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Solution of the Dirac equation using the Rayleigh-Ritz method: Flexible basis coupling large
and small components. Results for one-electron systems
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An algebraic solution of the Dirac equation is reinvestigated. Slater-type spinor orbitals and their corresponding
system of differential equations are defined in two- and four-component formalism. They describe the radial
function in components of the wave function of the Dirac equation solution to high accuracy. They constitute
the matrix elements arising in a generalized eigenvalue equation. These terms are evaluated through prolate
spheroidal coordinates. The corresponding integrals are calculated by the numerical global-adaptive method
taking into account the Gauss-Kronrod numerical integration extension. Sample calculations are performed using
flexible basis sets generated with both signs of the relativistic angular momentum quantum number κ . Applications
to one-electron atoms and diatomics are detailed. Variationally optimum values for orbital parameters are obtained
at given nuclear separation. Methods discussed in this work are capable of yielding highly accurate relativistic
two-center integrals for all ranges of orbital parameters. This work provides an efficient way to overcome the
problems that arise in relativistic calculations.
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I. INTRODUCTION

The Dirac equation for quantum mechanical characteriza-
tion of an electron moving through the Coulomb potential
around a fixed-point-like nucleus of charge Ze, where e is the
proton charge and Z is the atomic number, is written [1] as

ĤD� = E�, (1)

where

ĤD = c(�α · �̂p) + m0c
2β − Ze2

r
(2)

is the one-electron Dirac operator [in atomic units (a.u.); � =
1,m0 = 1, and e2/4πε0 = 1],

� =
(

ψL

ψS

)
(3)

is the two-component form of four-component electron spinor
wave functions,

�α =
(

0 �σ
�σ 0

)
, β =

(
I 0
0 −I

)
, (4)

c is speed of light, �σ are Pauli spin matrices, �̂p is the momentum
operator, m0 is the electron rest mass, I is the 2 × 2 unit
matrix, and ψL,ψS represent large and small components of
the electron wave function with labels L,S which are used to
denote the terms “large” and “small,” respectively [2].

The spectrum obtained by the exact solution of the
Dirac equation for one-electron atoms (i.e., it is known
only for limited interactions with strong constraint on the
potential [3,4]) does not have a finite lower bound, and it
comprises three distinct intervals: the spectrum (−∞, − m0c

2)
that corresponds to the negative energy continuum states
(referred to as the negative energy spectrum), the spectrum
(−m0c

2,m0c
2) that contains the discrete spectrum of bound
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states, and the spectrum (m0c
2,∞) that corresponds to positive

continuum states (referred to as the positive energy spectrum).
Note that in a Coulomb potential due to a positive charge,
the bound states are part of the positive energy state spectrum
because they can be related to the presence of electrons. The
terminology used in Eq. (3) is preferred for the positive energy
solutions, which correspond to electronic solutions. The lower
components go to zero in the nonrelativistic limit and the
upper components thus become a solution of the corresponding
nonrelativistic equation, i.e., the Schrödinger equation.

Conversely, the algebraic solution of Dirac’s equation is free
from constraints on the potential but suffers from variational
collapse [5,6], implying the possible appearance of spurious
unphysical states, between the lowest bound state and the
negative energy continuum [7]. This difficulty may arise from
matrix representation solutions of the Dirac equation based
on the minimization principle and only work rigorously if
the spectrum has a lower bound. The Dirac spectrum is the
complete set of positive and negative energy states together
with the discrete spectrum of bound states. The whole spectrum
is, therefore, needed due to the contribution of negative
energy continuum states that can significantly improve the
accuracy [8]. This problem has been studied by many authors
since it was first observed. A common feature of all is ensuring
that the nonrelativistic limit is correct. This requires a choice of
basis function satisfying the kinetic-balance condition [9,10],

lim
c→∞ cψS = 1

2m0
�σ · �̂p lim

c→∞ ψL. (5)

Note that the discussions on variational instability of the matrix
representation for the Dirac equation are treated rigorously in
the context of both chemistry [7,8,11–14] and mathematical
physics [15,16] in recent publications.

Molecular wave functions to be used in the algebraic
solution are obtained from a linear combination of atomic
orbitals (LCAOs) [17,18], which are generally represented
by analytical Gaussian-type [19] and exponential-type basis
functions [20]. In relativistic structure calculations, the better

2470-0045/2016/94(1)/013302(12) 013302-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.013302
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choice is associated with the definition of the atomic nucleus
model [21,22]. Brief information on that issue is given below.
First it should be emphasized that the pointlike model of
the nucleus is valid only for atoms with atomic number
Z,Z � Zc, where Zc is the critical value of atomic number
Z, Zc = α−1 � 137.04, and α is the fine-structure constant. If
Z > α−1, the results obtained are imaginary and they require
quantum electrodynamics (QED) for interpretation [23]. The
finite-size nucleus model may give more accurate values for
large atomic numbers since it is a more realistic representation
of the problem [22]; if the Dirac Hamiltonian is correctly
defined as a self-adjoint operator, however, such difficulties
are avoided [24–27]. The assertion that the Dirac equation of
an electron moving through the Coulomb potential around
a fixed-point-like nucleus is inconsistent has now been
refuted [26].

Gaussian-type basis functions are a natural choice of basis
function in a finite-size nucleus model [22]. Such a model
removes the singularity of a basis function at the origin [22,28–
30], which means the cusp [31] is no longer infinite. That
leads to a faster convergence with fewer Gaussian-type basis
functions. They also satisfy the condition of kinetic balance.
This is due to the fact that the exponent n of power function
rn of the radial part of the unnormalized Gaussian-type basis
function has the form

gn(ζ,r) = rne−ζ r2
, (6)

which does not depend on the speed of light c [30]. Here, ζ is
the orbital parameter.

Exponential-type functions, on the other hand, are linear
combinations of hydrogen atom Hamiltonian eigenfunctions.
The analytical properties of the resulting wave functions
thus obey both the cusp condition at the nucleus [31] and
exponential decay at long range [32]. They have a physically
meaningful functional form, unlike Gaussian-type functions in
a fixed-point-like nucleus model. This maintains the suitability
of exponential-type orbitals in the theoretical approach to
the Dirac equation, as described in the sections of Grant’s
textbook defining spinors ([11], Chap. 7). Applications to new
advances in atomic, molecular, and nuclear physics such as
laser-matter interaction have been studied [33], and electrons
have been subjected to a very intense magnetic field [34].
Consider also exotic atoms which are very sensitive to quantum
electrodynamic effects [35], e.g., the hydrogenlike muonium
atom (μ+e−), which is the bound state of positive muon (μ+)
and an electron (e−). It is an ideal test object for quantum
electrodynamic studies since it is comprised of two pointlike
particles without finite-size or internal structure [36].

The present study is first focused on the difficulties arising
from variational solution of the Dirac equation using the
fixed-point-like model of the nucleus. They were solved for
hydrogenlike atoms by defining the Dirac-Coulomb differen-
tial equation and its solution, L spinors [11,37–39],

∂

∂r
f β

nrκ
(ζ,r) = − β

κ

r
f β

nrκ
(ζ,r)

+
(

βNnrκ − γ − nr

r
+ ζ

)
f −β

nrκ
(ζ,r), (7)

f β
nrκ

(ζ,r) =
[

nr !(2γ + nr )

2Nnrκ (Nnrκ − κ)(2γ + nr )

]
(2ζ r)γ e−ζ r

×
{

− (1 − δnr 0)L2γ

nr−1(2ζ r)

+ β

(
Nnrκ − κ

nr + 2γ

)
L2γ

nr
(2ζ r)

}
. (8)

Here, nr is the radial quantum numbers [40], with nr = n −
|κ|, and n the principal quantum number,

γ =
√

κ2 − Z2

c2
, (9)

Z is the atomic number,

Nnrκ =
√

n2
r + 2nrγ + κ2, (10)

κ = {±1, ± 2, . . .},ζ is the orbital parameter, and β = ±1
represent large and small components of L spinors, respec-
tively. Furthermore, Lα

n(x) are generalized Laguerre polyno-
mials [41].

Here, it is observed that basis functions satisfying the
Dirac-Coulomb equation can be generated which also solve
the matrix form of the Dirac equation. These basis functions
are obtained analogously to L spinors. They are referred to as
Slater-type spinor orbitals and differ from S spinors [11] in
that they satisfy the differential equation given for L spinors.
This is achieved by generalizing the S spinor form to flexible
exponent values.

In general, a power function such as za = ea log z is analytic
at z0 = 0 if a ∈ Z is an integer [42]. This means that it can be
represented near the origin by a convergent power series [43],

fp(z) =
∞∑
i=0

wi(z − z0)i , (11)

where z0 is a constant, z varies around z0, and wi represents
the coefficient of the ith term; they essentially correspond
to the derivatives of fp at z0. It becomes apparent as a
consequence of Eq. (11) that the exponential-type functions
with integer principal quantum numbers possess an addition
theorem, i.e., relations for products of two functions centered
on different positions. The power of r,rγ , occurring in
Eq. (8), where γ in the set of real numbers (γ ∈ R), is, on
the other hand, nonanalytical. Thus, no meaningful power
series for fp(r) = rγ about r = 0 can exist [44,45]. So
far, the problem of the evaluation of relativistic molecular
integrals over exponential-type orbitals has been thought to be
nearly insurmountable. Obtaining compact-form expressions
for two-center one-electron relativistic molecular integrals is,
therefore, the second topic of the present study.

II. SLATER-TYPE SPINOR ORBITALS IN THE
TWO-COMPONENT FORMALISM

The Slater-type spinor orbitals (STSOs) which can be
considered as relativistic analogues of Slater-type functions
(STFs) have the functional form of nodeless L spinors, or
those with the fewest nodes, characterized by minimum values
of radial quantum numbers.
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The STSOs used in this paper are defined as

χβ
nκm(ζ,�r) = f β

nκ (ζ,r)�β
κm(θ,ϑ), (12)

f β
nκ (ζ,r) = {

Aβ
nκr

n + ζBβ
nκr

n+1
}
e−ζ r , (13)

where β = ±1 represent large and small components of
STSOs, n ∈ R+,κ = {±1, ± 2, . . .}, and −|κ| + 1

2 � m �
|κ| − 1

2 are the secondary total angular momentum quantum
numbers, respectively.

The �
β
κm are the spin- 1

2 spinor spherical harmonics,

�β
κm(θ,ϑ) =

∑
σ=∓ 1

2

C
lβ

1
2 j

m−σσmYlβm−σ (θ,ϑ)φσ , (14)

φ 1
2

=
(

1
0

)
, φ− 1

2
=
(

0
1

)
. (15)

Here, the quantities C are Clebsch-Gordan coefficients.
The spinor spherical harmonics can be obtained by the
following formula using the explicit form of the Clebsch-
Gordan coefficients [40,46]:

�β
κm(θ,ϑ) =

[
a

β
κmηm− 1

2
Ylβm− 1

2
(θ,ϑ)

b
β
κmηm+ 1

2
Ylβm+ 1

2
(θ,ϑ)

]

=
⎡
⎣sgn(−β|κ|)ηm− 1

2

√
β|κ|+1/2−m

2β|κ|+1 Ylβ m− 1
2
(θ,ϑ)

ηm+ 1
2

√
β|κ|+1/2+m

2β|κ|+1 Ylβm+ 1
2
(θ,ϑ)

⎤
⎦,

(16)

where Ylml
are the complex spherical harmonics with orbital

angular momentum l and magnetic quantum number ml , with

lβ =
{

β|κ|, β|κ| > 0

−β|κ| − 1, β|κ| < 0,
(17)

and ηm = (−1)(|ml |−ml )/2. Note that the definition of phases
in this work for the complex spherical harmonics (Y ∗

lml
=

Yl−ml
) differs from the Condon-Shortley phases by sign factor

(−1)ml [47,48].
The spinor spherical harmonics satisfy the orthogonality

relations,∫ π

0

∫ 2π

0
�β†

κm(θ,ϑ)�β ′
κ ′m′(θ,ϑ)d� = δβκ,β ′κ ′δmm′ ,

(18)
d� = sinθdθdϑ,

and the angular part

T̂θϑ ≡ (�σ · r̂) =
[

cosθ sinθe−iϑ

sinθeiϑ −cosθ

]
(19)

of operator (�σ · �̂p) ≡ T̂rθϑ ,

(�σ · �̂p) ≡T̂rθϑ =
(

∂

∂r
+ �σ · �l

r

)
(�σ · r̂) ≡ T̂r T̂θϑ

=
(

∂

∂r
+ β

κ

r

)[
cosθ sinθe−iϑ

sinθeiϑ −cosθ

]
, (20)

FIG. 1. Radial distribution functions [RDFs, 4πr2X†X,X† =
(χ 1 χ−1)] for Slater-type relativistic spinor orbitals in atomic units
(a.u.) where n = γ and Z = 1.

changes their parity (odd),

T̂θϑ�β
κm(θ,ϑ) = −�−β

κm(θ,ϑ). (21)

The coefficients A
β
nκ,B

β
nκ included in the radial part of the

STSOs are defined as follows:

Aβ
nκ =

⎧⎨
⎩
(

βκ

2n

)
, κ < 0

β

2 (Nnκ − κ) − 1
2 , κ > 0,

(22)

Bβ
nκ =

{
0, κ < 0

−β
(

Nnκ−κ

2n+1

)
, κ > 0,

(23)

and

Nnκ =
{|κ|, κ < 0√

κ2 + (2n + 1), κ > 0.
(24)

It should be emphasized that the STSOs have the same form as
S spinors [11] when n = γ =

√
κ2 − Z2/c2, except that their

radial parts are coupled for large and small components under
operation T̂r . They satisfy the system of differential equations
given in Eq. (7) by the following formula (see also Fig. 1):

∂

∂r
f β

nκ (ζ,r) = − β
κ

r
f β

nκ (ζ,r)

+
(

βNnκ − n − δ|κ|κ
r

+ ζ

)
f −β

nκ (ζ,r). (25)

III. SLATER-TYPE SPINOR ORBITALS IN THE
FOUR-COMPONENT FORMALISM

The most rigorous way to calculate the relativistic molecu-
lar structure is to use the four-component formalism. It affords
a physical clarity that is absent from the two-component
reductions of the Dirac operator, especially with regard to
the problems involved in the change of representation and the
gauge dependence of the electromagnetic interaction [49,50].
Gaussian-type basis functions are used in a number of
Dirac-Hartree-Fock programs [18,51–53], including both
BERTHA [54,55] and DIRAC [56,57], to calculate the relativistic
molecular structure through a four-component form of the
Dirac equation.

The exponential-type orbitals, however, could not be used
so far in the absence of basis functions permitting flexibility
by providing coupling between large and small components.
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Here, an adequate computational procedure to evaluate the
molecular integrals is presented. The Slater-type spinor or-
bitals and the given relationship between their large and small
components in Eq. (25) pave the way for such developments.

Expansion of the Dirac equation given in Eqs. (1) and (2)
into the set of four coupled differential equations through the
notation for first-order Cartesian derivatives,

T̂ 0 = ∂

∂z
, T̂ 1 = ∂

∂x
+ i

∂

∂y
, T̂ −1 = ∂

∂x
− i

∂

∂y
, (26)

is given as

(c�/i){−T̂ 0χ2 + T̂ 1χ1} = {E + m0c
2 − V (�r)}χ4,

(c�/i){T̂ 0χ1 + T̂ −1χ2} = {E + m0c
2 − V (�r)}χ3,

(27)
(c�/i){−T̂ 0χ4 + T̂ 1χ3} = {E − m0c

2 − V (�r)}χ2,

(c�/i){T̂ 0χ3 + T̂ 1χ4} = {E − m0c
2 − V (�r)}χ1.

Here, the four-component spinor wave function is thus
represented by Slater-type spinor orbitals as follows:

Xnjlm(ζ,�r) =

⎡
⎢⎢⎢⎣

χ1

χ2

χ3

χ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

χ−10
nljm(ζ,�r)

χ−11
nljm(ζ,�r)

χ10
nljm(ζ,�r)

χ11
nljm(ζ,�r)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f −1
nj (ζ,r)�−10

ljm (θ,ϑ)

f −1
nj (ζ,r)�−11

ljm (θ,ϑ)

f 1
nj (ζ,r)�10

ljm(θ,ϑ)

f 1
nj (ζ,r)�11

ljm(θ,ϑ)

⎤
⎥⎥⎥⎥⎥⎦, (28)

where the quantum number j , which is yet to be defined, is the
total angular momentum quantum number with j = l ∓ 1/2
and β = ±1.

The radial and angular parts of Slater-type spinor orbitals
in four-component formalism are

χβλ
nκm(ζ,�r) = f

β

nj (ζ,r)�βλ

ljm(θ,ϑ), (29)

and in explicit form are given by

f
β

nj (ζ,r) = {
A

β

nj r
n + ζB

β

nj r
n+1
}
e−ζ r , (30)

�
βλ

ljm(θ,ϑ) = C
βλ

ljmYlβm(λ)(θ,ϑ), (31)

with ml = m(λ) = m + λ − 1/2 and

C
βλ

ljm = (−1)1−ληm

√
l + (−1)λβm + β

2l + 1
, (32)

respectively.

Considering the system of differential equations given in
Eq. (25) and the expressions for Cartesian derivatives of wave
functions in spherical polar coordinates [58], the following
relations are obtained for the left-hand side of Eq. (27):

T̂ αα′
χpp′ = c�

i
{εpT̂ αχp + T̂ α′

χp′ }
= c�

i

{
εpDα

pq + Dα′
p′q
}
χq, (33)

where εp = ∓,{α,α′} = 0, ∓ 1, the indices {p,p′; q,q ′} are
used to represent the components of the four-component
Slater-type spinor orbitals, and Dα

pq,D
α′
p′q ′ are referred to as

coupling functions, respectively.
Equation (33) is the compact form of the left-hand side

of the four coupled differential equations given in Eq. (27).
Accordingly, Eq. (27) is rewritten as follows (see Appendix A):

c�

i

{
εpDα

pq + Dα′
p′q
}
χq = {E + εqm0c

2 − V (�r)}χq. (34)

IV. ALGEBRAIC SOLUTION OF THE DIRAC EQUATION

The basis-set expansion method is commonly preferred
either in nonrelativistic or relativistic molecular structure
calculations.

The two-component form of four-component molecular
spinors with index p is

Xp =
(

X−1
p

X+1
p

)
(35)

and are, therefore, expanded in term of Slater-type spinors as
follows:

X−1
p =

N∑
q

χ−1
q C−1

pq , (36)

X+1
p =

N∑
q

χ+1
q C+1

pq , (37)

where C±1
pq are the linear combination coefficients. They are

used throughout the calculation of electronic energies of one-
electron atoms and homonuclear and heteronuclear diatomic
molecules as

X
β

p,I = i(1−δ|β|β )

[
N∑
q

1

ra

χβ
q (ζa,�ra)Cβ

pq,I

+ I
N∑
q

1

rb

χβ
q (ζb,�rb)Cβ

pq,I

]
, (38)

Xβ
p = i(1−δ|β|β )

⎡
⎣ N∑

qk

1

rk

χβ
q (ζq,�rk)Cβ,k

pq

⎤
⎦. (39)

Or, more explicitly,

Xp =
⎧⎨
⎩

q : 1 2 3 4 5 6 7 8 9 . . . N

χq : χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 . . . χN

nκ : 1 − 1 2 − 1 11 2 − 2 3 − 1 21 3 − 2 22 3 − 3 . . . N − N

⎫⎬
⎭, (40)
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where k = a,b; the vectors �ra and �rb are distances of the elec-
tron from the nuclei a; b,I = ∓1 denote the gerade, ungerade
states; and N is the upper limit of the summation, respectively.

The Rayleigh quotient of the Dirac operator with STSOs in
matrix form is

R(χ ) = 〈χ | ĤD | χ〉
〈χ | χ〉 = C†ĤDC

C†C
. (41)

Regarding Eq. (41), the generalized eigenvalue equation in
compact and its matrix form can be written as [17,18]

(H ′
D − εS)C = 0, (42)

or, more explicitly, with indexes p and q,
N∑
q

(H ′
Dpq − εpSpqCpq) = 0. (43)

Here, Cpq can be expressed in terms of the coefficients defined
in Eqs. (36) and (37),

Cpq =
(

C
β
pq

C
−β
pq

)
(44)

and

H ′
Dpq =

⎛
⎝ V

ββ
pq cT

β−β
pq

cT
−ββ
pq −2m0c

2S
−β−β
pq + V

−β−β
pq

⎞
⎠, (45)

Spq =
(

S
ββ
pq 0

0 S
−β−β
pq

)
. (46)

H ′
Dpq

and S
ββ ′
pq , β ′ = ±β, β = ±1, are the real symmetric

matrices whose nonzero N × N submatrices in atomic units
(a.u.) have the following elements.

For one-electron atoms,

S
ββ ′
nκm,n′κ ′m′(ζ,ζ ′) =

∫
χβ†

nκm(ζ,�r)χβ ′
n′κ ′m′

(
ζ ′,�r)dV, (47)

V
ββ ′
nκm,n′κ ′m′(ζ,ζ ′) =

∫
χβ†

nκm(ζ,�r)

(
−Z

r

)
χ

β ′
n′κ ′m′(ζ ′,�r)dV,

(48)

T
ββ ′
nκm,n′κ ′m′(ζ,ζ ′) =

∫
χβ†

nκm(ζ,�r)(�σ · �̂p)χβ ′
n′κ ′m′(ζ ′,�r)dV,

(49)

and for one-electron diatomic molecules,

S
ββ ′
nκm,n′κ ′m′ (ζa,ζb, �Rab) =

∫
χβ†

nκm(ζ,�ra)χβ ′
n′κ ′m′(ζ ′,�rb)dV,

(50)

abbV
ββ ′
nκm,n′κ ′m′(ζa,ζb, �Rab) =

∫
χβ†

nκm(ζ,�ra)

(
−Zb

rb

)

× χ
β ′
n′κ ′m′(ζ ′,�rb)dV, (51)

aabV
ββ ′
nκm,n′κ ′m′(ζa,ζ

′
a,

�Rab) =
∫

χβ†
nκm(ζ,�ra)

(
−Zb

rb

)

× χ
β ′
n′κ ′m′ (ζ ′,�ra)dV, (52)

T
ββ ′
nκm,n′κ ′m′ (ζa,ζb, �Rab) =

∫
χβ†

nκm(ζ,�ra)(�σ · �̂p)

× χ
β ′
n′κ ′m′ (ζ ′,�rb)dV. (53)

S,V,T are the integrals referred to as overlap, nuclear
attraction, and kinetic energy integrals, with �Rab = �ra − �rb

the internuclear distance vector, respectively.

V. EVALUATION OF ONE-ELECTRON MOLECULAR
INTEGRALS

The relativistic molecular integrals defined in Eqs. (50)–
(53) are reduced to the linear combinations of nonrelativistic
molecular integrals over Slater-type functions with noninteger
values of the leading exponents by considering the definitions
given in Eqs. (12)–(25) as follows. The overlap integrals are

S
ββ ′
nκm,n′κ ′m′(ζA,ζB, �RAB)

= N β
nκ (ζA)N β ′

n′κ ′(ζB)
(
aβ

κma
β ′
κ ′m′ + bβ

κmb
β ′
κ ′m′
)

× (X†S− + X†S+), (54)

S =

⎡
⎢⎢⎣

Snlml,n′l′ml′ (ζA,ζB, �RAB)
Sn+1lml ,n′l′ml′ (ζA,ζB, �RAB)
Snlml,n′+1l′ml′ (ζA,ζB, �RAB)

Sn+1lml ,n′+1l′ml′ (ζA,ζB, �RAB)

⎤
⎥⎥⎦. (55)

The nuclear attraction integrals defined in Eqs. (51) and (52)
can be expressed in terms of overlap integrals and by the
following formulas:

aabV
ββ ′
nκm,n′κ ′m′(ζA,ζ ′

A, �RAB)

= N β
nκ (ζA)N β ′

n′κ ′ (ζ ′
A)
(
aβ

κma
β ′
κ ′m′ + bβ

κmb
β ′
κ ′m′
)

× (X† V− + X† V+), (56)

V =

⎡
⎢⎢⎣

Vnlml,n′l′ml′ (ζA,ζ ′
A, �RAB)

Vn+1lml ,n′l′ml′ (ζA,ζ ′
A, �RAB)

Vnlml,n′+1l′ml′ (ζA,ζ ′
A, �RAB)

Vn+1lml ,n′+1l′ml′ (ζA,ζ ′
A, �RAB)

⎤
⎥⎥⎦. (57)

The expression for kinetic energy integrals can then easily be
obtained through Eq. (25) as

T
ββ ′
nκm,n′κ ′m′(ζA,ζB, �RAB)

= −{Nn′κ ′ − β ′(n′ + δ|κ ′|κ ′)}abbV
β−β ′
nκm,n′κ ′m′(ζA,ζB, �RAB)

− (ζB)Sβ−β ′
nκm,n′κ ′m′ (ζA,ζB, �RAB), (58)

where N β
nκ (ζ ) are normalization constants,

N β
nκ (ζ ) = (2ζ )n+1/2√

Nβ
nκ

, (59)

Nβ
nκ =(Aβ

nκ

)2
[2n + 1] + Aβ

nκB
β
nκ[2n + 2]

+ (
Bβ

nκ

)2 [2n + 3]

4
. (60)
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X,S−,S+,V−,V+ are the matrices corresponding to the coeffi-
cients of Slater-type spinor orbitals A

β
nκ and B

β
nκ ,

X =

⎡
⎢⎢⎢⎢⎣

A
β
nκA

β ′
n′κ ′

ζBB
β
nκA

β ′
n′κ ′

ζBA
β
nκB

β ′
n′κ ′

ζ 2
BB

β
nκB

β ′
n′κ ′

⎤
⎥⎥⎥⎥⎦, (61)

the nonrelativistic two-center overlap, and nuclear attraction
integrals, respectively (see Appendix C for their explicit
forms).

VI. RESULTS AND DISCUSSIONS

In this section, a number of one-electron systems are
benchmarked to confirm the accuracy of the approach pre-
sented here. Whenever possible, its originality and its potential
generalization are stressed.

Numerical approaches (e.g., finite-difference and finite-
element methods) were used to obtain an accurate solution
for the Dirac equation since it has an intricate matrix structure
[59–67]. They are commonly carried out for ground states of
one-electron systems, especially hydrogenlike atoms and one-
electron diatomic molecules. A comprehensive calculation
using this approach can be found in [67] (and references
therein) using a B-spline basis function expansion, and here,
in particular, the excited states also have been presented
accurately. Large storage requirements as well as removing
the singularities in the nuclear potentials restrict accurate
solutions obtained using the numerical treatment to very small
systems [61], i.e., an atom or a molecule with, at most, a
few electrons distributed around two or three nuclei. These
restrictions emphasize the vital importance of the algebraic
approach. So far, an algebraic solution of the Dirac equation
has not been generally applied successfully due to problems
related to variational collapse. In the molecular context, these
studies are difficult when the multicenter integrals are required
in exponential-type basis functions. Rather than improving
well-known approximations, the present study is therefore
developed as an alternative to the algebraic approximation.
It is focused on overcoming the difficulties discussed above.

Recently, an accurate evaluation of molecular integrals was
provided in [68–70]. We believe this is the ideal starting point
to reconsider application of kinetically balanced exponential-
type spinor orbitals in the algebraic solution of the Dirac
equation. Although the S spinors appear well suited to this
problem, the difficulties of finding relations for two-center
relativistic integrals remain if the large and small components
of spinor orbitals used are independent. The S spinors are
also restricted concerning orbital parameter optimization since
the principal quantum numbers n of radial functions are
determined by n = γ . The principal quantum numbers in
Slater-type spinor orbitals, on the other hand, may have
values independent of the speed of light and they satisfy
the system of differential equations given for L spinors.
They therefore naturally also satisfy the kinetic-balance
condition. The Slater-type spinor orbitals and given relation in
Eq. (25) for their large and small components also provide an

TABLE I. State classifications for relativistic one-electron atoms
and linear diatomic molecules.

κ lj a l�b

−1 s sσ

1 p̃ p̃σ

−2 p pπ

2 d̃ d̃π

−3 d dδ

3 f̃ f̃ δ

−4 f f φ

4 g̃ g̃φ

−5 g gγ

aj = |κ| − 1
2 ; l = j − |β|

2 ; l̃ = j + |β|
2

b � 1
2

3
2

5
2

7
2

9
2

State σ π δ φ γ

efficient and simple method to evaluate relativistic molecular
integrals.

In this study, Eq. (42) is comprised of matrix elements
which are solved to determine linear combination coefficients
and electronic energies using the MATHEMATICA programming
language [71]. Schur decomposition [72] enabled us to obtain
eigenvalues. The calculations are performed for ground and ex-
cited states of one-electron atoms and diatomic molecules with
the single-ζ basis-set approximation in linear combinations of
Slater-type spinor orbitals given in Eqs. (38) and (39) for each
sign of κ . The determination of nonlinear parameters is of
critical importance for correct representation of atomic orbitals
in relativistic calculations. The orbital parameters are allowed
to be variational optimum values. The Powell optimization
procedure [73] is used for the defined basis-set approximation.
The quantum numbers n are also chosen to take positive integer
values to show the basis functions to be used in the solution
of the Dirac equation satisfying the kinetic-balance condition.
Note that n can be assigned as n = γ =

√
κ2 − Z2/c2 or set

as a parameter to be optimized. All results are given in atomic
units (a.u.) using c = 137.035 999 139 (speed of light), from
a recent value for the inverse fine-structure constant [74].

In Table I, the state classifications of relativistic one-
electron atoms and linear diatomic molecules are presented
in both two- and four-component formalisms. The orbital
configurations, denoted by the tilde, are used to represent
positive values of κ , where total angular momentum quantum
numbers j have j = l − 1/2 values. In the last column of this
table, the orbital configuration of linear diatomic molecules is
represented by the united atom state and molecular symmetry
notations.

The results obtained for one-electron atoms with the
extended basis-set approximation are given in Eq. (38)–(40),
where a = b and κ take positive and negative values for ground
and excited energy states. They are presented in Fig. 2 and
Tables II–IV with 15-digit precision. The correct digits are
underlined. Note that in all calculations, it is confirmed for
the kinetic energy matrix that T

β−β
pq = T

−ββ†
pq ,β = ±1, so the

Hamiltonian matrix as a whole is a real symmetric matrix.
In Tables II and III, electronic ground-state energies (lowest

positive energy spectrum eigenvalues), the highest negative
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TABLE II. The results of computations for the lowest eigenvalue
in the positive energy spectrum (|ε−1

q |) and highest eigenvalue of the
negative energy spectrum (|ε+1

q |) of a hydrogen (H) atom in atomic
units (a.u.).

N ε−1
q ε+1

q

0.5.00006 65659 65473 37557.7 30120 04801

1
0.500006 65649 85350 37557.7 30121 04802

0.500006 65659 57503 37557.7 30121 04804

4
0.500006 65647 83872 37557.7 30120 47067

0.500006 65659 65473 37557.7 30120 47067

9
0.500006 65659 65472 37557.7 30120 30579

0.500006 65659 65473 37557.7 30120 30579

16
0.500006 65656 24173 37557.7 30120 23060

0.500006 65659 65473 37557.7 30120 23060

25
0.500006 65659 65473 37557.7 30120 18827

0.500006 65659 65473 37557.7 30120 18827

36
0.500006 65658 25382 37557.7 30120 16136

0.500006 65659 65473 37557.7 30120 16136

49
0.500006 65659 65473 37557.7 30120 14284

0.500006 65659 65473 3.75577 30120 14284

FIG. 2. The spectrum for a hydrogen atom (H ) depending on
orbital parameters in atomic units (a.u.) where the upper limit of
summation N is 16 and the highest value of principal quantum number
n is 4.

energy eigenvalue of the negative energy spectrum for one-
electron atoms with atomic numbers Z = 1 (hydrogen atom)
and Z = 50 (hydrogenlike tin atom) depending on the upper
limit of summation N (values are given in the first column),
and eigenvalues are listed in the second column. The first row
of these tables indicates solutions obtained from the analytical
formula for the atomic binding energy [11],

Enj = −m0c
2

⎛
⎜⎝1 −

⎧⎨
⎩1 +

⎡
⎣ Z

c

n − j − 1
2 +

√(
j + 1

2

)2 − (
Z
c

)2

⎤
⎦
⎫⎬
⎭

−1/2
⎞
⎟⎠, (62)

and −2m0c
2 [the values given in the table are in atomic

units (a. u.), where m0 = 1]. The principal quantum number
n of the Slater-type orbitals is chosen to take n = γ and
integer values for each upper limit of summation given in
the table. Variationally optimum values of orbital param-
eters are used throughout the ground energy state energy
calculations and they are obtained via Powell’s optimization
method. It can be seen from these tables that the highest
negative energy eigenvalue of the negative energy spectrum
is always smaller than (−2m0c

2), which means that the
positive energy spectrum has a lower bound greater than
(−m0c

2). The electronic ground-state energy of atoms can
therefore be calculated accurately using Slater-type spinor
orbitals. The basis functions with integer values of quantum
numbers satisfy the kinetic-balance condition and do not
suffer from variational collapse. They may therefore also
be convenient to investigate relativistic electronic structure
calculations.

In Table IV, the results obtained for the first 14 excited
electronic energy state eigenvalues of one-electron atoms are
presented for atomic numbers Z = 1 and Z = 50. The first
row of each given energy state is the results obtained from the
analytical formula. The principal quantum number n for the
Slater-type orbitals is chosen to take n = γ values. The orbital
parameters take values according to the formula ζ = Z/n. The

upper limit of summation N in linear combinations of atomic
orbitals is determined as N = 169, which means the highest
values of the principal quantum number are n = 13. Notice
that the principal quantum number n used in the Slater-type
orbitals [Eq. (12)] and n used in orbital configuration notation
are not exactly the same. The n in orbital configuration notation
takes values determined by Summerfeld’s formula. It can be
seen from this table that correct representation of electronic
energy states of one-electron atoms using Slater-type spinor
orbitals is possible via the algebraic approximation. The Dirac
equation is compatible with the Rayleigh-Ritz method for an
extended basis-set approximation, where κ can possess both
positive and negative values.

In Fig. 2, some electronic energy excited states of the
hydrogen atom (Z = 1) are plotted depending on orbital
parameters in order to investigate the variational stability of
calculations through solution of the generalized eigenvalue
equation.

The calculations are also performed for one-electron di-
atomic molecules. This provides an extension to the approach
described here to two-center systems. They are presented in
Figs. 3 and 4, respectively.

In Fig. 3, the data for the ground and excited energy
states of the one-electron hydrogen molecule ion (H+

2 ) are
given, depending on orbital parameters with various values of
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TABLE III. The results of computations for the lowest eigenvalue
in the positive energy spectrum (|ε−1

q |) and highest eigenvalue of the
negative energy spectrum (|ε+1

q |) of tin (Sn49+) atom in atomic units
(a.u.).

N ε−1
q ε+1

q

1294.62 61491 49721 37557.7 30120 04801

1
1294.62 61488 57124 37557.7 30170 04802

1294.62 61491 20039 37557.7 30173 75028

4
1292.55 34167 07837 37557.7 30141 18050

1294.62 61491 49720 37557.7 30141 73861

9
1294.62 61491 41207 37557.7 30132 93666

1294.62 61491 49719 37557.7 30133 11397

16
1294.15 00111 11481 37557.7 30129 17719

1294.62 61491 49721 37557.7 30129 25481

25
1294.62 61491 46951 37557.7 30127 06059

1294.62 61491 49721 37557.7 30127 10127

36
1294.45 79183 57612 37557.7 30125 71504

1294.62 61491 49721 3.75577 30125 73897

49
1294.62 61491 49721 37557.7 30124 78911

1294.62 61491 49721 37557.7 30124 80438

internuclear distance. Figures are plotted with a resolution of
1/100. The variational stability of solutions for the generalized
eigenvalue problem is examined in this figure. In Fig. 4,
dependence on the internuclear distance of the electronic
(Ee) and total (ET = Ee + 1/R) ground-state energies of the
one-electron hydrogen molecule ion are plotted.

In order to derive a coupled differential equation equiv-
alent to Eq. (25), the two-center potential V (rA,rB) =
V (rA) + V (rB) needs to be expanded through multiple ex-
pansion [23,75,76]. The relations given and results presented
in this paper demonstrate that accurate values for energies
of diatomic molecules can be obtained. In the future, the
performance of detailed calculations for diatomic molecules
is planned.

FIG. 3. The spectrum of the hydrogen molecule ion (H2
+)

depending on orbital parameters in atomic units (a.u.) where the
upper limit of summation N is 16 and the highest value of principal
quantum number n is 4.

TABLE IV. Results of computations for the electronic energy
spectrum (|ε−1

q |) of H and Sn49+ atoms in atomic units (a.u.),
respectively.

States (nlj ) Z = 1 Z = 50

1s1/2
00.500006 65659 65473 1294.62 61491 49721

00.500006 65659 65473 1294.62 61491 49721

2s1/2
00.125002 08018 91904 326.494 80404 98470

00.125002 08018 91904 326.494 80456 50606

2p1/2
00.125002 08018 91904 326.494 80404 98470

00.125002 08018 91892 326.494 77551 54269

2p3/2
00.125000 41602 89761 315.144 35481 19763

00.125000 41602 89761 315.144 35481 19763

3s1/2
0.0555562 95176 42162 143.829 80095 05448

0.0555566 44825 53079 143.830 33870 33687

3p1/2
0.0555562 95176 42162 143.829 80095 05448

0.0555562 95176 41841 143.829 70779 53930

3p3/2
0.0555558 02091 36667 140.457 87335 55951

0.0555558 02091 36667 140.457 87335 87266

3d3/2
0.0555558 02091 36667 140.457 87335 55951

0.0555558 02091 36667 140.457 87328 61010

3d5/2
0.0555556 37733 81484 139.406 33566 64720

0.0555556 37733 81484 139.406 33566 64720

4s1/2
0.0312503 38029 12509 80.3703 31292 25385

0.0312507 96787 87140 80.3714 93791 66328

4p1/2
0.0312503 38029 12509 80.3703 31292 25385

0.0312503 38029 11933 80.3701 74609 46500

4p3/2 0.0312501 30009 09831 78.9520 57930 40804
0.0312501 57156 41757 78.9521 23798 86756

4d3/2
0.0312501 30009 09831 78.9520 57930 40804

0.0312501 30009 09828 78.9520 57524 20862

4d5/2
0.0312500 60670 67921 78.5071 98898 95797

0.0312500 60670 67921 78.5071 98899 03508

FIG. 4. Dependence of the ground-state total (ET ) and electronic
(Ee) energies of the hydrogen molecule ion (H2

+) on internuclear
distance R for 0 � R � 20 in atomic units (a.u.). The upper limit
of the summation is N = 16 and the maximum principal quantum
number is n = 4.
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APPENDIX A: THE SLATER-TYPE SPINOR ORBITALS IN THE FOUR-COMPONENT FORMALISM

Taking into account the Cartesian derivatives of the wave function in terms of spherical polar coordinates [58],

∂

∂x
= sin θ cos ϑ

∂

∂r
+ 1

r
cos θ cos ϑ

∂

∂θ
− 1

r

sin ϑ

sin θ

∂

∂ϑ
, (A1)

∂

∂y
= sin θ sin ϑ

∂

∂r
+ 1

r
cos θ cos ϑ

∂

∂θ
− 1

r

cos ϑ

sin θ

∂

∂ϑ
, (A2)

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
, (A3)

the relationships for the left-hand side of Eq. (27) are given as

T̂ 0{f β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljm

∂

∂z

{
f

β

nj (ζ,r)Ylm(λ)(θ,ϑ)
}

= C
βλ

ljm

{(
βNnj − n − 1

r
+ ζ

)√
[lβ + m(λ) + 1][lβ − m(λ) + 1]

(2lβ + 3)(2lβ + 1)
f

−β

nj (ζ,r)Ylβ+1m(λ)(θ,ϑ)

+
(

βNnj − n

r
+ ζ

)√
[lβ + m(λ)][lβ − m(λ)]

(2lβ + 1)(2lβ − 1)
f

−β

nj (ζ,r)Ylβ−1m(λ)(θ,ϑ)

}
, (A4)

T̂ 1
{
f

β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljm

∂

∂z

{
f

β

nj (ζ,r)Ylm(λ)(θ,ϑ)
}

= C
βλ

ljm

{(
βNnj − n − 1

r
+ ζ

)√
[lβ + m(λ) + 2][lβ + m(λ) + 1]

(2lβ + 3)(2lβ + 1)
f

−β

nj (ζ,r)Ylβ+1m(λ)+1(θ,ϑ)

−
(

βNnj − n

r
+ ζ

)√
[lβ − m(λ)][lβ − m(λ) − 1]

(2lβ + 1)(2lβ − 1)
f

−β

nj (ζ,r)Ylβ−1m(λ)+1(θ,ϑ)

}
, (A5)

T̂ −1
{
f

β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljm

∂

∂z

{
f

β

nj (ζ,r)Ylm(λ)(θ,ϑ)
}

= C
βλ

ljm

{
−
(

βNnj − n − 1

r
+ ζ

)√
[lβ − m(λ) + 2][lβ − m(λ) + 1]

(2lβ + 3)(2lβ + 1)
f

−β

nj (ζ,r)Ylβ+1m(λ)−1(θ,ϑ)

+
(

βNnj − n

r
+ ζ

)√
[lβ + m(λ)][lβ + m(λ) − 1]

(2lβ + 1)(2lβ − 1)
f

−β

nj (ζ,r)Ylβ−1m(λ)−1(θ,ϑ)

}
. (A6)

It is more advantageous to continue with the following compact form expressions of Eqs. (A4)–(A6):

T̂ 0
{
f

β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljma
βk

njlm(λ)(ζ,r)f −β

nj (ζ,r)Ylβ+km(λ)(θ,ϑ), (A7)

T̂ 1
{
f

β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljmb
βk

njlm(λ)(ζ,r)f −β

nj (ζ,r)Ylβ+km(λ)+1(θ,ϑ), (A8)

T̂ −1
{
f

β

nj (ζ,r)�βλ

ljm(θ,ϑ)
} = C

βλ

ljmc
βk

njlm(λ)(ζ,r)f −β

nj (ζ,r)Ylβ+km(λ)−1(θ,ϑ), (A9)

where −1 � k(2) � 1. Note that the given number in parentheses for a sum indicates the step size. Writing the following relations
as an example for the second and fourth terms of the left-hand side of Eq. (27), with f

β

nj ≡ f
β

nj (ζ,r), �
βλ

ljm ≡ �
βλ

ljm(θ,ϑ), Ylm(λ) ≡
Ylm(λ)(θ,ϑ), a

βk

njlm(λ) ≡ a
βk

njlm(λ)(ζ,r), b
βk

njlm(λ) ≡ b
βk

njlm(λ)(ζ,r), and c
βk

njlm(λ) ≡ c
βk

njlm(λ)(ζ,r), respectively,

T̂ 0(f β

nj�
βλ

ljm

)+ T̂ 1(f β

nj�
βλ′
ljm

) = (
C

βλ

ljma
βk

njlm(λ) + C
βλ′
ljmb

βk

njlm(λ′)
)
f

−β

nj Ylβ+km(λ), (A10)

T̂ 0(f β

nj�
βλ

ljm

)+ T̂ −1(f β

nj�
βλ′
ljm

) = (
C

βλ

ljma
βk

njlm(λ) + C
βλ′
ljmc

βk

njlm(λ′)
)
f

−β

nj Ylβ+km(λ), (A11)

where the results should be multiplied by (−1)[|m(λ)|−m(λ)]/2. Considering Eq. (27) and Eqs. (A4)–(A6), it is easy to see that
m(λ) = m(λ′) ∓ 1.
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APPENDIX B: THE QUESTION OF KINETIC BALANCE

The matrix representation of the Dirac equation for an electron moving through the Coulomb potential around a fixed nucleus
in two-component form [12],(

V
ββ
pq + m0c

2S
ββ
pq cT

β−β
pq

cT
−ββ
pq V

−β−β
pq − m0c

2S
−β−β
pq

)(
C

β
pq

C
−β
pq

)
=
(

ε
β
p

ε
−β
p

)(
S

ββ
pq 0

0 S
−β−β
pq

)(
C

β
pq

C
−β
pq

)
, (B1)

may be written in the following forms:

(
V ββ

pq + m0c
2Sββ

pq

)
Cβ

pq + cT β−β
pq C−β

pq = εβ
pSββ

pq Cβ
pq, (B2a)

cT −ββ
pq Cβ

pq + (
V −β−β

pq − m0c
2S−β−β

pq

)
C−β

pq = ε−β
p S−β−β

pq C−β
pq . (B2b)

Here, by subtracting the rest mass and using Eq. (B2b) to express C
−β
pq ,

C−β
pq = c

{(
ε−β
p + 2m0c

2
)
S−β−β

pq − V −β−β
pq

}−1 × T −ββ
pq Cβ

pq, (B3)

Eq. (B2a) is written as {
V ββ

pq + c2T β−β
pq

[(
ε−β
p + 2m0c

2
)
S−β−β

pq − V −β−β
pq

]−1
T −ββ

pq

}
Cβ

pq = εβ
pSββ

pq Cβ
pq. (B4)

Taking into account the nonrelativistic limit (c → ∞) in Eq. (B4) and simplifying the expression, the following relation is finally
obtained: {

V ββ
pq + β

1

2m0
T β−β

pq

[
S−β−β

pq

]−1
T −ββ

pq

}
= εβ

pSββ
pq Cβ

pq. (B5)

The second term on the left-hand side of Eq. (B5) has thus become a matrix representation of the nonrelativistic kinetic energy
operator,

Kββ
pq = β

1

2m0
T β−β

pq

[
S−β−β

pq

]−1
T −ββ

pq , (B6)

where T
β−β
pq = T

−ββ†
pq and ε

β
p ,β = ±1 represent the electronic and positronic energy of solutions, respectively.

APPENDIX C: THE EVALUATION OF NONRELATIVISTIC MOLECULAR INTEGRALS

The corresponding nonrelativistic molecular integrals in the solution of the Dirac equation in explicit forms are given here by
the following formulas [68].

For two-center overlap,

Snlml,n′l′ml′ (ζA,ζB, �RAB) =
min(l,l′)∑

ν=0

T ν∗
lml ,l′ml′ (�,�)Snlν,n′l′ν(ζA,ζB, �RAB), (C1)

Snlν,n′l′ν(ζA,ζB, �RAB) =
l∑

a=0

l′∑
b=ν

a+b∑
c=0

gc
ab(lν,l′ν)P0,c

n−a,n′−b,0

[
0,

R

2
(ζA + ζB),

R

2
(ζA − ζB)

]
, (C2)

with T ν
lml,l′ml′

rotated-angular functions [77],

T ν
lml,l′ml′ (�,�) =

l+l′∑
L=|l−l′ |

T νL
lml,l′ml′ YLM (�,�), (C3)

T νL
lml,l′ml′ = 2

1 + δν0
Cll′L

−mlml′MCll′L
−νν0

(
4π

2L + 1

)
, (C4)

where the quantities C are the Clebsch-Gordan coefficients, M = −ml + ml′ , and nuclear attraction integrals,

Vnlml,n′l′ml′ (ζA,ζ ′
A, �RAB) =

∑
LM

√
4π

2L + 1
CL|M|(lm,l′m′)RL

nn′(ζA,ζ ′
A,RAB)Y ∗

LM (θRAB
,ϑRAB

). (C5)
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The relativistic molecular auxiliary functions PN1,q

N2N3N4
(ρ1,ρ2,ρ3) [69] in prolate spheroidal coordinates and definitions for the

Gaunt and gc
ab coefficients [78,79] occurring in overlap and nuclear attraction integrals are given as follows:

PN1,q

N2N3N4
(ρ1,ρ2,ρ3) = ρ

N1
1

(N4 − N1)N1

∫ ∞

1

∫ 1

−1
(ξν)q(ξ + ν)N2 (ξ − ν)N3P [N4 − N1,ρ1(ξ + ν)]e−ρ2ξ−ρ3νdξdν, (C6)

where (a)n is the Pochhammer symbol, P [α,x] is the normalized incomplete gamma function [41],

P [α,x] = γ (α,x)

[α]
, (C7)

with [α], and γ (α,x) are the complete and lower incomplete gamma functions, respectively.
The Gaunt and gc

ab coefficients are defined as

CL|M|(lml ; l
′m′

l) =
∫ π

0

∫ 2π

0
Y ∗

l|ml |(θ,ϑ)Yl′|ml′ |(θ,ϑ)YL|ml−ml′ |(θ,ϑ) sin θdθdϑ, (C8)

Yl|ml |(θ,ϑ) = 1

2π
Pl|ml |(cos θ )eimlϑ , (C9)

where Plml
(x) is the associated Legendre function of the first kind [41], and

gc
ab(lν,l′ν) = g0

ab(lν,l′ν)Fq(a + ν,b − ν), (C10)

g0
ab(lν,l′ν) =

ν∑
s=0

(−1)sFs(ν)Dlν
a+2ν−2sD

l′ν
b , (C11)

Dlν
b = 1

2l
(−1)(l−b)/2

[
2l + 1

2

Fl(l + ν)

Fν(l)

]1/2

F(l−b)/2(l)Fb−ν(l + b), (C12)

where the quantities Fs(N,N ′) are the generalized binomial coefficients and are given as

Fs(N,N ′) =
∑
s ′

(−1)s
′
Fs−s ′ (N )Fs ′(N ′), (C13)

with 1
2 [(s − N ) + |s − N |] � s ′ � min(s,N ), and Fs(N ) are binomial coefficients indexed by N and s usually written as (Ns ),

respectively.
Finally, taking into consideration

1

r21
=
∑
LM

(
4π

2L + 1

)(
rL
<

rL+1
>

)
YLM (θ1,ϑ1)Y ∗

LM (θ2,ϑ2), (C14)

the single-center potential RL
nn′ (ζA,ζ ′

A,RAB) arising in Eq. (C5) is obtained as

R
ββ ′;L
nκ,n′κ ′ (ζA,ζ ′

A,RAB) = (2ζA)[n + n′ + L + 1]
1

(2ζARAB)L+1

×
{

P [n + n′ + L + 1,2ζARAB] + (2ζARAB)2L+1

(n + n′ − L)2L+1
Q[n + n′ − L,2ζARAB]

}
, (C15)

where Q[α,x] is the normalized complementary incomplete gamma function,

Q[α,x] = (α,x)

[α]
, (C16)

and ζA = ζA + ζ ′
A.

Note that the expressions given above for molecular integrals can easily be calculated through the numerical global-adaptive
method with the Gauss-Kronrod numerical integration extension used in [68–70].
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