the solvability conditions

=0, Y fME;=0. n>1.  (30)

o o

Therefore, high-order contributions f”(n > 1) of the CE
expansion do not contribute to the macroscopic density and
flow velocity. By inserting the CE ansatz (28) and (29) into
the Boltzmann equation (27) we find the general solution
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forn > 1

n—1
£ = —r[aismf;”“ + 85’”7&"’"“}. 31)

m=0

Furthermore, the solvability conditions (30) are equivalent to
the relations

—0;(pu;
3;0)[,0] _ (o 2 ’ (322)
U; —uiju,- — ;8”0
0
a“”[p]:[ 1 (n)], n>1 (32
bl —50;I1;;
where
M =" f%,ik;. (33)

o

The CE analysis is expected to be valid for flow regimes where
the system is not too far from equilibrium [41].

B. Navier-Stokes and Burnett flow regimes

The Navier-Stokes momentum flux tensor HE}) can be
calculated by taking the second moment of Eq. (31) forn = 1
(D) (O] 0)

MMy’ = —7 (8, T + % Qi) (34)

with
Qt(jl)c = Z 86 k. (33)

o

Using Hermite polynomials and the orthogonality relation
(11), we obtain

M) = pdi; + puju; (36)
and
ijk —p[u 5jk+1/l131k+14k5u]+/0u Ujlg. (37)

Inserting these results into Eq. (34) and evaluating the time
derivative with respect to Eq. (32a) yields the Navier-Stokes
momentum flux tensor 1'[51.) for isothermal flows,

I = —tp(diu; + ju0). (38)

The standard LB models with accuracy order Q =5 (e.g.,
D3Q19) do not capture the last term in Eq. (37) and thus
cause an error |ATI{| = 7|3 (pu;ujup)| = O(Ma’) [42]. On
the other hand, if a DVM with quadrature order Q > 6
and Hermite order N =3 is used, we exactly recover the
Navier-Stokes momentum flux tensor HED. Evidently, the
momentum flux tensor is O(Ma) and higher-order Ma terms
do not contribute when considering low Ma values.

The Burnett momentum flux tensor H,(?) can be calculated
by taking the second moment of Eq. (31) forn = 2

2 [OFETE
Ny = —(am) +

The third moment of Eq. (31) for n = 1 yields

VT + 8. 01). (39)

0 =~ (%" O} + 0. R ). (40)

ijkn)>
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with
RO, = fO8uibujEarban. @1

o

By applying the Hermite polynomial the tensor RY can be

expressed as

[jkn

R, = p(8ij8tn + 8it8jn + Sind 1)
+ ooy + uiugdjn + ui,dji + ujugin
+ ujunSik + url,dij) + puiujugu,. (42)

Inserting this result together With relation (37) into Eq. (40),
we can compute the tensor Ql > which is required for the

evaluation of Hg 2| After an extensive calculation of all terms
in Eq. (39) by considering the multiple-scale time derivatives
3,(0) and Bt(l), we obtain the Burnett momentum flux tensor for

isothermal flows,

1
My = 2p7? [(aku o)+ = (a,pxa,p) aia,-p}.

43)
The Burnett tensor for an incompressible flow field is Hg) =

O(Ma?) and thus does not contribute to the momentum
dynamics in the low-Ma regime. However, for finite Kn the
flow behavior can become compressible even for low Ma [3]
and in that case we obtain contributions from the last term of
Eq. (43). We show in the following section that these low-Ma
terms are recovered even for LB models with accuracy order

0=5.

C. Low-Mach truncation error

Depending on the quadrature accuracy order Q a LB model
is able to recover different flow regimes. In this section we
analyze the quadrature error with respect to the power of
Ma and discuss the ability to capture high-order flow regimes
especially for low-Ma flows. For this purpose we consider the
kth moment of the nth CE level, which is defined by

M =" Pt (44)
where k > 2 because of the solvability conditions (30). An
equation for this moment can be derived by taking the kth
moment of Eq. (31) with respect to the discrete particle
velocities &,

(n)  _ 0) 5 s(n—1) (1) 3 s(n—=2)
M" = —t[, M+ 0, M+

i1k i1k

+ 8" M, + oM. (45)

i1k ek

Based on this relation it can be easily shown by induction
that the moment M, (n )i is completely determined by moments
of the equilibrium d1str1but10n Because of a finite accuracy
order of the Gauss-Hermite quadrature, higher moments of the
CE expansion are only approximately captured and therefore
high-order flow regimes are not accurately recovered. In order
to discuss such a truncation error for a moment Ml(l")lk we
define the quadrature error

AM®  — g™ _ pmDVM (46)

i...0k iy...0k I1...0g ’
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where M l(]")ll)kVM

by a DVM.
Due to the fact that a general CE moment Mi(ll?jk can be
expressed by equilibrium moments, it is important to consider,

in a first step, the quadrature error for equilibrium moments

11 lk Z f(O)‘i:otl] .. gai;(a (47)

is a possibly inaccurate moment, calculated

with the equilibrium function given by Eq. (16). Note that the
Hermite coefficients [see Eq. (17)] yield

a? = oma"). (48)

i]...0p

The product &, . ..
Hermite polynomial Hff‘) i Ea)s
lower-order Hermite polynomials,

Eaiy - Eaip = HY, (Ea)
k—2
+ ZHEI lp)llH—] RAY A lk(so‘) Si,is +

r<s

&4i, in Eq. (47) can be expressed by the
’H(k 2) (&4), and terms with

iy.ig—2

(49)
Therefore, we obtain
TR ST 0 AN
n=o "
+ 251' Z‘ngll) (8
XH v ) - } (50)

An exact evaluation of the moment M; © ., requires a suffi-
ciently high Hermite order N > k of the equlllbrlum (16) to
ensure that the contributions of all Hermite polynomials in the
brackets of Eq. (50) are included [28]. Due to the orthogonality
relation (11) higher Hermite polynomials in the equilibrium,
Hgl')”in with n > k, do not contribute to the moment Mi(loiik.
In addition, we need an adequate Gauss-Hermite quadrature
with an accuracy order Q > k + N to guarantee the correct
evaluation of all Hermite contractions in Eq. (50). Otherwise,
we obtain quadrature errors, which are analyzed in detail in
Appendix C. The result of this error estimate for equilibrium

moments Ml.(lof'ik is given by
0 fork+ N < Q,k<N
o _ Joma"ty  fork+ N < Q, k>N,
AM, i = 0Ma®* ) fork—1<0 <k+nN, OV
O(Ma°) for Q <k —1.

At this point, it is worth discussing the optimal choice of the
Hermite order N of the equilibrium function (16) in order

to ensure an exact evaluation of all Mi(,o.)..ik with maximal k.

Using Eq. (51) this is achieved for N = %Q. Usually Q is
an odd number and N is an integer, which allows either N =
Y@+ DorN =10 -1,

For an odd Gauss-Hermite quadrature order Q we fix in
the following the Hermite order of the equilibrium (16) to
N = %(Q — 1). For this particular choice we obtain for the
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quadrature error (51) the relation

0 for2k+1< Q,
AM?, = OMa2 ) fork —1< Q <2k +1,
OMa®) forQ <k—1
= 02k — Q) O(Ma" (@10 (52)

where © is the Heaviside step function. If we choose the
other possibility, N = %(Q + 1), we get for the estimate of
the quadrature error the same result (52). However, we want
to point out that the quadrature error for N = %(Q —1)is
different from the choice N = %(Q + 1); however, the leading
power of Ma in the error term is the same.

The dominant quadrature error (with respect to Ma) of
a quantity consisting of several equilibrium moments is
determined by the highest equilibrium moment M; ©  Based

iy
on the recurrence relation (45) for a CE moment M; ») ., and
the error estimate (52) for equilibrium moments, we are able
to prove the following theorem.
Theorem. For any LB model with an odd Gauss-Hermite
quadrature order Q and a Hermite order N = (Q — 1)/2 of

the equilibrium (16), the truncation error of the kth velocity
(n)

moment M il in the nth CE level is given, for low-Ma values,
by
AMD" . = (=1)"dj,...9;,AM,” ivji..j, T subleading terms

(53)
and can be estimated by

AM™ . = O[2(k 4+ n) — QJOMa"*(@=k=n+1.0) = (54)

iy...0x
where k > 2 and O is the Heaviside step function.

The theorem is proved by induction in Appendix D. It is
in agreement with the accuracy determinations of LB models
given by Shan et al. [25]. Moreover, the theorem presented
here makes it possible to identify the recovered flow regimes
for low-Ma values by analyzing the truncation error.

In the following we discuss the macroscopic momentum
dynamics

0;(pu;) + 9;I1;; =0, (55)

with the momentum flux tensor,

My =y T, (56)
n
and analyze the recovered flow regime of a LB model with
Gauss-Hermite accuracy order Q by using the theorem. Based
on the error estimate (54), the relevant error of the momentum
flux tensor of the nth flow regime Hl(;) with respect to the Ma
power is given by

O@2n + 4 — Q)0 (Ma"¥ Q=10 (57)

LB models with quadrature order Q = 5. For LB models
with quadrature order Q =5 the Navier-Stokes momen-
tum flux tensor H§1.) is not evaluated exactly for all Ma

ALY =

numbers, because the highest equilibrium moment Q(O,){ is

only recovered up to an error O(Ma®) in accordance with
relation (54). The leading momentum flux error is given by
Al‘[(l) —T 0 AQE% = O(Ma%). 1t is interesting to notice
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that even LB models with accuracy Q = 5 recover the Burnett
momentum flux tensor Hg) for low Ma values. Because of

relation (57) we obtain AHI(.JZ.) = O(Ma?), which indicates
that low-Ma contributions are recovered. Considering the
isothermal Burnett tensor we observe that only the last term on
the right-hand side of Eq. (43) includes low-Ma contributions
for compressible finite Kn flows.

LB models with quadrature order Q = 7. LB models
with Q = 7 recover the Navier-Stokes momentum flux tensor
(38) exactly, whereas the Burnett tensor includes an error of
AHEJZ.) = O(Ma*) according to relation (57). This is caused

©

by an inaccurate evaluation of the equilibrium moment R; ;.

Furthermore, the momentum flux tensor HS) is captured up to

an O(Ma®) error and Hl(.?) up to an O(Ma?) error. Therefore,
LB models with quadrature accuracy order Q = 7 recover the
momentum dynamics up to the fourth flow regime (l'[l(.j)) for
low-Ma flows.

LB models with arbitrary quadrature order Q. In general,
the error estimate (57) states that for low-Ma flows LB
models with Gauss-Hermite quadrature order Q capture the
correct momentum dynamics up to the (Q — 3)th flow regime,
because of AHEJ.Q_3> = O(Ma?). On the other hand, higher
flow regimes are not described correctly. For example, the error
of AHEJ.Q_z) = O(Ma) corrupts the leading-order terms of the
momentum dynamics. Fortunately, such effects are suppressed
by a term O(Kn2=?), which is sufficiently small for Kn < 1.

IV. GAS-SURFACE INTERACTION

For wall-bounded flows at finite Kn the gas-surface in-
teraction is of crucial importance because of its influence
on the Knudsen layer. It is known that the diffuse Maxwell
reflection model [6] is sufficiently accurate to describe flows
for a wide range of Kn. Its numerical implementation in
the LB framework has been reported in Refs. [21-24,43].
Although high-order LB models recover flow regimes beyond
the Navier-Stokes level, there are some models, e.g., D3Q121,
which show significant deviations to reference results for
wall-bounded flows at finite Kn (see Sec. VI). The reason
for this failure is shown to be caused by the inability of these
models to recover the diffuse Maxwell boundary condition
accurately. We define wall moments and introduce a wall
accuracy order and thus assess the capability of a LB model to
capture the diffuse Maxwell boundary condition.

In this section we discuss a systematic way to generate
DVMs which inherently exhibit the diffuse Maxwell boundary
condition.

A. Diffuse Maxwell boundary condition

The diffuse Maxwell reflection model suggests that parti-
cles emitted from the solid surface do not depend on anything
prior to their surface impact and their velocities are normalized
by the equilibrium distribution. This notion infers that the
scattering kernel only depends on the emitted velocities. We
can then write [21] the distribution function of particles emitted
by the wall as

f& =vf9¢,p,,00 for n-&>0, (58)

PHYSICAL REVIEW E 94, 013304 (2016)

where n = e, is the inward wall normal vector and the scalar
W ensures mass conservation across the (impermeable and
stationary) surface,

fn.§f<0 d3§,f(§,)|n - &'
fn.£>0 d3€f(0)(E7pWVO)|n . E' .
The equilibrium function f©(&,p,,,0) is evaluated for the
density p,, and the macroscopic velocity u = 0 at the wall.

It was shown in Ref. [30] that for steady unidirectional flows
W = 1. The discussion of this section allows W to be arbitrary.

v =

(59)

B. Equilibrium wall moments

At the wall, the velocity moments (3) are decomposed
into a part connected to the fluid domain and a part which
is influenced by the wall,

M. = / PEFEE, .. & + f PEFEE .. .
n-£<0 n-£>0

(60)

The second integral is completely determined by distributions
coming from the wall representing the gas-surface interaction.
Using Eqgs. (58) and (59), we can write

M., = / @G VWi, (6D
n-£<0

where the equilibrium wall moments W; were introduced

as

1.odn

Wi, i = / d’e0m - §w&)E;, ... &, . (62)

The capability of a DVM to capture the Maxwell boundary
condition can now be investigated by analyzing the equilibrium
wall moments. It is straightforward to obtain exact solutions
for W;, i, expressing them by the scalar integrals

/ dz, / dt, /0 dE.w(E)Em e Em

2ervarmZ
- f8f3_[1 + (=1 (=™
b/

y r‘<m,c+1)1_‘<my—i—1>F<mz—i—l>’ 63)
2 2 2

with the Euler Gamma function I". We now show how to
evaluate the equilibrium wall moments (62) numerically with
a discrete velocity model.

C. Discrete velocity models with wall constraints

In the discrete velocity space the wall moments (62) are
computed by quadrature. Note, however, that the evaluation
of nth wall moments W;, ; cannot be performed in an exact
manner by Gauss-Hermite quadratures with order Q = n. This
is due to the nonanalyticity of the Heaviside function at the wall
where an expansion of the integrand does not exist. Although
alternative quadratures can be introduced using functions
orthogonal in the half-space [35,44,45], we would like to
cope with this difficulty within the conventional framework
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of Gauss-Hermite quadratures. We employ the quadrature
prescription

WPYM = 3" wokai, .. - ui,- (64)

n-§,>0

and demand that—while defining the stencil—the supplemen-
tary constraints
DVM _ W

i1...0p L...ly

(65)

be fulfilled, aside from the orthogonality condition (11).
We thus ensure that the wall moments (62) are computed
exactly. To this end the kernel of the matrix K, see
Eq. (20), is augmented by adding groups of velocities,

yielding {w®,w®, ..., w{"} as an orthogonal basis of the
J-dimensional null space. Any weight vector
Wo = X wfx-") (66)

in this null space then defines a quadrature where the freedom
in the coefficients x; is used to implement the wall constraints

(65). We achieve this by solving the set of linear equations
Apjxj =by, 1<k<L, (67)

where the vector b comprises the nontrivial equilibrium wall
moments of Eq. (65),

b= (W, W, Wyr, Werr, Worn, Waax Wxxyyv
Wozzzes Wezznns W szxyy, Wixxxxxs

WX)CXny ’ WZZZZ’,ZZZ ’ WZZZZZXX ’ WZZZXXX)C ’

szzxxyyv szxxxxx’ szxxxyyv e )s (68)
and the matrix A is given by
A=Y Tewy, (69)
n-é&,>0

with the symbols 7;* defined as
T = (1, buzs £0vs €0z Sacbiaer Eavs Sanbars
£ b ko Eucba, Eackn ko ES
Eaxbays Sazs Sabars Eazbun:

EDELEL B kS ELELEL. ). (10)

The index & in Eq. (67) runs from 1 to L, where for Q =7
we find L = 19 nontrivial equilibrium wall moments. For Q >
7, additional components need to be appended to the vectors
b and T* 2

The wall moments are determined for n < Q, i.e., the quadrature’s
accuracy at the wall is not required to exceed the accuracy in the
bulk. Note that the integrals in Eq. (63) vanish by symmetry if m,
or my are odd. Since this symmetry is preserved by the stencils,
the quadrature then automatically yields correct results. For even
m, and m,, the equilibrium wall moments (62) are automatically
exact for even m, = 2,4, ... [see the discussion following Eq. (78)].
The components of the vectors b and T* are nested in the order
of increasing n, decreasing m,, and decreasing m,, where m, €
{0,2,4,...}, my, €{0,2,4,...|m, <m,}, m, €{0,1,3,5,...}, and
my +my+m; < Q.

PHYSICAL REVIEW E 94, 013304 (2016)

By solving the supplementary Eq. (67) we obtain stencils
suitable as Qth-order quadratures for the gas-surface interac-
tion as well as the bulk flow. As shown in Sec. VI, LB models
of a given quadrature order Q show strongly different behavior
depending on the quantities

Oirin = (Wiyiy = WM Wiy i (71)

1edn i1

which measure the numerical error of the gas-surface interac-
tion. It is convenient to use the expression

_ Z;?:o Zil...i” |Ui1...in
ZnQ:o i€

assessing the net effect of nontrivial wall errors.

We put forward the so-called wall accuracy index Ajpgex
for indicating a DVM’s ability to evaluate the wall integrals
(62). The wall accuracy index is defined as the binary number

Aindex = ()\L cee )"2)%)27 (73)

e*n

Iop> (72)

where the A are numerical Booleans which determine whether
the kth wall constraint in Eq. (67) is satisfied,

O for Agjx; # by,
)Lk B {l for Aijj' = bk. (74)

For instance, a DVM with one single wall constraint, o,,, = 0,
can be characterized by the wall accuracy index

Aindex = 0000000000000010000, = 16. (75)

In Eq. (75), it is shown that the wall accuracy index can be
given by a decimal number as well. We thus use A;,g., as an
abbreviation bearing lots of information on the validity of the
wall constraints (65).

Furthermore, we define the wall accuracy order A by the
highest rank of equilibrium wall moments (62) up which the
quadrature is exact,

o1 =0 Y{nii...iy|ln=01,....,A}.  (76)

If Eq. (76) is false for any A > 0, we set A = —1. It can be
shown (see Appendix E) that a DVM with wall accuracy order
A is able to exactly evaluate the Maxwell boundary factor W
[see Eq. (59)] up to the (A — N — 1)th CE level.

D. Combplete sets of discrete velocity models

Several sets of DVMs, denoted by S,, n = 1,2, ..., are
introduced in this paper to alleviate the discussion on efficiency
and accuracy of the DVMs. An overview of these sets is given
in Table I. Each set is defined by its dimension D, its quadrature
order Q, the upper limit E,,,, of the stencil’s energy, and the
wall accuracy index A;,q... A set S, contains a number A of
minimal DVMs with V,,;, being the minimal velocity count.
While in one spatial dimension, it is well-known how to find
Vinin for Gauss-Hermite quadratures, in higher dimensions,
this is not obvious. For most common quadratures in three
dimensions, V > V,.i,.

A set of DVMs can only be complete if an upper bound on
the stencil energy is provided. Defining the set S;, we arbi-
trarily chose E,,,, = 500 but, of course, this number may be
increased. S; includes 4677 three-dimensional, seventh-order
DVMs. The lowest velocity count within S; yields V,,;, = 38.
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TABLE I. Overview of DVM sets S, which comprise a number
A of minimal DVMs with dimension D, quadrature order Q, and
upper limit E,,,, for the stencil energy. The sixth column shows the
minimal velocity count V,,;,. For each set S,, it is indicated in the
seventh column which wall moment errors vanish. Finally, the wall
accuracy index A4, is given. The symbol “—" is used where a
quantity is not considered.

D Q Epax A Vinin 0. = 0 Aindex
S 3 7 500 4677 38 - 0
S 39 625 618 79 - 0
S, 3 7 - 50 - rrr 16
Ss 3 7 2500 45863 80  0,04,0ijum:Oijumpg 0245
S 2 7 250 1188 16 - 0
S 2 9 300 592 33 - 0
37 2 7 1000 21952 20 0,0ij,0ijnm>0ijnmpq 549

There are two models of this kind, displayed in Tables VI
and VII. All tables of DVMs are deferred to the Appendix. The
set S; comprises 618 three-dimensional, ninth-order DVMs
with E,,,, = 625. The lowest velocity count yields V,,;, = 79.
This DVM, which is noted in Table X, complements previously
known DVMs with minimal velocities [28]. A widely used
ninth-order DVM is the one shown in Table XI, also known as
D3Q121 [24].

The two DVM sets S3 and S; shown in Table I are
designed for wall-bounded flows, taking into account some
of the equilibrium wall moments (65); hence, A;pzex > 0. In
particular, the DVM set S3 comprises 500 stencils for D = 3
and Q = 7 with the supplementary constraint

Ozxx = 0. )

As shown in Sec. VI, a minimal equilibrium wall moment error
|o,xx | 18 crucial to the resolution of correct mass flow and slip
velocity in finite Kn flows. Further optimization (see below)
yields the stencils S237/7, and 777107 shown in Tables XII
and XIII. Note that these are augmented DVMs: They are based
on DVMs for minimal DVMs and the last two velocity groups
are added to account for the wall constraint (77). The wall
accuracy order for S3 yields A = —1.

For the DVM set Sy, where D =3 and Q =7, we split
the domain of numerical integration across the wall, i.e., the
stencils do not contain velocities parallel to the wall, n - &, #
0V «. A noteworthy property of these models is that they
enforce wall interaction of the stencil nearest to the wall. The
occurrence of ballistic particles as described in Ref. [15] is
thus avoided. We refer to the stencils without wall-parallel
velocities as scattering stencils.

Considering Qth-order polynomials P (&) invariant for

n-§£— —n-§ (78)

(even functions included), the relation

1
/ d’c0m - §)w(E)PE) = 3 / dEw(E)P(E)

= %; thP(gol)

PHYSICAL REVIEW E 94, 013304 (2016)

= Y WP+ Y wPE) (9

n-£,=0 n-é,>0

is exact for quadratures with order Q. For scattering stencils,
the first sum in Eq. (79) is absent by definition (n - &, # 0)
and therefore the customary wall quadrature prescription (64)
yields exact results for even wall moments,

Oiyiny =0 V{n,iy...02, 10 <2n < 0} (80)

On the other hand, wall-parallel and zero velocities infer a
quadrature error using Eq. (64) because their contribution to
Eq. (79) is neglected. This circumstance is an advantage of
scattering stencils such as D2Q16 and it also explains why
DVMs with an even number of velocities are superior to others
in the context of wall-bounded flows. Such stencils necessarily
lack the rest velocity § = 0 which typically comes with a
relatively large weight wg in the quadrature. The rest velocity
causes a considerable error neglecting the term %wo P(0) in
Eq. (79) while using the wall quadrature prescription (64).
This error is suppressed by stencils with an even number of
velocities.

The wall accuracy order of S, is found, according to
Eq. (76), to be A = 0. On the other hand, the wall accuracy
index yields

Aindex = 0000001100001100101, = 6245. (81)

The energies of the stencils in Sy are limited by E,,, =
2500, which yields 45 863 DVMs with the property (80).
Among those, we picked out the DVMs § 3%2?832 and S g%”é‘,
for reasons explained in Sec. VI, and we present them in
Tables XIV and XV.

Finally, Table I lists the sets S5, Sg, and S7, which concern
the popular research area of LB models in 2 spatial dimensions.
Details about these models can be found in Appendix B.

V. NUMERICAL METHOD

For the numerical solution of our test case shown below,
we include an external force F,, in the LB-BGK equation (14)
by writing

1
(0 +&4i0) fou = —;(fa — 139, (82)
where we introduced the generalized equilibrium function
£ = £+ T, (83)

which must be expanded using Hermite polynomials [25].
Using the Hermite order N = 3, this yields for the equilibrium

00w = pwe {1 + uibai + S(uikai)* — uiu;]
+ éuiéai [(uj";:aj)z - 3Mj14j]} (84)
and for the body force term
Fo = pwolgibai + (gibuwitt j8aj — uigi)]
+ SH = o) gk MY G) = 2860s] (89)

Here g denotes the acceleration of an external body force
field. The numerical solution of Eq. (82) in space x and time
t can be achieved by integrating along a characteristic for a

013304-9



C. FEUCHTER AND W. SCHLEIFENBAUM

time interval At using the trapezium rule

Ja(X+E AL+ AL) — fo(x,1)
At
- / A [ fux+ 1t + )= f51 X+ Eot 't + )]

= ———{[fa(x 1) — fx0)]
+ [fax+ E AL+ AD) — f29(x+ E, ALt + AD)]}
+ O(AP), (86)

resulting in a second-order implicit differencing scheme. By
introducing a modified distribution function [46],

_ At .
fa:fa'i_g(fzx—faq)s 87)

the scheme (86) is transformed into a fully explicit scheme of
second-order accuracy,

fa(X+ E, ALt + Ab)

= foxt) = ——5 [fux) = fAxD]. (88)
2
The macroscopic density p and velocity u are given by
p=Zfa=me (89a)
o
pui = Y fubui = Z Juoi + pg,, (89b)

where we have used ), Foéoi = pgi.

The relaxation time 7 in the LB-BGK equation (14) is
chosen to adjust the viscosity of the bulk flow. Based on the
Navier-Stokes momentum flux tensor (38) t is determined by

v
T=v=—"7), (90)
colo
where ¥ is the kinematic viscosity in physical units. We write
the quantities v, A with tildes if they are expressed in physical
units.

Because of the nature of intermolecular collisions there
is no well-defined definition of the mean free path. The
conventional solution to this problem is to consider a model
gas with hard sphere molecules, where the mean free path
can be expressed exactly [4,6,47]. For the present study we
use Cercignani’s definition of the mean free path based on the
viscosity [6,47]

i= 22 o1)
2 C()
which is very close to the analytical result of a hard sphere
gas.> Thus, Kn is given by

T, 92
COO

which is—up to a factor—ldentlcal to the relaxation time t.

3The CE result for the mean free path in a hard sphere gas is

== 48],
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For the interaction of gas molecules with a solid wall surface
we implement the diffuse Maxwell boundary condition (58)
for a nonmoving rigid wall using the expanded equilibrium
function (84)

Fouust) = ¥EO(p,,u = 0), (93)

with

Zn-§a<0 Jaln-&,]

V= o) .
Zn.§ﬁ>o f/s (pw,0)m - &4l

(94)

Unknown distribution functions near solid walls which cannot
be calculated by the standard propagation step are set to
the distribution function of the diffusive Maxwell boundary
condition (93). For the test case investigated here, the density
is uniform and the flow behavior is steady and unidirectional,
which implies W = 1 [30]. As for the half-way bounce-back
scheme, the wall is located at a distance of half a lattice
spacing from the first fluid collision center [22,43]. For a
numerical calculation the boundary condition (93) needs to
be transformed with Egs. (83) and (87) into a corresponding
form for the modified distribution function f,.

VI. POISEUILLE FLOW

In this section, we check DVMs for their capability of
describing Poiseuille flow for various values of Kn. The DVMs
considered here are organized in the sets Sy, Sz, and S shown
in Table I, to be discussed in Secs. VIA, VIB, and VIC,
respectively. This order is chosen with increasing value of
the wall accuracy index A;,g4.x representing a more accurate
computation of the wall moments. It should be possible to
find a DVM with all wall moments evaluated exactly, i.e.,
wall accuracy order A = Q, following the procedure given in
Sec. IV C and solving the wall equation (67) as a constraint.
However, since the stencil would then become prohibitively
large, we relax some of these constraints and minimize the
remaining wall errors instead.

Two parallel plates are located at z = %//2 and the flow is
driven by a constant pressure gradient, pg, in the x direction.
We use periodic boundary conditions in the x and y directions.
The body force is small enough so that we can assume low-Ma
flow. Due to symmetry, the only nontrivial velocity component
isu(z) = u,(x). Below, we discuss the slip velocity at the wall,

u(3)

u(0)’

95)

Us =

as well as the normalized mass flow rate,

lo/2
d , 96
4MCKH B / l() /10/2 ZM(Z) ( )

where B is the extension of the flow domain in the y direction.
The Navier-Stokes equation with no-slip boundary condition,
uy = 0, yields the centerline velocity u. = u(0) = glg /(8D)
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FIG. 2. Mass flow rate for common LB models and some

exclusive S; models (A, 40x = 0).

and the mass flow rate
1

= —. 7
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A. DVMs of set S; without wall constraints

Figures 2 and 3 show the mass flow rate and the slip velocity
at the wall for two known LB models, D3Q19 and D3Q121,
and some new models of set S; compared with DSMC data. For
small Kn the D3 Q19 model (accuracy order Q = 5) and the
D3 Q121 model (accuracy order Q = 9) agree very well with
the reference data. However, for higher Kn both models exhibit
strong deviations from the DSMC results. Similarly, the new
model S 373}5/3989 with an accuracy order Q = 7 and a minimal
number of 38 velocities fails for higher Kn. Although the
high-order models D3 Q121 and §23/35, recover flow regimes
beyond the Navier-Stokes level (for a detailed discussion see
Sec. III), the results remain unsatisfactory for finite Kn.

The new LB models of set S; are of Gaussian quadrature
order Q =7 and are thus able to recover the momentum

1.2
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FIG. 3. Slip velocity for common LB models and some exclusive
S1 models (A gex = 0).
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FIG. 4. Correlation between o, and m for Kn = 0.4514. Every
dot represents a DVM within S.

4)

ij
O(Ma?)]. If we analyze these models, we observe for finite
Kn, nevertheless, quite different results and considerable
deviations from the DSMC results for both the mass flow
rate and the slip velocity. The Gaussian quadrature order Q
is very important to recover high-order flow regimes, but not
sufficient to guarantee accurate results of a LB model for finite
Kn. This is also found for high-order LB models in D = 2
dimensions [30].

The reason for the failure of many high-order LB models
for finite Kn is their weak ability to recover the diffuse
Maxwell boundary condition exactly. We assess this ability
by considering the errors of the wall moments in Table II.
The exact definition of the models listed here can be found in
Appendix A. We here identified DVMs of the set S; with wall
moment errors as small as possible, which thus ensure a good
realization of the diffuse Maxwell boundary condition. For the
two different models S QDg‘E/fjb and § 8%288 some wall moment
errors are given in Table II and the flow results are shown in
Figs. 2 and 3. Due to smaller wall moment errors, we observe
for both models a significantly higher accuracy for finite Kn.

The errors in the slip velocity are nearly the same, whereas
the predicted mass flow rate of the model SP71%}, is more
accurate. By using the CE analysis (see Sec. III) one can

dynamics for small Ma up to the fourth flow regime [ATI

TABLE II. Wall moment errors of standard LB model D3Q19,
the common DVM SJ5/431 (also known as D3Q121), as well as some
exclusive S; models. Q is the quadrature order.

DVWM Q0 o o, O Torx o3
D3Q19 5 —0.6667 —02764 —0.6667 —0.2764 0.5506
D3Q121 9 —04767 —0.1292 —04767 —0.1292 0.3685
ShVS, 7 —04902 —0.1505 —0.5926 —0.2109 0.4042
Shavet 7 —0.0443 —0.0750 —0.1212 —0.0258 0.0621
Shivsc 7 —0.0367 00932 —0.0794  0.0658 0.0576
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TABLE III. Wall moment errors of some exclusive S; models,
where Q is the quadrature order.

LB
model Q o o, Oxx Ozxx Ogzzzxx

4

Oxxzzzzz (%>

SBIVIT 7 —0.0998 0.0247 —0.1482 0.0 0.0027 —0.0083 0.0849
SB3VTT 7 —0.0816 0.0343 —0.1339 0.0 0.0132 —0.0710 0.0765

show that the relevant low-Ma contributions to the momentum
dynamics up to the super-Burnett flow regime are affected
by the third and fifth equilibrium moments. Therefore, the
higher accuracy of model S 373;227 in the mass flow prediction
is caused by a more accurate representation of the third wall
moment W,,, (see Table II).

If we consider the influence of the wall moment error o,
on the mass flow rate within all S; models, we observe a strong
correlation between oy, and m. This is shown in Fig. 4 for a
Knudsen number of Kn = 0.4514. Pearson’s linear correlation
coefficient yields the value —0.98, exceeding in magnitude
all other correlations of m1. It is interesting to notice that all
models with a nearly vanishing wall moment error o, predict
a mass flow rate which is very close to the DSMC results of
mDSMC = 1.76 for Kn = 0.4514.

These results confirm that a reliable LB model for finite Kn
flows requires both a high quadrature order Q and small wall
moment errors, which guarantees a precise realization of the
diffuse Maxwell boundary condition.

B. DVMs of set S; with wall constraints

In this section we discuss the set S3 of DVMs. These
models are of Gaussian order Q = 7 and include a wall
moment constraint which ensures that the o, error vanishes.
Consequently, the wall accuracy index has the value A;ugex =
16; see Eq. (75). From this set of models we select the S 373;1]8273
and S237 /7, models, which additionally have a small overall
wall moment error oy (see Table III). The results for the
mass flow rate, shown in Fig. 5, are in excellent agreement

100 ¢ —— —
[ = DSMC |

[ D3VI07 ]

L 2= 8071023 |

f S,

I i

10 e e

3= r b
3 E

; Ll Ll A
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FIG. 5. Mass flow rate of selected S; models (A;,gex = 16).
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FIG. 6. Slip velocity of selected S; models (A;pg., = 16).

with the DSMC results due to the wall constraint o,,, = 0.
Additionally, the Knudsen minimum at Kn ~ 1 is very well
reproduced. For the slip velocity (Fig. 6) we observe slight
differences to the reference data which may be caused by
remaining inaccuracies of other wall moments.

C. DVMs of set S; with wall constraints

Another set of wall moment LB models, Sy, is characterized
by a Gaussian quadrature order Q = 7 and scattering stencils
which guarantee that all even wall moments up to the
quadrature order Q = 7 are represented exactly,

0 = 0y, = 0i,..i, = 0j,..is = 0. (98)

Consequently, the wall accuracy index has the value
Ajndgexr = 6245; see Eq. (81). Similar to the model sets S; and
&3 discussed previously, we observe for S; models a strong
correlation between the wall moment W, and the flow results
as well. Figure 7 shows the correlation between o,,, and the
mass flow and Fig. 8 shows the correlation between o, and

2
i . . DVM set 34 ]
L Tty |
1.75 "N,
g 15 ]
125 | |
1 L L L L L
20.05 0 0.05 0.1

cSZXX

FIG. 7. Correlation between o, and m for Kn = 0.4514. Every
dot represents a DVM within Sy.
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0.6 TABLE IV. Wall moment errors of some exclusive S; models,
r ] where Q is the quadrature order.
[ - DVMset S, ]
0.55 r 1 LB model ) o o, Orx Oxx oy
L ] SHI 7 00 00373 00 0.000005  0.0090
I ] Shavee., 7 00 0038 00 00114 0.0101
wn
< 05
045 e ]
- 1 the slip velocity. Because of the strengths of these correlations
[ l we select the models § 3%1171624 and S 373}/199632 with small errors
0.4 o 0.0 o1 |o.x| (see Table IV). The Poiseuille flow results for these

GZXX

FIG. 8. Correlation between o, and u, for Kn = 0.4514. Every
dot represents a DVM within Sy.

100 ——

= DSMC
D3VI12
A=A SQ7E1764
gD3V96
¥ S5Q7E1932

Lo

"

0.01 0.1 1
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W

FIG. 9. Mass flow rate of selected S, models (A;,q.. = 6245).
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FIG. 10. Slip velocity of selected S; models (A;, 4., = 6245).

models are shown in Figs. 9 and 10. Both the mass flow rate
and the slip velocity at the wall are in excellent agreement
with the DSMC results up to Kn = 1. The crucial point for the
success of these models is very low errors for all wall moments
up to the quadrature order (Q = 7). However, these models
cannot predict the Knudsen minimum which was reproduced
by models of groups &) and S3.

D. Velocity profiles

Figures 11-20 show the streamwise velocities of the
considered LB models for several Knudsen numbers. At
Kn =0.05 all models agree well with the DSMC results;
however, D3Q19 and SS?Z;;% slightly overpredict the slip
velocity at the walls. For higher Kn the models D3Q19,
D3Q121, and SJ3735 no longer perform well due to errors

of the wall moments. On the other hand, the models S23Y%

Q7E447>
S03ken» and SP2700. show a significantly better prediction

of the velocity field because of more accurate wall moments,
yielding a more precise realization of the diffuse Maxwell
boundary condition.

In particular, the SJ3 /755, model guarantees a high accuracy
for all wall moments up to the Gaussian quadrature order
Q =7 and therefore remains quantitatively accurate at least
up to Kn & 1. Only for Knudsen numbers higher than Kn = 2
do we observe a slight overestimation of the slip velocity.

12 r L p ]
r « DSMC ]
i D3Q19 1
1 — - D3QI21
s .- gD3Ves 1
r Q7E1932
0.8 [ 3
o ver 1
S r 1
L r 1
=1 0.6:7 ,:
= L ]
04 ]
/ Y
0.2 f Kn=0.05 ﬁ
0 : P T ! T ! T ! T ! 1

0.4 0.2 0 02 0.4

V4

FIG. 11. Streamwise velocity profile for Kn = 0.05.
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FIG. 12. Streamwise velocity profile for Kn = 0.05.
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FIG. 13. Streamwise velocity profile for Kn = 0.451.
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FIG. 14. Streamwise velocity profile for Kn = 0.451.
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FIG. 15. Streamwise velocity profile for Kn = 0.903.
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FIG. 16. Streamwise velocity profile for Kn = 0.903.
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FIG. 17. Streamwise velocity profile for Kn = 1.128.
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FIG. 21. Nonequilibrium velocity profile for Kn = 0.05.

E. Knudsen layer

An even stronger requirement for the DVMs than correct
evaluation of mass flow and slip velocity is to yield the correct
velocity profile beyond the Navier-Stokes flow regime. For this
purpose, we define for each solution u(z) a quadratic velocity

profile by
12 u@ 7 2\
N9(z) = u(0 1—31——/ dz’ ](—) ;
e=u ){ [ o Jn " @) J\io/2
99)

which gives the same mass flow as u(z). The nonequilibrium
content of u(z) is measured by its deviation from the quadratic
profile (99),

u" (@) = u(z) — V).

Using the DSMC data for u(z), we find a reference function
u4(z) for each Kn number the DVMs compete with. As
shown for Kn = 0.05 in Fig. 21, the DSMC data show a small
velocity defect at the vicinity of the wall—the Knudsen layer—
such that <9 < 0.

(100)
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FIG. 22. Nonequilibrium velocity profile for Kn = 0.226.
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FIG. 23. Nonequilibrium velocity profile for Kn = 0.451.

In turn, there is an excess of nonequilibrium velocity in the
bulk, u¢? > 0, by definition of Eq. (99). The standard model
D3 Q19 is not able to show a Knudsen layer, due to its low
quadrature order, Q = 5. It yields a strictly quadratic profile
withu¢9)(z) = 0. The model D3 Q121 with higher quadrature
order, O =9, shows some velocity defect; however, it does
not quite match the DSMC result for its wall moments are
inaccurate. On the other hand, the DVM SJ3/76:), which
has both a high quadrature order and (almost) correct wall
moments, shows excellent agreement with DSMC data in the
Knudsen layer for Kn = 0.05.

This hierarchy of DVMs remains for higher Kn numbers.
For Kn = 0.226, the Knudsen layer is more pronounced; see
Fig. 22. While the models D3 Q19 and D3 Q121 are unsatis-
factory, the model SJ7710s, is able to describe the Knudsen
layer. Increasing the Kn number further, high-order flow
regimes gain more importance, causing the DVMs presented
here to cease to be valid for evaluating the nonequilibrium
velocity profile. This is exemplified for Kn = 0.451 in Fig. 23.

VII. CONCLUSION

In this paper we presented high-order LB models for solving
the Boltzmann-BGK equation for finite Kn number flows.

It was shown how to derive new discrete velocity models
(DVMs) for any quadrature order using an efficient algorithm.
The energy of a stencil was bounded from above in order to
be able to define complete sets of minimal DVMs. These sets
comprise more than 50 000 models with seventh quadrature
order in D = 3 spatial dimensions. In future investigations, the
collection of minimal discrete velocity models for high-order
LB simulations can be systematically extended.

We analytically derived a theorem via the Chapman-Enskog
expansion which enables us to identify the recovered flow
regimes of any LB model, i.e., Navier-Stokes, Burnett,
super-Burnett, and so on. For isothermal flows, this theorem
rigorously relates the velocity space discretization error of a
velocity moment for low Ma values with the quadrature order
Q of a LB model. Thus, one can tell from the quadrature order
QO which flow regime is exactly recovered by the LB model
for Ma — 0. In particular, it was shown for isothermal flows
that even the standard models with Q = 5 recover the Burnett

PHYSICAL REVIEW E 94, 013304 (2016)

momentum dynamics for Ma — 0. The seventh-order LB
models we focused on here recover the momentum flux tensor
of nonequilibrium gas flows up to the fourth flow regime for
Ma — 0.

Aside from nonequilibrium effects in the bulk,
wall-bounded high-Kn-number flows require a LB model to
correctly describe the gas-surface interaction. We observed
that several high-order LB models show significant deviations
from reference results because of their poor ability to recover
the diffuse Maxwell boundary condition accurately. In order to
characterize this capability we defined an analytical constraint
for a DVM for the exact implementation of the diffuse
Maxwell boundary condition. It was shown how to generate in
a systematic way high-order DVMs with the inherent ability to
fulfill the diffuse Maxwell boundary condition. Alternatively,
it is possible to arrive at discrete velocity models which obey
the constraint for even velocity moments at the wall by simply
using scattering stencils. The wall accuracy index A;,gex Was
put forward to label the velocity moments at the wall evaluated
correctly by a discrete velocity model. The seventh-order
model S)3;75:,, e.g., was found with a wall accuracy index
Aindex = 6245 and an almost exact representation of the wall
moments up to the seventh order. The circumstance that models
with even numbers of discrete velocities perform better than
for odd numbers can be due to the low net weight of erroneous
wall-parallel (and zero) velocities in half-space quadratures.
For an exact integration of particle velocities emitted by the
wall, we derived a sufficient condition on the wall accuracy
order A.

At finite Kn, we compared our Poiseuille flow LB results
with those of DSMC. We found that the agreement is
strongly correlated with the wall constraint on the one hand
and requires the use of high-order DVMs (Q > 7) on the
other. Therefore, the correct evaluation of high-Kn-number
Poiseuille flow requires both a sufficiently high quadrature
order and an exact representation of the diffuse Maxwell
boundary condition. Consequently, the model 37775, yields
an excellent agreement with DSMC for both the mass flow
and the slip velocity, using Kn numbers up to Kn =~ 1. In the
velocity profiles one can clearly recognize that the discrete
velocity model S77775;, recovers the Knudsen layer in the
vicinity of the wall for Kn < 0.3, while standard discrete
velocity models utterly fail. The increased computational effort
compared to the commonly used standard model D3 Q19 is
about a factor of 5-6. Nevertheless, this is still much faster
than any DSMC simulation, especially for low-Mach-number
flows, where DSMC methods require a large number of
samples to reduce statistical errors. Thus, we recommend using
S 071165, for finite Kn number flows.

For Kn 2 0.3, the results for the nonequilibrium velocity
profile departs from the DSMC results, because the flow
regimes are only recovered up to the fourth Chapman-Enskog
level and there are remaining errors in high-order wall
moments. However, we expect that for LB models with a
sufficiently high quadrature order and wall accuracy order, a
more precise representation of the Knudsen layer phenomenon
can be obtained. This will be part of our future investigations.
Moreover, it remains to be seen whether the Knudsen layer
turns out to be a nonperturbative phenomenon in the sense of
the Chapman-Enskog expansion.
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APPENDIX A: THREE-DIMENSIONAL DVMS

Here we present DVMs generated by the algorithm shown in
Sec. I and used in the introductory example and the numerical
test case in Sec. VI (see Tables V-XV). The stencil’s symbol
is explained in Eq. (24), c is the lattice speed, and g counts
the stencil groups S, generated by the symmetries of the
lattice from a single velocity §®, yielding V, velocities. Each
velocity in S, is weighted by w,, [see Eq. (18)] when using the
quadrature prescription (10).

APPENDIX B: TWO-DIMENSIONAL DVMS

In this appendix, we present minimal DVMs for D =2
(see Tables XVI-XVIII). As shown in Table I above, there are
three sets of DVMs concerned with D = 2. The y component
is absent. For all but the wall accuracy index A;ge., the
definitions are the same as for D = 3. Since there are no
y components of wall moments, we have to set m, =0 in
Eq. (63). The wall accuracy index is then defined as before [see
Eq. (73)], but there are only L = 14 components in the vector,

T = (1, e, Eor s s e
bacr backax: Sackae: Sav:
az Eacbae: B Eucdyy), (BI)
whereas by, are the components of the vector
b =W, W, Wer, Were, Worr, Wakaws Wezzzzs

WZZZXX? WZXXXX’ WXX)CXJCX’ WZZZZZZZ’

Wozzzznns Wezzrxer Wornnnxx)s (B2)

cf. Egs. (70) and (68).

The set Ss comprises all 1188 minimal DVMs with
quadrature order Q = 7 in the energy sphere given by E <
250. These are discrete velocity models with the wall accuracy
index being A;u4.x = 0. The DVM with lowest velocity count
Voin = 16/is 5331‘5/5186 and it is shown in Table XVI. Increasing
the quadrature order to Q = 9, we find 592 DVMs in the set
S, where E,,,, = 300. The DVM with the lowest velocity
count in Sg is S 3%‘5/324 (see Table XVII), and it yields V = 33.
Finally, we identified 21952 DVMs with quadrature order
Q = 7 which have scattering stencils, i.e., their wall accuracy
index is Ajugex = 549. The stencil energy is bounded for these
models by E,,,, = 1000 to define the set S;. The DVM with

TABLE V. DVM used for the introductory example.

Shikai ¢ = 1.2247448713915890
g §(g)/c Vg wg
1 (0,0,0) 1 3.8888888888888889 x 107!
2 (2,0,0) 6 2.7777777777777778 x 1072
3 (1,1,—1) 8 5.5555555555555556 x 1072
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TABLE VI. DVM with minimal velocity count within the set S;.

ShIa ¢ = 0.75000000000000000
g E(g)/c Vg wg
1 (1,0,0) 6 7.2239858906525573 x 1072
2 (4,0,0) 6 6.3648834019204390 x 1073
3 2,2,0) 12 4.3895747599451303 x 1072
4 (6,0,0) 6 4.1805473904239336 x 1073
5 444 8 1.7146776406035665 x 10~

TABLE VII. DVM with minimal velocity count within the set S;.

SH3Ea% ¢ = 0.86602540378443865
g g(g) /C Vg ﬁg
1 (1,0,0) 6 6.7724867724867725 x 1072
2 (2,0,0) 6 5.5555555555555556 x 1072
3 2,2,2) 8 4.6296296296296296 x 1073
4 2,2,0) 12 1.8518518518518519 x 1072
5 (6,0,0) 6 1.7636684303350970 x 10~

TABLE VIII. Selection of DVMs within the set S;. See Sec. VI
for a discussion.

S 03 Faos ¢ = 0.74685634388439233

g ;’:(g) /c Vg w,

1 (0,0,0) 1 2.0080700829205231 x 1072
2 (1,1,1) 8 8.9344539381631413 x 1072
3 (4,0,0) 6 1.8287317703258027 x 1073
4 (3.3.3) 8 5.2273139486813077 x 10~
5 (3,3,0) 12 2.3272910797607214 x 1073
6 (3,L1) 24 9.2533853908214560 x 1073

TABLE IX. Selection of DVMs within the set S;. See Sec. VI for
a discussion.

Shares ¢ = 0.69965342816864754

QTE447

g E(g)/c Vg wg

1 (2,0,0) 6 5.9646397884737016 x 103
2 (1,1,1) 8 8.0827437008387392 x 102
3 (5,0,0) 6 1.1345266793939999 x 1073
4 3.,3,3) 8 9.5680047874015889 x 10~
5 3,3,0) 12 3.9787631334632013 x 1073
6 3,LD) 24 1.0641080987258957 x 102
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TABLE X. DVM with minimal velocity count within the set S,.
For a description of the symbols, see Eq. (24).
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TABLE XIII. Selection of DVMs within the set S;. See Sec. IV C
for a discussion.

Shave, ¢ = 1.0000000000000000 sp3vion, ¢ = 0.61887631323925978

2 £9/c v, W, g §9/c Ve Wy

1 (0,0,0) 1 1.0570987654320988 x 10~ 1 (1,1,1) 8 5.4242093013777495 x 1072
2 (1,0,0) 6 3.8095238095238095 x 1072 2 (2,1,0) 24 2.4637212114133877 x 1073
3 (2,0,0) 6 2.8645833333333333 x 1072 3 (5,0,0) 1.5469959015615954 x 1073
4 (1,1,1) 8 4.9479166666666667 x 1072 4 (3.3.3) 8 1.9425678925800591 x 1073
5 (2,2,2) 8 5.2083333333333333 x 1074 5 3,3,0) 12 7.2337497640759286 x 1073
6 (2,2,0) 12 5.2083333333333333 x 1073 6 (3,1,1) 24 1.4384326790070621 x 1072
7 (6,0,0) 6 2.7557319223985891 x 1076 7 (0,0,0) 1 4.4998866720663948 x 1072
8 (3,3,3) 8 9.6450617283950617 x 1076 8 (6,2,2) 24 2.1182172560744541 x 1074
9 3,1,1) 24 1.3020833333333333 x 1073

TABLE XI. Common DVM (D3 Q121 [24]) within the set S,.
For a description of the symbols, see Eq. (24).

Shavit ¢ = 1.1969797703930744

g §9/c Ve W,

1 (0,0,0) 1 3.0591622029486006 x 102
2 0,0,—1) 6 9.8515951037263392 x 102
3 (1,1,-1) 8 2.7525005325638124 x 102
4 0,0,-3) 6 3.2474752708807381 x 10~
5 2.2,-2) 8 1.8102175157637424 x 10~*
6 (2,0,-2) 12 4.2818359368108407 x 10~
7 (1,0,-2) 24 6.1110233668334243 x 1073
8 (3.3,-3) 8 6.9287508963860285 x 10~
9 (1,1,-3) 24 1.0683400245939109 x 10~*
10 (2,0,-3) 24 1.4318624115480294 x 10~

TABLE XII. Selection of DVMs within the set S3. See Sec. [V C
for a discussion.

TABLE XIV. Selection of DVMs within the set Sy. See Sec. IV C
for a discussion.

So3kien ¢ = 0.37787639086813054

g E(g)/c Vg @g

1 (L,1,1) 8 1.2655649299880090 x 10~3
2 (3,3,3) 8 2.0050978770655310 x 1072
3 3,11 24 2.7543347614356814 x 1072
4 4,44) 8 4.9712543563172566 x 1073
5 (7,1,1) 24 3.6439016726158895 x 10~*
6 (6,6,1) 24 1.7168180273737716 x 1073

TABLE XV. Selection of DVMs within the set S;. See Sec. [V C
for a discussion.

Shayi, ¢ = 0.40531852273291520

g §(g> /c Vg W,

1 (1,1,1) 8 3.3503407500643648 x 1073
2 3,1,1) 24 2.8894128958152456 x 1072
3 4,4,4) 8 4.5930345162087793 x 103
4 (3,2,2) 24 4.4163148398082762 x 1073
5 (7,1,1) 24 2.3237070220062610 x 1073
6 (5,5,1) 24 3.3847240912752922 x 1073

Sg%g;z ¢ = 0.62590566441325041

g g(g) /c Vg W,

1 (2,0,0) 6 6.5178619315224175 x 1073
2 (1,1,1) 8 5.8638132347907334 x 1072
3 (6,0,0) 6 1.0066312290789269 x 1073
4 (3,3,3) 8 2.1962967289288607 x 1073
5 (3,3,0) 12 4.8042518606023833 x 1073
6 3,11 24 1.5528601406828448 x 1072
7 (0,0,0) 1 2.9560614762917757 x 1072
8 (4,4,0) 12 6.8996146397277359 x 10~*

TABLE XVI. DVM with the lowest velocity count V,,;, = 16 in
the set Ss, where D =2, Q =7, and E < 250 (see Table I).

Sovss ¢ = 0.86602540378443865
g E(g)/c Vg Wg
1 (1,0) 4 1.5802469135802469 x 107!
2 (2,0) 4 6.1728395061728395 x 1072
3 (2,2) 4 2.7777777777777778 x 1072
4 4,0) 4 2.4691358024691358 x 1073
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TABLE XVII. DVM with the lowest velocity count V,,;, = 33 in
the set S, where D =2, Q = 9, and E < 300 (see Table I).

shas, ¢ = 1.1587791906520175

g §(g)/c Vg Eg

1 (0,0) 1 1.6198651186147246 x 107!
2 (1,0) 4 1.4320396528198750 x 107!
3 (1,1) 4 3.3883996404301766 x 1072
4 (2,0) 4 5.5611157082744134 x 1073
5 (2,2) 4 8.4479885070276616 x 1073
6 (3,0 4 1.1325437650467775 x 1073
7 2,1) 8 1.2816907733721003 x 1072
8 44) 4 3.4555225091487045 x 1076

the lowest velocity count gives V,,;, = 20. Optimizing for both
o.x and oy yields the DVM SJ7/3%, shown in Table XVIIL
The latter is expected to give back excellent results for planar
Poiseuille flow.

APPENDIX C: ERROR ESTIMATE OF
EQUILIBRIUM MOMENTS

For a detailed analysis of the quadrature error of an equilib-
rium moment AM|"”, i =M, i Ml(l")leVM we distinguish
four different cases.

Casel:k < Nandk+N < Q

The Hermite order N is high enough to capture all
contributions of the Hermite polynomials Hff) iy i -
and the quadrature order guarantees an exact evaluation of all

terms in Eq. (50). Thus, the moment Ml.(] ) ;. is exactly recovered
and

AM? —o. (C1)

iy.dk

Case2:k < Nandk+ N > Q

Although the Hermite order is high enough, the quadrature
order Q = ng + k, withng < N, is not high enough to evaluate
M i(104)“ik exactly. For low Ma values, the leading term of the
quadrature error in Eq. (50) is the smallest value of n exceeding

ng, due to the relation (48). This term is the one with n =

TABLE XVIII. DVM with optimal values for the wall errors in
the set Sy, where D =2, Q =7, E < 1000, and o, ;,, = 0. (see
Table I).

shass, ¢ = 0.34040702226615838
g E(g) /c Vg @g
1 (1,1) 4 8.4201053650845727 x 1072
2 2,2) 4 5.0708714918479963 x 1072
3 5, 8 4.4541157350549509 x 1072
4 (6,4) 8 1.2646044225450934 x 1072
5 (12,3) 8 3.5791413933671213 x 10~
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ng + 1 in Eq. (50) and we can write

1
o _ (0) (Q—k+1)
ip..dy — (Q k + 1)' l] dQ ksl Z H[] Ry k+l(£0{)

x HP (&4) + subleading terms

l]l

= O(Ma? "1, (C2)

where the subleading terms contain errors with a higher Ma
power compared to the first term. Obviously, the quadrature
error AMY . is finite for low Ma values; see Eq. (50).

iyl

Consequently, we obtain A M; (0) =O0oMa’)forQ —k+1 <
0.

Case3: k> Nandk+ N < Q

The Hermite order N is not high enough to capture the
moment Ml(lo) ;, completely, whereas the quadrature order
guarantees the exact evaluation of all terms in Eq. (50).
Therefore, errors are produced by the absence of terms in
the equilibrium function which are beyond the Hermite order
N. The leading term in the quadrature error is thus ~ a?

iyedng
and with Eq. (48) we get

AMY,

i1k

= OMa"th. (C3)

Cased:k>Nandk+ N > Q

The Hermite order N is not high enough to recover M,Fl()_)__ik
and the quadrature order Q does not guarantee an exact
evaluation. The relevant quadrature error in the sense of the
Ma expansion of the equilibrium function f© is determined
analogously to case 2 by

AM,

—k+1
i = 0Mal™) (C4)
for Q —k+12>0and AMff)_)__ik = 0(Ma) otherwise.
These cases can be summarized into a more compact
relation:

0 fork+ N< Qandk < N
N7 OMaM*y  fork+ N < Qandk > N,
it OMal ™ fork—1< Q <k+N,
oMa°) for Q <k — 1.
(C5)
APPENDIX D: PROOF OF THE QUADRATURE
ERROR THEOREM
In order to prove the theorem in Sec. IIC,
we  assume  that  the  moment M, (3©p,

85y 0,0, 1,p 0V, w87 ui,) s an  algebraic

expressmn of p, u;, and their spatial derivatives, where

0® =1 and 85?) .= =0, ...0;,. By using the relations (32)

for the multiple-scale time derivatives, the equation for Mi(l"jik
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can be written as

n—1 3M(n m—1)
(n) 0) M n_ T (q)
Mi]...ik - —r|:8 Q.0 ZZ a(q) ) j] wJq
m=1 ¢ Jrewig®

(D)

< uniz) s |

The sum on ¢ > 0 in Eq. (D1) accounts for all derivatives of
o and u; the moment Mi(ln'?jk depends on.

In order to discuss the relevant truncation error for a CE

moment Mi(]”‘?.ik, we show in the following that the multiple-

scale time derivative 8,(0) in Eq. (D1) does not alter the Ma
power of the truncation error of an inaccurate CE moment.
For this purpose, we consider a CE moment Mi(f_?'ik which is
recovered by a Gauss-Hermite quadrature up to an error

AM", = O(Ma™), (D2)
with Ma power m. The time derivative 3, of Mf]'?jk is given
by

(0) g s(n) (0) (n)DVM (n)
8 Mlln Ak 8 (Mlln Ak +AMlln lA)
dAM™
©) 2 ,(0)DVM 11 ik (q)
- 8 Mll g Z 3(8(q) ) Jl -Jq (8qu )
J1 ]q
aaM™, 1
- Z—a(f” , (u,a.u~+ —a»p)
Q) JieeeJ sESHY J ’
8(811 Jq ) ! p
(D3)
which implies
daM"
O gy _ Q1. (q)
Ad; Mll Ak __Z 8(8@1 ) 11 Jg 9j(puj)
Ji Jz/
O(Ma™)
dAM™ . 1
=Y = 07wy +— 90
q 3(311 -Ja j) ! v P =
0OMa%) O(Ma)
O(Mamfl)
(D4)

For finite Kn flows density gradients ;0 can be of order
O(Ma), even in the low-Ma flow regime. Consequently, we
find that the time derivative 8,(0) does not lower the order in
Ma number of the error term (D2)

AGOM", =" AM", = OMa™).

i (D5)
The error of the time derivative of a moment equals the time
derivative of the moment error.

Using the recurrence relation (D1) for a CE moment M 1(1") i
the error estimate (52) for equilibrium moments and relation
(D5) for the multiple-scale derivative 39, we prove the the
theorem in Sec. III C by induction. Based on Eq. (D1), the
truncation error of M, .(l) i, 1s determined by

AM(I) — [Aa(O)M(O)

I.. l]< 151 lk

+9,aM, .

iyedi i

(D6)

Because of Eq. (52) the relevant error with respect to the Ma
power is produced by the highest equilibrium moment, which

PHYSICAL REVIEW E 94, 013304 (2016)

is contained in the second term on the right-hand side. The
first term does not contribute to the dominant truncation error,
because it consists of a lower equilibrium moment and the
multiple-scale derivative 8,(0) does not change the Ma power
of this error term. Consequently, we find

AMfll)lk = —T10; AMI(]O), j, +subleading terms (D7)
and with Eq. (52) the estimate
0 for2(k+1)+1< 0,
AM" . = 10Ma™*) fork < Q <2(k+1)+1, (DY)
O (Ma°) for Q < k.
For the next CE moment we obtain from Eq. (D1)
)
MO = | oM — 1 Z IM;, i, 90 (5,1)
ip..dy = i1...dp P 8(857)] ) Jieejg \OT 2 0rs
+ M) M} (D9)

The error of the first term on the right-hand side is given by
Eq. (D8) where the time derivative 8,(0) does not affect the Ma
power,

Aal(O) Mi(]l.).. a(O)AMt(ll) iy
0 for2(k + )+ 1< 0,
={0Ma?*) fork<Q<2k+1+1,
OMa®) for Q < k.

(D10)

With respect to Eq. (52) we get for the error of the next term

am©® 0 for2k +1< Q,
A+ — O(MaQ_k) fork < Q <2k +1, (D11)
9. ,us)  |oMa’)  for Q <k,

where we have to take into account that the Ma power of the

error term is decreased by one by the derivative 9/ 8(85?) iU 5)-
Based on Eq. (D8), we obtain
0 for 7 < Q,
AT = fOMa??) for2< Q <7, (D12)
OMa®) for 0 <2,
and for the last term in Eq. (D9),
0 for2(k +2)+1 < Q,
AM", =1 0Ma%* ") fork+1<Q <2(k+2)+1,
O(Ma°) for Q <k + 1.
(D13)
Dueto k > 2, the error estimate of all terms in Eq. (D9) implies

@

that the relevant quadrature error of M, ; is contained in the

last term of Eq. (D9) and thus we get
AM®

i =

= (—1)%0;,9;, AM“”

ik jij2

—70,,A M.(l) i, j, + subleading terms

+ subleading terms.
(D14)
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In the last step of the proof we have to show the rela-
tion (53) for an integer n assuming that the relation is

J

PHYSICAL REVIEW E 94, 013304 (2016)

valid forn — 1,n — 2, ...,1. We analyze the error of all terms
on the right-hand side of Eq. (D1),

aM(n m—1)
(n)  _ ©0) yr(n=1) _ i1 (q) (m) (n—1)
AM", = [ DM : Z > a“l” i 3 o5 (O TIY) ¢ +8;,AM" (D15)
m=1 ¢ Jiedg
Using Eq. (53) forn — 1, we find
AB(O)M,(I" zi) = 8(O)AMl(]n ,1) =o' ...9;_ IAMl(]O) icji.j,, T subleading terms
0 for2k+n—1+1< 0,
=30Ma?* "2y fork+n—-2<Q <2k+n—1+1, (D16)
oMa°) forQ <k+n-2
where 8;0) does not affect the Ma power of the error term. Furthermore, we can estimate the error of 8Ml.(l":l.'k"_l) / 8(8;?_)_ _ jqux) for
m=1,...,n — 1 by using Eq. (53) for n —m — 1 in combination with Eq. (52),
9= 0 for2k+n—m—-1)+1< 0,
AE(‘I)—“ = OMal k"l fork+n—-m—1<Q <2k+n—m—1)+1, (D17)
3(0,...j,1s) 0(Ma%) forQ <k4+n-m-—1,

where the derivatives 9/ 8(8](.‘]1_)__ P

uy) reduce the Ma power of the error term by one. The error of the quantity T1"" for m =

1,...,n — 1 can be determined by applying the theorem (53) for m,

ATI™ = (—7)"*29;, ... 9;, AMf?])l j, T subleading terms
0 for2(m+2)+1< Q,
={0Ma? ) form+1<Q<2m+2)+1, (D18)
0(Ma®) for Q <m+1,
where m = 1, ...,n — 1. The error of the last term of Eq. (D1) is given by
AML(J" zi)] (=09, ... 9, AMI(IO) icjjr.j_, T subleading terms
0 for2(k +n)+1< Q,
={OoMal* "y fork+n—-1<0Q <2k+n)+1, (D19)
OMa) forQ <k+n-—1,
[
where we have used Eq. (52) and applied Eq. (53) for n — 1. with
Because of k > 2 and m =1, ...,n — 1 the estimate of all
errors occuqing in Eq. (D15) impli§s that the last term on the . Zn-fa<0 fPm- &,
right-hand side of Eq. (D15) contains the relevant error with pi = (E2)

respect to the Ma power. This yields
am®”,

iydk

= —79;,, AM" " 4 subleading terms

i1k jin
=(—1)'9;,...0;, AM"”,

iv.icji..j, T subleading terms

(D20)

and therefore the theorem is proved for any CE level n.

APPENDIX E: MAXWELL BOUNDARY FACTOR ¥

We now turn to the evaluation of the factor W [see
Eq. (59)] of the diffuse Maxwell boundary condition. Assum-
ing that the CE expansion [cf. Eq. (28)] is applicable, we
write

U= Z wm, (E1)

Yng,-0 5 (w0 - 51"

where we have set the expansion parameter € = 1. The
denominator in Eq. (E2),

Z=Y" f pu.0)n &5l = p,m;WP'M (E3)

n-§4>0

is captured exactly by the DVM if the wall accuracy order
yields A > 1. The numerator in Eq. (E2) can be analyzed by
using Eq. (31),

wO — —%Y}‘”, (E4a)
v = _”Z —o[a"r” + 8,7, (E4b)
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n;
\I,(Z) - _ E [(_1)2 (3,(0)8,(0) Yi(O) + 23,(0)8j YI(JO)
+0;075) + (=0, (E4c)
n) __ n 0) 0)
v = WP YD), (E4d)
where we have introduced the moments
Y% = > 000w Eai, - i, (E5)

n-¢,<0
The equilibrium (16) expanded up to the Hermite order N can
be expressed by

N
L o
FO P =we Y —ai 1 ()

n=0

N
=wa Y bir _i,Euis - Eaiy» (E6)
n=0
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with some coefficients b;,_; . Thus, the moments Yl(lo)lk are
determined by the equilibrium wall moments,
N
(02— +k DVM
Yil...u - Z(_l)n bjl...j” le...j,,il...ik' (E7)
n=0

In general, the nth CE contribution of W is a function of the
moments Yz(IO)tk with k < n + 1 [see Eq. (E4)], which can be
directly expressed by the equilibrium wall moments Wl.? Vli”
with m < N +n + 1. As a consequence, a sufficiently high
accuracy of the equilibrium wall moments, characterized by
the wall accuracy order A, guarantees an exact evaluation
of the Maxwell boundary factor W up to the nth CE level
with

n=A-N-—1. (E8)
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