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Using local operator fluctuations to identify wave function improvements
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A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave
functions. The purpose of this method is to allow for the systematic improvement of variational wave functions
by identifying degrees of freedom that are not well described by an initial trial state. We provide proof of concept
implementations of this method by identifying the need for a Jastrow correlation factor and implementing a
selected multideterminant wave function algorithm for small dimers that systematically decreases the variational
energy. Selection of the two-particle excitations is done using the quantum Monte Carlo method within the
presence of a Jastrow correlation factor and without the need to explicitly construct the determinants. We also
show how this technique can be used to design compact wave functions for transition metal systems. This method
may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable
way.
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I. INTRODUCTION

First-principles quantum Monte Carlo calculations [1] for
solids are a promising way to go beyond density functional
theory (DFT). These methods directly simulate electron-
electron correlations and can obtain very high accuracy on
challenging materials [2–5] using current state of the art
techniques such as the fixed node diffusion Monte Carlo
(DMC) method. Despite this success, the DMC method’s
accuracy is limited by the fixed node approximation, which
allows for polynomial scaling of the computational cost with
system size, but results in a DMC energy that is only an upper
bound to the true ground-state energy. In practical calculations,
improvement of the accuracy and efficiency of the fixed node
diffusion Monte Carlo method is reliant on improving trial
wave functions that determine the fixed nodal surface.

In order for a trial wave function to be appropriate for
quantum Monte Carlo calculations, it should be compact and
efficient to calculate. For application to bulk materials, it must
also be size extensive; that is, the total energy must scale
with the system size. By far the most common trial wave
function is the Slater-Jastrow wave function [6,7], which is
simple and extensive, and initial guesses are easily obtainable
from DFT codes. While truncated determinant expansions can
be effective in describing small molecules [8], they cannot be
used in bulk materials because they are not size extensive.
Backflow wave functions [9], while they have proven effective
in homogeneous [10] and inhomogeneous [11] systems, may
not capture all the correlated physics in a system. It is thus of
great interest, given a Slater-Jastrow wave function, whether
there is a compact wave function that describes the most
important improvements relative to the ground state.

In this article we present some initial steps towards a method
that uses fluctuations of the local energy Ĥ�(R)/�(R) not to
optimize a given parametrization, but to identify directions in
Hilbert space that can improve trial wave functions. We first
provide a summary of the imaginary time projector exp(−τĤ )
and its use in improving wave functions and introduce the
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notation that will be used in the article. Then we show a proof
of concept for multi-Slater-Jastrow wave functions, in which
this method is used to select determinants in the wave function.
Finally, we show how the local energy fluctuations can be used
to determine a priori what terms to add to a variational wave
function for a transition metal system TiO. These results set
the stage for data mining of many-body wave functions to
determine how they should be improved.

II. THEORY

In this work we use ideas that have been known for a long
time for optimizing parameters in wave functions [12–15],
but we follow more the work of Holzmann et al. [16] in that
we would like to use the Feynman-Kac formulas to discover
which parametrization to add to a given wave function. The
quantum variational principle states that for any appropriately
normalized trial wave function �T (R,P ), where R is the many-
body electron coordinate and P is a set of parameter values, the
expectation value of the Hamiltonian of the system in state �T

equals or exceeds the ground-state energy of the Hamiltonian:

ET � Eg, (1)

where

ET (P ) = 〈�T |Ĥ |�T 〉. (2)

We then minimize ET (P ) with respect to the parameter set
P . Once this is done, we must alter the parametrization of
the trial wave function to obtain further improvement in the
energy estimate. Our ultimate goal will be not to optimize the
parameters within a fixed set P , but to identify new parameters
that must be added to P to improve the qualitative structure of
the particular trial state.

Iteratively applying the projection operator to a trial
function �T produces a sequence of new wave functions:

|�H ′(τ )〉 = e−τĤ ′ |�T 〉, (3)

where Ĥ ′ = Ĥ − Eref, with Eref = 〈Ĥ 〉. This converges to the
exact ground-state wave function |�g.s.〉 in the infinite limit

lim
τ→∞ |�H ′(τ )〉 = |�g.s.〉. (4)
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Performing this operation directly corresponds to a projector
Monte Carlo method, such as the diffusion Monte Carlo
method. The challenge in doing this is that compact repre-
sentations of the operator exp(−τĤ ′) are generally not known
and so the imaginary time dynamics must operate in very
high dimensions. Our objective here will be to find a compact
representation of the short-time projector operator.

We begin by considering an arbitrary set of linear operators
{Âi}. Applying these operators to the trial state produces a new
state |�A〉:

|�A〉 =
(

1 +
∑

i

aiÂi

)
|�T 〉. (5)

Applying this set of operators again to |�A〉 and iterating
generates a new sequence of wave functions. For brevity, we
define

|�Ai
〉 ≡ Âi |�T 〉. (6)

We force the minimal set of operators {Âi} to mimic the
projection operator by minimizing the square deviation of �A

from �H ′ : ∫
[�A(R) − �H ′(R)]2dR. (7)

This minimization procedure provides an estimate of the
set of associated {ai} operator amplitudes. We define the
local operators Ak(R) ≡ Âk�T (R)

�T (R) and a local energy EL(R) =
Ĥ ′�T (R)
�T (R) . By expanding the projection operator to first order

and minimizing the square deviation, we find that

ak = −τ

∫
Ĥ ′�T (R)

�T (R)

Âk�T (R)

�T (R)
�2

T (R)dR, (8)

dak

dτ
= −〈[EL(R) − 〈Ĥ 〉]Ak(R)〉, (9)

where we have assumed that elements of the set {�Ai
} are

orthonormal such that the overlap matrix Sik = 〈�Ai
|�Ak

〉 is
approximately diagonal. Figure 1 depicts this scheme picto-
rially, with the exact and mimicked projection operators rep-
resented by the black and tangential red arrows, respectively.
We see then that the mimicked projection operator evaluated
for τ = 0 can be viewed as a linearized approximation to the

FIG. 1. Visual representation of the path through Hilbert space
from the initial to the exact wave function taken by the exact (black)
and mimicked (red) projection operators, respectively.

exact path to the ground state through Hilbert space. In this
way, our approximation to the projection operator identifies
the most significant elements of Hilbert space absent from an
initial trial state.

The derivation of our method is similar in spirit to the
stochastic reconfiguration of Sorella [12,17–20]. The energy
fluctuation potential method also shares some similarities with
our technique in its focus on the correlation between the local
behavior of the energy and some chosen operator [14,21,22].
A set of operators Âi is a good set if only a few terms in Eq. (8)
are nonzero, while a set with many small values in Eq. (8) is
not an efficient descriptor of the wave function improvement.

III. QUANTUM MONTE CARLO METHODOLOGY

We first compute the single-particle Hartree-Fock (HF)
orbitals for a molecular system. We obtain all orbitals using
the GAMESS computational package [23,24]. Core electrons
were replaced by the corresponding Burkatzki-Filippi-Dolg
pseudopotential [25] with triple-ζ basis sets.

We perform variational Monte Carlo with the QWALK

computational package [26]. We begin with a trial wave
function of the Slater-Jastrow form

� = exp(U )Det[φi(rj )]. (10)

We use the linear method of Umrigar and co-
workers [13,27,28] to optimize the Jastrow U . The form of
the Jastrow correlation factor U is a function of the electron
and ionic coordinates

U =
∑
ijI

u(riI .rjI ,rij ), (11)

where i and j indices represent electronic coordinates and I

represents ionic coordinates. The functions u are given by

u(riI ,rjI ,rij ) =
∑

k

cei
k ak(riI )

+
∑
m

cee
m bk(rij ) +

∑
klm

ceei
klm(ak(riI )al(rjI )

+ ak(rjI )al(riI ))bk(rij ), (12)

where the ak and bk functions have the general form

ak(r) = 1 − z(r/rcut)

1 + βz(r/rcut)
(13)

and z(x) is a polynomial chosen to smoothly go to zero at
r = rcut [29]. This form of the Jastrow factor explicitly
incorporates three-body interactions between two electrons
and an ion.

IV. DETERMINANT SELECTION

The set of double excitation operators given by

Âij,kl ≡ c
†
↑kc

†
↓lc↑ic↓j , (14)

where c
†
σk (cσk) is the one-body creation (annihilation) operator

in the σ spin channel, offers one possible choice of linear
operators Ak in Eq. (8). If i,j are occupied orbitals and
k,l are unoccupied orbitals, then applying Âij,kl to a Slater
determinant generates an excited-state determinant in which
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the lower-energy i and j orbitals are now vacant and the
higher-energy k and l orbitals are occupied. The elements
of the two-body reduced density matrix (2RDM) are given
by the expectation values of these two-body creation or
destruction operators. We thus make the analogy with local
energy to define a local density matrix element, given a wave
function |�T 〉,

ρijkl(R) = Âij,kl�T (R)

�T (R)
, (15)

or explicitly

ρijkl(R) =
∑
a 
=b

∫
φ∗

i (r ′
a)φ∗

j (r ′
b)

×φk(ra)φl(rb)�T (R′′
ab)�−1

T (R)dr ′
adr ′

b, (16)

where R = (r1,r2, . . . ,rN ), R′′
ab = (r1,r2, . . . ,r

′
a, . . . ,

r ′
b, . . . ,rN ) refers to the set of coordinates generated by

changing the positions of two electrons, and we have omitted
overall normalization. We evaluate this two-body integral in a
quantum Monte Carlo calculation by sampling the coordinates
r ′
a and r ′

b from the sum over orbitals f (r) = ∑
i φ

2
i (r) and the

many-body electron coordinate R from �2(R) [30]. With this,
the expression given in Eq. (16) can be rearranged to give

ρijkl(R) = 1

NiNjNkNl

×
∑
a 
=b

〈 �(R′′
ab)

�(R) φ∗
i (r ′

a)φ∗
j (r ′

b)φk(ra)φl(rb)

f (r ′
a)f (r ′

b)

〉
f (r ′

a ),f (r ′
b)

,

(17)

where the normalization factor is given by

Ni =
√〈

φ2
i (r ′

a)

f (r ′
a)

〉
f (r ′

a )

. (18)

The two-particle operators in Eq. (14) are used to evaluate
Eq. (8) and generate a list of important determinants missing
from the initial wave function. Hence, we can select the
determinants most important to the exact ground state without
the need to first evaluate those determinants. The entire process
of wave function generation is summarized as follows.

(i) Obtain single-particle orbitals from a HF calculation.
(ii) Optimize the single-determinant Slater-Jastrow factor

〈R|�〉 = eU (r,r ′)Det[φi(rj )]. (19)

(iii) Rank 2RDM elements by covariance of 〈c†↑kc
†
↓lc↑ic↓j 〉

with EL.
(iv) Add determinants identified as significant to the

expansion

|�new〉 = |�old〉 +
∑

i

aie
U [c†↑kc

†
↓lc↑ic↓j ]|�HF〉. (20)

(v) Optimize coefficients {ai} of |�new〉 using the linear
method.

This process generates a determinantal expansion whose
length is controlled by the user, up to the full size of the active
space.

FIG. 2. Amplitude of two-body b → a bonding-to-antibonding
excitation ρa↑a↓b↑b↓ (R) versus local energy EL(R) for two different
trial wave functions, with corresponding principal components of
the distribution indicated. The Slater-Jastrow wave function used to
generate (a) did not include the CSF corresponding to this two-body
excitation, while the wave function used to generate (b) does. The
principal components rotate upon the addition of this CSF.

A. The H2 molecule

For the case of H2, we restrict our active Hilbert space to the
set of bonding and antibonding σ -symmetry orbitals. Figure 2
shows the contours of the sampled amplitude ρa↑a↓b↑b↓ (R) of
the local operator associated with a two-body b → a bonding-
to-antibonding excitation in an isolated hydrogen dimer versus
the sampled local energy EL(R) for each of two trial states:

�SJ = eUφb↑(r1)φb↓(r2),

�MSJ = eU [c1φb↑(r1)φb↓ + c2φa↑(r1)φa↓],
(21)

where �SJ and �MSJ are the Slater-Jastrow and multi-
Slater-Jastrow wave functions containing the bonding φb and
antibonding φa single-particle orbitals, respectively.

The line segments on each panel in Fig. 2 indicate the
principal components of the resulting distribution. These
components are given by the eigenvectors of the covariance
matrix of the local energy distribution taken with respect to
the local operator ρa↑a↓b↑b↓ (R):(

σρ,ρ σρ,EL

σEL,ρ σEL,EL

)

in this two-dimensional representation. The rotation of the
principal components relative to the axes in Fig. 2(a) shows
that the covariance matrix contains nonvanishing off-diagonal
elements. It follows that ρa↑a↓b↑b↓ (R) and EL(R) are correlated
for this single-determinant trial state. After the addition of
the associated b → a determinant to the wave function in
Fig. 2(b), the principal components rotate to align with
the axes, indicating that the covariance matrix has become
diagonal. This implies that the covariance between the local
energy EL(R) and local operator ρa↑a↓b↑b↓ (R) has vanished
and the two variables now have zero covariance. That is, a key
element absent from the initial trial state has been identified
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and added based on the covariance, pushing the wave function
closer to the exact ground state.

B. Dimer molecules

As a further proof of concept, we apply the covariance
method to select determinants for a set of stretched molecules:
H2 (0.88 Å bond length), N2 (1.7 Å bond length), O2 (1.6 Å
bond length), and F2 (1.5 Å bond length). By stretching the
molecules, the electron correlations are enhanced, increasing
the strength of the covariance signal. We obtain single-particle
orbitals for each system from a restricted open-shell Hartree-
Fock calculation using GAMESS. This method doubly fills
molecular orbitals (MOs) to the greatest extent possible and
places remaining unpaired electrons into singly filled MOs.
We limit our active space to a set of bonding and antibonding
MOs with cylindrical symmetry and either σ or π symmetry.
Other states exist within the full orbital space, but their
inclusion yields only small improvement to the final wave
function and system energy. Because different methods of
determinant selection produce significantly different rates of
energy convergence [31], the covariance-based method we
have described can yield interesting results even at the level
of a multi-Slater-Jastrow Ansatz. Our chief objective in this
section is to show that the covariance technique can select the
most significant determinants for a particular molecule before
performing a variational optimization of the wave function.

We consider only two-particle excitations featuring one
particle in each spin channel. We compare these results
to those obtained with the usual configuration interaction
method with single and double excitation (CISD). This is
natural for molecules such as N2 with a ground-state singlet
spin configuration, though it can lead to the exclusion of
significant excitations in molecules like O2, which contain
unpaired electrons. Figure 3 compares the normalized weight
of each configuration-state function (CSF) in conventional
CISD, the optimized weight of each CSF in a multi-Slater-
Jastrow Ansatz, and the local energy covariance for each
relevant CSF in each material, respectively. We see that the
determinant orderings predicted by both traditional CISD and
our method based on local energy covariance are equivalent
for each system across the dominant particle excitations. This
indicates that the path to the ground state through Hilbert space
obtained by successively applying the projection operator
is approximately equivalent to that produced by the usual
configuration interaction (CI) procedure in this case.

From Eq. (8) we see that the covariance signal in a 2RDM
element should fall identically to zero once the corresponding
excitation has been added to the trial state. In practice, we
observe that the signal in an added excitation falls significantly
once it has been added to the trial wave function, but it does not
vanish entirely. This is a consequence of the Jastrow factor U

in the trial state, which we assume commutes with the creation
and annihilation operators introduced above:

c
†
↑kc

†
↓lc↑ic↓j (eU |D〉) ≈ eU (c†↑kc

†
↓lc↑ic↓j |D〉), (22)

where |D〉 is a determinant trial state. Because the Jastrow
factor does not commute exactly with the creation and
destruction operators, a small contribution to the covariance

0.0 0.5 1.0

(σ, σ) → (σ, σ)

(σ, σ) → (πi, πi)

(σ, σ) → (σ, σ)

(σ, ) → (σ, ) H2 (a)

0.0 0.5 1.0

(πi, πi) → (πi, πi)

(πi, πj) → (πi, πj)

(σ, σ) → (σ, σ)

(πi, σ) → (πi, σ)

(πi, πj) → (πj , πi)

(σ, σ) → (πi, πi)

(πi, πi) → (σ, σ) N2 (b)

0.0 0.5 1.0

(σ, σ) → (σ, σ)

(πi, σ) → (πi, σ)

(πi, σ) → (σ, πi)

(πi, πi) → (σ, σ)

O2 (c)

0.0 0.5 1.0

Normalized weight

(σ, σ) → (σ, σ)

(πi, πi) → (σ, σ)

(σ, ) → (σ, )

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ) F2 (d)

CISD

Covariance

MSJ

FIG. 3. Comparison of normalized signal strength for different
estimators of relative CSF importance for stretched dimers of H2,
N2, O2, and F2, respectively. The indicated bars are the determinant
coefficients taken from a CISD calculation, the signal drawn from the
〈(EL − 〈H 〉)Ak〉 estimator, and the determinant coefficients taken
from an optimized multi-Slater-Jastrow wave function, respectively.
The CSFs are arranged such that the optimized final CSF weight
declines monotonically from top to bottom. Each indicated excitation
is a one- or two-particle excitation that includes both itself and any
symmetry-related partners. For example, (πi,πi) → (πi,πi) is a two-
particle excitation that excites a bonding π -orbital electron to an
antibonding π∗ orbital of the same angular momentum (x or y) in
each spin channel. On the other hand, (πi,πj ) → (πj ,πi) involves a
two-body exchange.

signal is neglected. Practically speaking, this approximation
did not seem to affect the performance of the technique.
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(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

F2 (d)

FIG. 4. Added spin-up or spin-down CSF excitations vs associ-
ated variational Monte Carlo energy in a multi-Slater-Jastrow wave
function for the CSF ordering suggested by conventional CISD for
each considered model system.

We also find the rate of energy convergence for the predicted
CSF ordering in each model molecular system. Figure 4
shows the variational Monte Carlo energy of an optimized
multi-Slater-Jastrow wave function as a function of the CSFs
included in the trial state. The CSFs are ordered here according
to the weight given by a conventional CISD calculation. We see
that the energy converges rapidly with respect to the number of
CSFs included in the wave function. This explicitly illustrates
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FIG. 5. Normalized covariance signal of CSFs versus the de-
crease in energy obtained from adding a CSF to the trial state.
Significant negative correlations exist between the two values. The
shading is provided as a visual guide.

that the CISD method and our covariance-based technique can
drive the initial trial state asymptotically close to the exact
ground state.

Finally, we also assess the degree to which the covariance
in a 2RDM element predicts the energy gain obtained from
adding the associated determinant to the trial state. Figure 5
compares the decrease in total system energy obtained from
each additional CSF with the corresponding covariance signal.
We observe that the energy gain and the covariance signal
are negatively correlated with one another. This correlation
indicates that the covariance in a 2RDM element can be used
as a proxy for estimating the energy change from adding a
determinant to the trial state.

As a method of determinant selection for these systems,
this technique is less efficient than using CI to determine the
weights and the results are similar. We therefore would not
recommend this technique as a selection method for small
molecules. However, the point of this section is that the
energy fluctuations can be data mined to find the correct
directions in Hilbert space to improve trial wave functions.
In the case of stretched dimers, it is well known that the
most important improvement over Slater-Jastrow consists of
multiple determinants and the energy fluctuation technique
selects the correct ones.

C. Using the 1RDM to perform selection in a simple model

Thus far, we have relied upon the covariance of elements of
the 2RDM with the local energy to construct wave functions.
However, for large systems, it may be computationally
inconvenient to compute the 2RDM. In these cases, it may
be possible to instead construct wave functions with the aid
of the 1RDM, which is available at a much lower numerical
cost. We can understand selection using the 1RDM within the
context of a simple model Hamiltonian.

In this example, we begin by considering a two-dimensional
Hilbert space consisting of the states |D1〉 and |D2〉. We define
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the creation (destruction) operator c
†
1 (c1) such that

〈D1|c†1c1|D1〉 = 1,

〈D2|c†1c1|D2〉 = 0,

〈D2|c†1c1|D1〉 = 0. (23)

That is, the orbital 1 is occupied in state |D1〉 and unoccupied in
state |D2〉. Taking the probability amplitudes to be real valued,
any state |�〉 in this Hilbert space can be written in the form
cos θ |D1〉 + sin θ |D2〉 for a real parameter θ .

We consider a Hamiltonian Ĥ given by

Ĥ = ε1|D1〉〈D1| + ε2|D2〉〈D2|
− �(|D1〉〈D2| + |D2〉〈D1|). (24)

We take ε1 = 0 and ε2 = 1 to simplify the subsequent calcu-
lations. For � = 1, the eigenvectors are θ1 = 0.553 (ground
state) and θ2 = 2.124 (excited state).

In this system we can analytically compute the correlation
in Eq. (8), now taking operator Âk as the number operator c

†
1c1

associated with |D1〉. The result is given by

〈�|(Ĥ − 〈H 〉)c†1c1|�〉
= � sin 2θ

(
cos2 θ − 1

2

) − sin2 θ cos2 θ. (25)

If � 
= 0, then there are four roots of this function in the
range [0,π ], two at the high symmetry points θ = 0 and
θ = π

2 and two at the eigenvectors (Fig. 6). So if one
evaluates the one-particle correlation with the Hamiltonian
using a single-determinant wave function in the single-particle
orbital basis of the determinant, then there is zero signal,
regardless of the value of �. However, if the reference wave
function is not a single determinant (such as a Slater-Jastrow
wave function), then the signal can be nonzero for important
orbitals in the expansion. For example, in the stretched
N2 dimer, the elements corresponding to the bonding and
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θ Parameter
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FIG. 6. Correlator signal 〈�|(Ĥ − 〈H 〉)c†1c1|�〉 as a function of
the parameter θ appearing in the trial state cos θ |D1〉 + sin θ |D2〉. In
this example, we have chosen ε1 = 0 and ε2 = 1 and allowed � to
assume several values between 0 and 1.

antibonding orbitals have a covariance with the local energy of
approximately 0.001 hartree, while other orbitals have much
smaller signals. This allows us to select which one-particle
states may be important in the determinant expansion without
computing the more costly 2RDM.

V. COMPARING REAL AND ORBITAL SPACES:
THE TiO MOLECULE

We now proceed to use the technique to selectively improve
wave function parametrizations in a more challenging case. As
an example of a system where we do not know a priori the most
important degrees of freedom, we consider a transition metal
molecule TiO. The dynamic correlation present in transition
metal systems is larger than in s-p systems like the dimers
considered above, so the Jastrow factor could be expected to
play a larger role [32,33].

In Fig. 7 the covariances of the 1RDM and the real-space
electron-electron correlation function g(r) distance are shown.
The covariance signal for the 1RDM is very small, much
smaller than for N2, although we do obtain larger signals
for the p and d states as one would expect. Indeed, we
also find very little covariance with 2RDM matrix elements
within the statistical noise. On the other hand, for our starting
wave function, labeled J12, with 12 three-body parameters
per atom, there is a large spin-dependent covariance with
g(r). So, from these considerations, one might expect that
adding determinants would be inefficient, while improving
the Jastrow factor, in particular spin-dependent terms, would
be more fruitful. That is, the dynamic correlation is more
poorly described in our starting wave function than the static
correlation.
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FIG. 7. (a) Covariance of the 1RDM with the local energy EL for
TiO in the J12 wave function. (b) Covariance of the pair distribution
g(r) with the local energy EL for the J12, J30, and JS30 wave
functions in both spin channels (right): J12, Slater-Jastrow state with
12 parameters per atom in the three-body part of the Jastrow factor;
J30, J12, but with 30 three-body terms instead of 12; JS30, J30, but
with a spin-dependent two-body portion of the Jastrow factor.
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Since the determinant selection of TiO via energy covari-
ance was not efficient, we used a CI calculation with up to
sextuple excitations into eight virtual states to select CSFs and
then formed a set of multi-Slater-Jastrow wave functions. If
the covariance analysis was correct, then we would expect the
spin-dependent terms in the Jastrow to be most effective in
lowering the energy, followed by either the extra three-body
terms or multiple determinants. As can be seen in Fig. 8,
this supposition is correct: With only four parameters, the
spin-dependent terms lower the energy by nearly 10 mhartree,
while 30 determinants or a similar number of three-body
parameters are necessary to achieve that decrease in energy.

This example illustrates some strengths and weaknesses
of the covariance-based selection. If the set {Ai} is selected
in a basis that does not describe the needed improvement
efficiently, in this case the determinant basis, then it is not
the best tool. On the other hand, if several different basis sets
are used, then the best basis can be used to improve the wave
function. In this case, we learned that a spin-dependent Jastrow
factor can improve the energy significantly for magnetic
molecules, while the determinant basis is not an efficient way
to improve the wave function for this molecule. The cost for

performing these calculations was about a factor of 2 larger
than a variational Monte Carlo (VMC) calculation and much
smaller than the energy optimization technique.

VI. CONCLUSION

We have presented an outline of a technique to select not
just terms in a many-body Ansatz, but which type of Ansatz
with which to proceed. For example, the selection method
can quickly determine whether a determinant-type basis is
appropriate by evaluating the 1RDM covariance with the local
energy. Similarly, if an explicitly correlated approach such as
a Jastrow one is more appropriate, then the covariance of the
local energy with the electron-electron distance g(r) is large.
The computational cost of this assessment is quite low: g(r)
is essentially zero cost over a VMC energy evaluation and the
1RDM is approximately a factor of 2 additional, regardless
of system size. This is much less expensive than attempting
energy minimization on multiple Ansätze.

As proof of concept, we demonstrated that the selection
technique both selects the correct directions in Hilbert within
a defined Ansatz space and also can select between alternate
viewpoints of the electron correlation problem. We demon-
strated the former by selecting determinants for stretched
dimer molecules and the latter by differentiating between
short-range dynamic correlation best described by a Jastrow
factor and long-range static correlation best described by
multiple determinants in the transition metal oxygen system
TiO. Using standard wave functions for this problem, the
dynamic correlation in TiO is more important. This work
forms the base for an algorithm in which the local energy
can be analyzed directly in the many-body space using feature
extraction techniques to describe the most efficient basis in
which to improve many-body wave functions.
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