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Explicit symplectic algorithms based on generating functions for charged particle dynamics
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Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known
symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems
due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic
algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available
for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms
to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a
generating function method to construct second- and third-order explicit symplectic algorithms for dynamics
of charged particle. The generating function method is designed to generate explicit symplectic algorithms for
product-separable Hamiltonian with form of H (x,p) = pif (x) or H (x,p) = xig(p). Applied to the simulations
of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate
superiorities in conservation and efficiency.

DOI: 10.1103/PhysRevE.94.013205

I. INTRODUCTION

Dynamics of charged particle in external or self-consistent
electromagnetic fields plays a fundamental role in plasma
physics, accelerator physics, astrophysics, space physics, and
other branches of physics. One of the key components of
first-principle-based particle simulations is the algorithm for
advancing charged particles, which is an active research topic.
The dynamics of a charged particle with the Lorentz force
in the canonical coordinates (x,p) is a canonical Hamiltonian
system,

dZ
dt

= J−1∇H (Z) :

=
{

dx
dt

= 1
m

[p − qA(x)],
dp
dt

= −q∇φ(x) + q

m

(
∂A
∂x

)T
(p−qA) ,

(1)

where Z = (xT ,pT )T is a six-dimensional vector,

J =
(

0 −I

I 0

)

is the canonical symplectic matrix, and

H (Z) = 1

2m
[p − qA(x)]2 + qφ(x) (2)

is the Hamiltonian function. For canonical Hamiltonian system

Ż = J−1∇H (Z), Z ∈ R2k , Z(t0) = Z0, (3)

it is well known that symplectic algorithms conserve the
symplectic structure exactly and globally bound the energy
error by a small number [1–14]. They have become the de facto
standard for numerical integration of Hamiltonian systems
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with important applications in nonlinear dynamics, astro-
physics, plasma physics, accelerator physics, and quantum
physics. Recently, symplectic and geometric algorithms have
been developed for noncanonical particle dynamics [15–28]
and the infinite-dimensional particle-field systems [29–43]
in plasma physics and accelerator physics. Root searching of
implicit algorithms often require more computation resource
than explicit algorithms. To improve the efficiency and
accuracy of long-term simulations for systems with a large
number, e.g., 109, of degrees of freedom, it is sometimes
desirable to have explicit symplectic algorithms available.
Splitting method has been proven to be an effective tool in con-
structing explicit symplectic algorithms [22,24,38,39,44–48].
The basic procedure is to decompose original system into
solvable subsystems possessing the same geometric structure,
then compose the geometric subalgorithms together to obtain
the desired algorithms [13,44,49]. It is well known that for a
Hamiltonian whose p-dependence and x-dependence can be
separated as summands in a summation as follows:

H (Z) = f (p) + g(x) , (4)

the splitting method can generate explicit symplectic algo-
rithms of any orders [5,7]. The familiar leapfrog algorithm
is an example of this method. We will call the form in
Eq. (4) sum-separable and refer to this well-known splitting
method as sum-split method. It is generally believed that if a
Hamiltonian is not sum-separable as in Eq. (4), general explicit
symplectic algorithms do not exist [11,13,14,44,47,50,51]. For
dynamics of charged particle, sum-split method loses efficacy
and cannot be applied directly to construct explicit symplectic
algorithms, because the Hamiltonian Eq. (2) is not sum-
separable. An explicit noncanonical symplectic algorithm has
been developed by He et al. using sum-split method for charged
particle dynamics in the noncanonical coordinates [25,37,40].
However, it requires numerical integration of the magnetic
field along given paths, which can be nontrivial for certain

2470-0045/2016/94(1)/013205(8) 013205-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.013205


ZHANG, QIN, TANG, LIU, HE, AND XIAO PHYSICAL REVIEW E 94, 013205 (2016)

complicated magnetic fields. In this paper, different from He’s
splitting algorithm, we combine the familiar sum-split method
with a generating function method to construct explicit sym-
plectic algorithms for dynamics of charged particles, which do
not require numerical integration of the magnetic field.

The generating function method has been well developed
to construct symplectic methods for a Hamiltonian system
Eq. (3) [4,13,14]. It is well-known that there are four types
of generating functions, i.e., F1(x,X), F2(P,x), F3(p,X), and
F4(p,P), for constructing canonical transformation (p,x) �→
(P,X) [52]. However, in order to apply the generating
functions to construct near-identity transformation for nu-
merical algorithms, the first type of generating function
S1(P,x) and the second type of generating function S2(p,X)
are more suitable [4,13,14]. For the purpose of designing
algorithms, a mixed kind of generating function in the form of
S3((P + p)/2,(X + x)/2) have also been used [4,13,14]. The
symplectic Euler method and midpoint method are included
in this family. Generally speaking, symplectic methods based
on all three types of generating functions are usually implicit.
However, for product-separable Hamiltonians in the form of

H (Z) = pif (x) , (5)

or

H (Z) = xig(p) , (6)

explicit symplectic algorithms with accuracy of order 2 and
3 can be constructed by applying the first type of generating
function and the second type of generating function, respec-
tively. Here, pi is the ith component of the vector p, and f (x) is
a scalar function of x. And xi is the ith component of the vector
x, and g(p) is a scalar function of p. Product-separable means
that the x-dependency and p-dependency can be separated
as factors in a production. For dynamics of charged particle
governed by Eq. (1), we sum-split the Hamiltonian Eq. (2) into
five parts, two of which can be solved exactly. The other three
parts are in the form of Eq. (5) and admit explicit symplectic
algorithms based on the generating functions. Then combining
the exact solution flows and explicit symplectic subalgorithms
in various manners, explicit symplectic algorithms of different
orders can be constructed.

The paper is organized as follows. In Sec. II, symplectic
algorithms based on generating functions are introduced,
and for the Hamiltonian systems with the forms of Eqs. (5)
and (6), explicit symplectic algorithms are given. In Sec. III,
we construct explicit symplectic algorithms of order 2 and 3
for charged particle dynamics based on generating functions.
Numerical experiments are provided, and the superiority of
the explicit symplectic algorithms relative to nonsymplectic
Runge-Kutta methods and implicit symplectic methods is
demonstrated in Sec. IV.

II. SYMPLECTIC METHOD BASED
ON GENERATING FUNCTION

Symplectic methods based on generating functions have
been well developed and applied in numerical simula-
tions [4,13,14]. A generating function F satisfying PT dX −
pT dx = dF generates a canonical transformations (p,x) �→
(P,X), and in general there are four types of generating

functions [52]. However, to obtain near-identity canonical
transformations, the first type of generating function S1(P,x),
the second type of generating function S2(p,X), and a mixed
type S3((P + p)/2,(X + x)/2) have been used. They are
determined by

XT dP + pT dx = d(PT x + S1(P,x)) ,

PT dX + xT dp = d(pT X − S2(p,X)) ,

(X − x)T d(P + p) − (P − p)T d(X + x)

= 2d(S3((P + p)/2,(X + x)/2)) , (7)

respectively, and the corresponding symplectic algo-
rithms have been constructed [4,13,14]. The symplectic
method based on the mixed type of generating function
S3((P + p)/2,(X + x)/2) involves both old and new variables,
and is usually implicit. Here, we construct symplectic methods
based on the first type of generating function S1(P,x) and
second type of generating function S2(p,X). The symplectic
methods based on generating functions of the first type can be
written as

pn+1 = pn − ∇xG(pn+1,xn,�t),

xn+1 = qn + ∇pG(pn+1,xn,�t), (8)

with the generating function

G(p,x,t) = tG1(p,x) + t2G2(p,x) + t3G3(p,x) + · · · , (9)

where

G1(p,x) = H (p,x),

G2(p,x) = 1

2

(
∂H

∂p
∂H

∂x

)
(p,x),

G3(p,x) = 1

6

[
∂2H

∂p2

(
∂H

∂x

)2

+ ∂2H

∂p∂x
∂H

∂p
∂H

∂x

+ ∂2H

∂x2

(
∂H

∂p

)2
]
,

...... . (10)

Utilizing the truncated series,

G(p,x,t) =
r∑

i=1

t iGi(p,x). (11)

we obtain a symplectic method of order r [4,13,14]. The
symplectic methods based on generating functions of the
second type can be constructed similarly. Both types are
usually implicit for general Hamiltonian systems. However,
for product-separable Hamiltonian with the form of Eq. (5) or
Eq. (6), second- and third-order symplectic algorithms based
on generating functions can be constructed explicitly. Let’s
take Hamiltonian Eq. (5) as an example to demonstrate the
explicit symplectic methods based on the generating functions.
The corresponding second-order generating function of the
first type is

G(p,x,t) = tpif (x) + t2

2
pi

∂f

∂xi

f (x). (12)
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Then the explicit symplectic method of order 2 based on the
first type of generating function is

pn+1 = pn − pn+1
i

[
�t∇xf (xn) + �t2

2
∇x

(
∂f

∂xi

f (xn)

)]
,

xn+1
i = xn

i + �tf (xn) + �t2

2

∂f

∂xi

f (xn). (13)

For the product-separable Hamiltonian in the form of Eq. (6),
explicit symplectic algorithms can be constructed similarly
utilizing the second type of generating functions.

III. EXPLICIT SYMPLECTIC ALGORITHMS
FOR CHARGED PARTICLE DYNAMICS

In this section, we will use the methods given in Sec. II to
construct explicit symplectic algorithms for charged-particle
dynamics determined by Eq. (1). It was commonly believed
that this system does not admit any explicit symplectic
algorithm, because the Hamiltonian given by Eq. (2) is not
sum-separable. Now, we show how to construct explicit
symplectic algorithms for it using the generating-function
method and the familiar sum-split method. We sum-split the
Hamiltonian function into five parts as

H (x,p) = H1 + H2 + H3 + H4 + H5, (14)

where

H1 = 1

2m
p2, H2 = q2

2m
A(x)2 + qφ(x),

H3 = − q

m
A(x)T (p1,0,0)T = − q

m
A1(x)p1,

H4 = − q

m
A(x)T (0,p2,0)T = − q

m
A2(x)p2,

H5 = − q

m
A(x)T (0,0,p3)T = − q

m
A3(x)p3. (15)

The corresponding subsystems generated by these sub-
Hamiltonians are

S1 :=
{

dx
dt

= 1
m

p,

dp
dt

= 0,

S2 :=
{

dx
dt

= 0,

dp
dt

= − q2

m

(
∂A
∂x

)T
A − q∇φ(x),

S3 :=
{

dx
dt

= − q

m
(A1(x),0,0)T ,

dp
dt

= q

m

(
∂A
∂x

)T
(p1,0,0)T ,

S4 :=
{

dx
dt

= − q

m
(0,A2(x),0)T ,

dp
dt

= q

m

(
∂A
∂x

)T
(0,p2,0)T ,

S5 :=
{

dx
dt

= − q

m
(0,0,A3(x),)T ,

dp
dt

= q

m

(
∂A
∂x

)T
(0,0,p3)T .

(16)

For subsystems S1 and S2, exact solutions can be computed
explicitly as

ϕ1(t) :=
{

x(t) = x0 + t 1
m

p0,

p(t) = p0,

ϕ2(t) :=
{

x(t) = x0,

p(t) = p0 − t
q2

m

(
∂A
∂x

)T
A |x=x0 −qt∇φ(x0).

(17)

The sub-Hamiltonians of the remaining three subsystems S3,
S4, and S5 are all product-separable as in Eq. (5). Let’s take the
subsystem S3 associated with the sub-Hamiltonian H3(p,x) =
− q

m
p1A1(x) as an example to demonstrate our method. In

terms of Cartesian components, the subsystem S3 is

S3 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt

= − q

m
A1(x),

dp1

dt
= q

m
∂A1
∂x

p1,

dp2

dt
= q

m
∂A1
∂y

p1,

dp3

dt
= q

m
∂A1
∂z

p1.

(18)

The symplectic method of order 2 based on generating function
can be obtained,

pn+1 = pn − ∇xG(pn+1,xn,�t),

xn+1 = xn + ∇pG(pn+1,xn,�t), (19)

where the truncated generating function of order 2 is

G(p,x,�t) = �tH3(p,x) + �t2

2
(∇pH3 · ∇xH3)(p,x),

= −�t
q

m
p1A1(x) + �t2

2

q2

m2
p1

∂A1

∂x
A1(x). (20)

Thus, the second-order symplectic methods for S3 is

ψ�t
3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+1 = xn − �t
q

m
A1(xn,yn,zn) + �t2

2
q2

m2 A1(xn,yn,zn) ∂A1
∂x

(xn,yn,zn),

pn+1
1 = pn

1 + pn+1
1

[
�t

q

m
∂A1
∂x

− �t2

2
q2

m2
∂A1
∂x

∂A1
∂x

− �t2

2
q2

m2 A1
∂2A1
∂x∂x

]
(xn,yn,zn),

pn+1
2 = pn

2 + pn+1
1

[
�t

q

m
∂A1
∂y

− �t2

2
q2

m2
∂A1
∂x

∂A1
∂y

− �t2

2
q2

m2 A1
∂2A1
∂x∂y

]
(xn,yn,zn),

pn+1
3 = pn

3 + pn+1
1

[
�t

q

m
∂A1
∂z

− �t2

2
q2

m2
∂A1
∂x

∂A1
∂z

− �t2

2
q2

m2 A1
∂2A1
∂x∂z

]
(xn,yn,zn),

(21)

which is an explicit method, but not symmetric. For subsystems
S4 and S5, second-order explicit symplectic methods ψ�t

4 and
ψ�t

5 are constructed similarly. Composing the exact solutions
and the symplectic numerical flows of the five subsystems, we
obtain the following explicit symplectic method for charged
particle dynamics with the accuracy of order 1,

�1
�t = ϕ�t

1 ◦ ϕ�t
2 ◦ ψ�t

3 ◦ ψ�t
4 ◦ ψ�t

5 . (22)

To improve the accuracy of explicit symplectic algorithms
based on generating function, one of methods is to compose
�1

�t and its adjoint (�1
�t )

∗ = (�1
−�t )

−1, and obtain

(
�2

�t

)′ = ϕ
�t/2
1 ◦ ϕ

�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ

�t/2
5 ◦ (

ψ
�t/2
5

)∗

◦(
ψ

�t/2
4

)∗ ◦ (
ψ

�t/2
3

)∗ ◦ (
ϕ

�t/2
2

)∗ ◦ (
ϕ

�t/2
1

)∗
, (23)
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FIG. 1. Convergence rate of the energy error for four symplectic
methods. It verifies that �2

�t is indeed a second-order method and
�3

�t is a third-order method.

which is symmetric, i.e., [(�2
�t )

′
]∗ = (�2

�t )
′
. The symmetric

numerical algorithms are of even order, so (�2
�t )

′
is at

least second order. However, for the subnumerical solutions
ψ

�t/2
i ,(i = 3,4,5), their adjoints are not explicit, neither is

(�2
�t )

′
. To construct explicit algorithms, we replace (ψ�t/2

i )∗

by ψ
�t/2
i in Eq. (23), and obtain

�2
�t = ϕ

�t/2
1 ◦ ϕ

�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4

◦ψ�t
5 ◦ ψ

�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 ◦ ϕ

�t/2
1 , (24)

which is also of order 2. The proof is given in the Appendix.
Since all the subalgorithms preserve the canonical symplectic
structure, �1

�t and �2
�t preserve the canonical symplectic

structure naturally. Of course, it is possible to increase the
accuracy of the numerical methods by various composi-
tions [13,44]. For example, a third-order algorithm can be
obtained by the following composition method using �2

�t ,

�3
�t = �2

a�t ◦ �2
b�t ◦ �2

a�t , (25)

where a = 1
2−21/3 and b = 1 − 2a. To numerically verify

the orders of �2
�t and �3

�t , we now apply �2
�t , �3

�t , the
second-order implicit midpoint method and a fourth-order
implicit symplectic method to simulate the dynamics of
charged particle in the magnetic field of a tokamak (see next
section). Here, the fourth-order implicit symplectic method
is generated by symmetric composition of the second-order
implicit midpoint method. The relative errors of Hamiltonian
as functions of time step �t for these methods are plotted
in Fig. 1, which verifies that �2

�t is indeed a second-order
method and �3

�t is a third-order method.

IV. NUMERICAL EXAMPLES

To numerically test the explicit symplectic algorithms
developed, we simulate the dynamics of a 3.5 MeV α particle,
which is a product of D-T fusion, in the magnetic field of
a tokamak. We will compare the second-order explicit sym-

FIG. 2. Two-dimensional tokamak geometry with circular con-
centric flux surfaces.

plectic (ES2) method �2
�t developed with the second-order

implicit symplectic midpoint (IS2) method and the forth-order
nonsymplectic Runge-Kutta (RK4) method. Numerical results
will demonstrate the superb properties of explicit symplectic
methods in terms of accuracy, efficiency, and preserving
energy over long-term simulations.

The axisymmetric tokamak geometry is illustrated in Fig. 2.
A model vector potential of the magnetic field is

A = B0r
2

2Rq
eζ − ln

(
R

R0

)
R0B0

2
ez + B0R0z

2R
eR, (26)

where R =
√

x2 + y2 is the major radius coordinate, R0 is the
major radius, B0 is the magnetic field on axis, the constant q is
the safety factor, and ζ = arctan( x

y
) is the toroidal coordinate

of the torus. In this example, we take R0 = 3m and B0 = 1T

with q = 2.
The initial position and velocity of the α particle are

x0 = (3.15,0,0)m and v0 = (0.016,0.04,0)c, where c is the
speed of light, and the simulation time-step is set to be
�t = 0.2×10−8s. Displayed in Fig. 3 is the comparison of
transit orbits calculated by the nonsymplectic forth-order
Runge-Kutta (RK4) method, second-order implicit symplectic
midpoint (IS2) method, and the explicit second symplectic
(ES2) algorithm �2

�t . It is expected that the orbit consists of a
fast, small-scale gyromotion due to Lorentz force, and a slow,
large-scale transit motion induced by the inhomogeneity of the
magnetic field. In Fig. 3, the small circles of a few centimeters
are the fast gyromotion, and the large circles about half a meter
in size in the RZ plane is the large-scale transit dynamics.
Figure 3(a) shows that the orbit obtained by the nonsymplectic
RK4 method after 1.998×107 time steps is not accurate any
more, while the orbits calculated by the IS2 method in Fig. 3(b)
and ES2 algorithm �2

�t in Fig. 3(c) are accurate for all time
steps and form closed transit orbits. The long-term energy
by nonsymplectic method gradually decreases without bound
due to numerical errors. On the contrary, for the symplectic
integrators, the energy errors are bounded by a small number
for all time. This fact is clearly demonstrated in Fig. 3(d),
where normalized energy for the three algorithms are plotted.

To illustrate the efficiency of the explicit symplectic
algorithms developed, the CPU time used by the three methods

013205-4
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FIG. 3. Simulations of long-term dynamics of a 3.5 MeV α particle in a tokamak. The initial orbits are plotted using blue lines, and the
orbits after 1.998×107 steps are plotted using red lines. (a) Numerical orbit obtained by a nonsymplectic RK4 method. (b) The orbit obtained
by the IS2 method. (c) The numerical orbit by the ES2 method �2

�t . (d) The normalized energy H/H0 of three methods are plotted as functions
of simulation time step.

for calculating the charged particle dynamics is listed in
Table I. The numerical calculation consists of 106 time steps,
and is carried using on a Inter Core i5-4200U CPU. It is clear
that the ES2 algorithm �2

�t is much more efficient than the
IS2 algorithm.

V. CONCLUSION

In this paper, we have constructed explicit symplectic
algorithms for dynamics of charged particle by combining
the familiar sum-split method with a specially designed gen-
erating function method. The newly developed algorithms are
expected to significantly extend the applicability of symplectic
algorithms to physics problems that contain a large number
of degrees of freedom and require accuracy, fidelity, and
efficiency of long-term dynamics, such as the classical particle-
field system described by the Vlasov-Maxwell equations [53].

TABLE I. CPU time used by the three algorithms for charged
particle dynamics in a tokamak.

RK4 IS2 ES2

CPU time 324s 3446s 1212s
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APPENDIX

We will prove the explicit algorithm �2
�t given by Eq. (24)

is a second-order method for the Hamiltonian

H (x,p) = 1
2 [p − A(x)]2 + φ(x). (A1)

To simplify the notation, we have taken m = 1 and q = 1.

There are three steps in the proof.
Step 1: To prove ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 is a

numerical method of order 2 for the sub-Hamiltonian system
with Hamiltonian

H 1(x,p) = −p1A1(x) − p2A2(x) − p3A3(x). (A2)
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Since ψ�t
2+i , i = 1,2,3, is numerical method of order 2 for Hamiltonian system generated by H2+i = −piAi(x), it can be rewritten

as

ψ�t
2+i(x

0,p0) =
(

I + �t

(−Aiei

pi∇Ai

)
+ �t2

2

(
∂Ai

∂xi
Aiei

pi

(
∂Ai

∂xi
∇Ai − Ai∇ ∂Ai

∂xi

)
)

+ O(�t3)

)
(x0,p0), (A3)

where ei is the unit vector in the ith Cartesian direction. The composition method ψ
�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 can be

obtained using the iterations step by step as follows:

ψ
�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

=
(

I + �t

2

(−A1e1

p1∇A1

)
+ �t2

8

(
∂A1
∂x1

A1e1

V11

)
+ O(�t3)

)
ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

=
(

I + �t

2

( −A1e1 − A2e2

p2∇A2 + p1∇A1

)
+ O(�t3)

)
ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

+ �t2

8

(
∂A1
∂x1

A1e1 + ∂A2
∂x2

A2e2 + 2 ∂A1
∂x2

A2∑2
i=1 Vii + 2V21

)
ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

=
(

I + �t

2

( −A1e1 − A2e2 − 2A3e3

p2∇A2 + p1∇A1 + 2p3∇A3

)
+ O(�t3)

)
ψ

�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

× �t2

8

(
∂A1
∂x1

A1e1 + ∂A2
∂x2

A2e2 + 2 ∂A1
∂x2

A2e1 + 4 ∂A
∂x3

A3∑2
i=1 Vii + 4V33 + 4V32 + 4V31 + 2V21

)
ψ

�t/2
4 ◦ ψ

�t/2
3 (x0,p0)

=
(

I + �t

2

( −A1e1 − 2A2e2 − 2A3e3

2p2∇A2 + p1∇A1 + 2p3∇A3

)
+ O(�t3)

)
ψ

�t/2
3 (x0,p0)

+ �t2

8

(
∂A1
∂x1

A1e1 + 4 ∂A
∂x2

A2 + 4 ∂A
∂x3

A3

V11 + 4V22 + 4V33 + 4V32 + 4V31 + 4V21 + 4V23

)
ψ

�t/2
3 (x0,p0)

=
(

I + �t

( −A(
∂A
∂x

)T
p

)
+ �t2

2

(
∂A
∂x A(

∂A
∂x

)T (
∂A
∂x

)T
p − (

∂A
∂x

)T

x
Ap

)
+ O(�t3)

)
(x0,p0), (A4)

where Vij = pi
∂Ai

∂xj
∇Aj − pj Ai∇ ∂Aj

∂xi
. This shows that the ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 is of order 2.

Step 2: To prove ϕ
�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 is of order 2 for the sub-Hamiltonian system with

Hamiltonian

H 2(x,p) = −p1A1(x) − p2A2(x) − p3A(x) + 1
2 A2(x) + φ(x). (A5)

As proved in Step 1, the iteration ψ
�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 is of order 2, and

ϕ�t
2 (x0,p0) =

[
I − �t

(
0(

∂A
∂x

)T
A + ∇φ

)]
(x0,p0). (A6)

The following calculation shows that ϕ
�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 has accuracy of order 2,

ϕ
�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 (x0,p0)

=
[
I − �t

2

(
0(

∂A
∂x

)T
A + ∇φ

)]
ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 (x0,p0)

=
[
I + �t

( −A(
∂A
∂x

)T
p − 1

2

((
∂A
∂x

)T
A + ∇φ

)) + O(�t3)

]
ϕ

�t/2
2 (x0,p0)

+�t2

2

(
∂A
∂x A(

∂A
∂x

)T (
∂A
∂x

)T
p − (

∂A
∂x

)T

x
Ap + ∇xx( A2

2 )A + ∇xxφA

)
ϕ

�t/2
2 (x0,p0)

=
[
I + �t

( −A(
∂A
∂x

)T
p − (

∂A
∂x

)T
A − ∇φ

)
+ O(�t3)

]
(x0,p0)
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+ �t2

2

(
∂A
∂x A(

∂A
∂x

)T (
∂A
∂x

)T
p − (

∂A
∂x

)T

x
Ap + ∇xx

(A2

2

)
A + ∇xxφA

)
(x0,p0)

+ �t2

2

(
0

−(
∂A
∂x

)T ((
∂A
∂x

)T
A + ∇φ

)
)

(x0,p0). (A7)

Step 3: To prove ϕ
�t/2
1 ◦ ϕ

�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 ◦ ϕ

�t/2
1 is of order 2 for the Hamiltonian

Eq. (A1). The iteration ϕ�t
1 is

ϕ�t
1 (x0,p0) =

(
I + �t

(
p
0

))
(x0,p0). (A8)

Combining with the second-order iteration ϕ
�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 proved in Step 2, we obtain

�2
�t = ϕ

�t/2
1 ◦ ϕ

�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 ◦ ϕ

�t/2
1

=
(

I + �t

(
p
0

))
ϕ

�t/2
2 ◦ ψ

�t/2
3 ◦ ψ

�t/2
4 ◦ ψ�t

5 ◦ ψ
�t/2
4 ◦ ψ

�t/2
3 ◦ ϕ

�t/2
2 ◦ ϕ

�t/2
1 (x0,p0)

=
(

I + �t

(
p−A(

∂A
∂x

)T
p − (

∂A
∂x

)T
A − ∇φ

)
+ O(�t3)

)
(x0,p0) + �t2

2

( ((
∂A
∂x

)T − ∂A
∂x

)
(p − A) − ∇φ(

∂A
∂x

)T (
∂A
∂x

)T
p + (

∂A
∂x

)T

x
(p − A)p

)
(x0,p0)

+ �t2

2

(
0

−∇xx

(A2

2 + φ
)
(p − A) − (

∂A
∂x

)T ((
∂A
∂x

)T
A + ∇φ

))(x0,p0), (A9)

which shows that �2
�t is a second-order method.
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