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Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the
frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles
stopping; and further macroscopic properties. Different approaches to the dielectric function and the related
dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing
inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-
Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic
theory. The results are discussed in application to aluminum, xenon, and argon plasmas.
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I. INTRODUCTION

Interaction of laser radiation with matter is utilized for
many modern applications, like creation of sources of high-
energy particles and short-wavelength radiation [1–5]. Under
irradiation of solid targets with intense laser pulses, matter
undergoes transformations from a cold solid up to hot and
dense plasma (warm dense matter, WDM) and further to
weakly coupled plasmas with properties rapidly varying in
time and space. Therefore, for a correct description of laser-
matter interaction in very different regions of parameter values
for mass density and electron and ion temperatures, one needs
wide-range models for the optical properties of WDM, which
are determined by the permittivity or dielectric function (DF)
ε(k,ω).

Knowing wide-range expressions for ε(k,ω) and also
transport coefficients and equations of state, one can determine
space and time dependencies of laser-heated matter by means
of hydrodynamic codes such as LASNEX [6], MEDUSA [7],
MULTI-FS [8], or the code of the JIHT group [9–12]. Primarily,
those codes use semiempirical models for ε(k,ω) and a cor-
responding effective electron-ion (electron-phonon) collision
frequency [9,13], which are derived from kinetic equations and
give known limits for the case of weakly coupled plasmas and
handbook values for cold solids and are based on physically
reasonable estimates and experimental data in the intermediate
region [8–10]. The elaboration of a systematic many-particle
approach that covers distinct regions like cold metals and
hot strongly coupled plasmas is a challenging problem in
nonequilibrium statistical physics.

Besides this, the advantage of such an approach is the
description of laser interaction with matter for a wider range
of laser parameters, from infrared to x-ray wavelengths.

*bme@ihed.ras.ru
†gerd.roepke@uni-rostock.de
‡heidi.reinholz@uni-rostock.de

This is requested keeping in mind recent achievements in
the construction of powerful laser systems operating with
ultraviolet and x-ray wavelengths [14–16]. Note that local
thermodynamic equilibrium in WDM is established on the
fs scale after the excitation by laser irradiation (see, e.g., [17])
and is assumed for the following considerations.

The most strict many-particle approach for calculating the
permittivity of WDM consists of a quantum statistical (QS) de-
scription of the reaction of the system to external perturbations;
see [18] (often also called the “Zubarev approach”). Within the
QS approach, both fundamental theoretical approaches can be
derived, as demonstrated in a recent paper [19]: The linear
response theory (LRT) [20,21] follows from the QS formalism
if one chooses moments of the particle distribution function
as relevant observables, and the kinetic approach follows if
density fluctuations are chosen as sets of relevant observables.
In turn, the kinetic approach can be realized on the basis
of quantum kinetic equations [22], or, alternatively, using
classical kinetic theory (KT) [23] and the concept of cross
sections, which leads to the formulation of kinetic equations
with Boltzmann or Fokker-Planck collision integrals. In the
most simple form, when one can disregard electron-electron
collisions, the electron-ion collision integral can be written
in relaxation time approximation, which leads to simple
expressions for the permittivity, which are widely used in
hydrodynamic codes [8,12,24,25].

Another approach using a classical method of moments
which satisfies the sum rules [26] is a promising alternative
to derive analytical approximations but will not be further
considered here.

Following LRT, transport coefficients and expressions for
inverse bremsstrahlung absorption are expressed by equilib-
rium correlation functions which can be calculated with the
help of the Green’s functions technique in a systematic way.
This procedure takes consistently into account many-particle
effects, such as electron and ion correlations and dynamical
screening, and also effects of strong collisions relevant for
large-angle scattering [20,27]. An account of these effects can
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be essential for studies of optical properties of WDM, i.e., at
temperatures of the order of T ∼ 0.1–102 eV and densities
up to the order of solid ones [17]. An alternative to the
perturbative treatment using Green’s functions leading to an-
alytical expressions is the direct evaluation of the equilibrium
correlation functions using molecular dynamics (MD) simu-
lations of ions combined with the density functional theory
(DFT) for the electrons as denoted by the Kubo-Greenwood
approach; see [28–31]. The reliability of results obtained by
means of perturbative (using Green’s functions) approaches
was confirmed recently by comparison with numerical MD
simulations [28,32,33].

A consistent treatment of strong-coupling effects and the
frequency dependence of the dynamical conductivity [19,27]
are the strength of the LRT approach. On the other hand, the
respective expressions can be rather cumbersome and therefore
difficult for implementation in hydrodynamic codes. This is
why the elaboration of approximate semiempirical formulas
and interpolation models is of great interest, especially keeping
in mind the necessity to make connection with experimental
data and MD simulations in the region of WDM parameters,
where one cannot extract small parameters for the theory to be
built.

The principal ideas of the LRT approach are summarized
in Sec. II. In particular, a generalized screening parameter
taking into account dynamical screening effects is proposed.
The KT following the solution of the Fokker-Planck equations
is described in Sec. III. Results are discussed in Sec. IV. A
comparison will be made between calculations of the DF
using LRT, with results obtained from the semiempirical
model [9,10,13] based on KT and with other models utilizing
the concept of relaxation time approximation and Coulomb
logarithm [34,35]. In addition, calculations of an effective
frequency for electron-ion collisions on the basis of quantum
[19] and classical [23] kinetic equations are compared. A brief
description of the models compared with each other as well
as used for the comparison with experimental data is given
in Sec. IV A. The influence of plasma inhomogeneities and
interband transitions is discussed in Sec. V and investigated
considering the reflectivity of shock compressed plasmas.

II. DIELECTRIC FUNCTION FROM QUANTUM
STATISTICAL APPROACH USING LRT

Warm dense matter can be described as a system of
interacting particles, electrons, and ions. In contrast to a first
principles approach that treats the electrons and atomic nuclei
as constituents, we consider a chemical picture where we have
ions (localized electrons bound to nuclei) and free electrons
(unbound electrons in itinerant states, extending over the entire
volume), with free electron density n and temperature T . We
use energy units, thus setting kB = 1. In general, there are ions
with different ionization and excitation stages. For simplicity,
we consider the ion components in terms of an average ion
charge Z with the particle density ni = n/Z due to charge
neutrality. The ion temperature is denoted as Ti. The cgs system
of units is used in the following, thus replacing e2/(4πε0) in
previous papers (e.g., Refs. [19,27]) with e2. Note that at high
densities quasiparticles can be introduced, approximating the
mean-field effects by a self-energy shift and an effective mass.

In condensed matter, the electrons in itinerant states are given
by the conduction band, whereas the valence band electrons
are bound to the ions.

The ions are treated in adiabatic approximation [36] via the
static ion structure factor, Sii(k) = n−1

i

∑
i,j 〈exp[ik · (Ri −

Rj )]〉, which describes static correlations of ions at positions
Rj such as lattice formation (ions in a unit volume are
considered; brackets 〈· · · 〉 denote statistical average).

In the liquid phase, the ion structure factor also has to
be considered. For the interaction of electrons with collective
excitations of the ion lattice, i.e., phonons, one should consider
time-dependent positions Rj (t) leading to the dynamical ionic
structure factor Sii(k,ω) = n−1

i

∑
i,j

∫
dt exp[−iωt]〈exp[ik ·

(Ri(t) − Rj )]〉.
In the following derivation within LRT and KT, the

static structure factor is taken to be Sii(k) = 1 for simplicity
(noncorrelated ions). The influence of ion correlations is
considered later in Secs. II G and IV.

We express the DF in terms of equilibrium correlation
functions. For the Hamiltonian of the electron-ion system we
consider the electronic degrees of freedom only,

H =
∑

p

Epâ†
pâp +

∑
pk

Vei(k)â†
p+kâp

+ 1

2

∑
p1p2k

Vee(k)â†
p1+kâ

†
p2−kâp2 âp1 . (1)

with Ep = �
2p2/(2m). Interactions between ions and elec-

trons Vei(k) = V (k) are given by the Coulomb potential
V (k) = −Zv(k) and Vee(k) = v(k) = 4πe2/k2 is the po-
tential of the e-e interaction.

Note that in the general case pseudopotentials V
ps

ei (k)
may have to be considered. They reflect the fact that the
fundamental Coulomb interaction between charged particles is
modified if we introduce quasiparticles such as band electrons
in the lattice formed by ions. Besides this, the structure of
complex ions can also influence their interaction with free
electrons via interaction of bound and free electrons. This is
discussed in Secs. II G and IV at a phenomenological level. In
expressions given below for the Born approximation, we have
to replace

|Vei(k)|2 = ∣∣V ps
ei (k)

∣∣2Sii(k). (2)

Generally speaking, time variation of the current density
contains intraband and interband contributions. Consequently,
the response of the system is determined by intraband (single
band, sb) as well as interband (bound-bound, bb) scattering
mechanisms. Below we restrict ourselves to intraband contri-
butions which are described by a plasma model for WDM. The
interband contribution to the DF is considered in Sec. V B at a
more phenomenological level.

In the present treatment we disregard electron-phonon
interactions and umklapp processes, which is valid at tem-
peratures sufficiently higher than melting temperatures. Also,
temperatures are considered such that the plasma coupling
parameter �ei = Ze2/(R0T ) � 1, where

R0 = (4πni/3)−1/3 (3)
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is the Wigner-Seitz radius. The degeneracy parameter � =
ε−1

F = T/EF = 2mT/�
2(3π2n)−2/3, where EF is the Fermi

energy, can be arbitrary, if it is not stated otherwise.
Before proceeding further, common expressions for the DF

and its relation to the polarization and response functions are
considered briefly.

A. General expressions for the contribution
of electrons to the DF

In accordance with common theory [37], the permittivity
of an isotropic medium is expressed as εij (k,ω) = (δij −
kikj /k2)ε⊥(k,ω) + kikj /k2ε‖(k,ω), where ε‖, ε⊥, ω, and k
are longitudinal and transverse parts of permittivity, frequency
of radiation, and wave vector, respectively. k = |k|; indexes
i,j denote respective components. From Maxwell equations,
keeping in mind the electric field of polarization charge and
density fluctuations, one can find equivalent expressions for
the longitudinal permittivity ε [18,38] (here and below, index
“‖” is omitted for brevity),

ε(k,ω) = 1 − v(k)	(k,ω) = [1 + v(k)χ (k,ω)]−1, (4)

where 	(k,ω) = ρ(k,ω)/φtot(k,ω) is the polarization func-
tion and χ (k,ω) = ρ(k,ω)/φext(k,ω) is the response func-
tion. φtot = φpol + φext is the total scalar potential con-
sisting of the external potential φext and the potential of
polarization charge φpol, ρ(k,ω) is the Fourier transform
of the quantum-mechanical average of density fluctua-
tions, ρ(k,t) = 〈(t)|ρk|(t)〉, where ρk = ∑

l

∫
d3rδ(r −

r l)e−ikr = ∑
le

−ikr l is the Fourier component of the charge
particle density and (t) the full wave function of the system.
According to Eq. (4), the function χ (k,ω) is connected to the
polarization function 	(k,ω) by the relation

	(k,ω) = χ (k,ω)/[1 + v(k)χ (k,ω)]. (5)

The response function determines the reaction of the system
on external perturbations.

At zeroth order of interaction, the permittivity is determined
by the polarization function in random phase approximation
(RPA) [18,38,39],

	RPA(k,ω) = χ0(k,ω) = 2
∑

p

f p+k − fp

E p+k − Ep − (�ω + iδ)
,

(6)

where spin summation gives the factor 2, f p = fp = [1 +
e(E p−μ)/T ]−1 is the electron distribution function, μ is the
chemical potential of the electrons, and the limit δ → +0 is
considered.

If the interaction between the charged particles is taken
into account, the local microscopic field acting on an electron
differs from the average macroscopic field. In this case the
polarization of the electron gas is different from the sum of
the polarization of its individual particles [39] and the RPA
polarization function (6) is replaced with

	(k,ω) = 	RPA(k,ω)

1 + G(k,ω)	RPA(k,ω)v(k)
, (7)

where G(k,ω) is the local field factor [27,39,40], which
contains all effects due to charged particle interactions,

in particular, dynamical screening, correlations, and strong
collisions.

B. Response function and local field factor in terms
of correlation functions

Using the method of quantum statistical operator [18],
within LRT one can show [21,27,41] that the response
function is

χ−1(k,ω) = −iωT M(k,ω)/k2, (8)

where

M(k,ω) =
∣∣∣∣ 0 MN

M̆N MNN

∣∣∣∣−1

|MNN |, (9)

MN is the row of elements {M1, . . . ,MN }, M̆N is the column
of elements {M̆1, . . . ˘,MN }, and MNN is the matrix of elements
{Mij }, i,j = 1, . . . ,N , where

Mn(k,ω) = (Bn(k,ω); J k),

M̆n(k,ω) = ( J k; Bn(k,ω)),

Mmn(k,ω) = (Bm; [Ḃn + iωBn])

+
〈[

Ḃm−〈Ḃm; J k〉ω+iδ

〈Bm; J k〉ω+iδ

J k

]
; [Ḃn+iωBn]

〉
ω+iδ

.

(10)

Here J k = e/m
∑

p � p n p,k is the operator of the current
density, n p,k = a+

p−k/2a p+k/2 is the Wigner form of the single-
particle density matrix in the momentum representation, and
{Bn}, n = 1, . . . ,N , is the chosen set of observables in the
form of moments of the density matrix

Bn(k) = P k,n =
∑

p

� p(Ep/T )(n−1)/2n p,k, (11)

where J k = eP k,0/m. In (10), the expressions like

(Â; B̂) =
∫ β

0
dτ Tr{Â(−i�τ )B̂+ρ0} (12)

denote Kubo scalar products of operators Â and B̂, where
the operator Â is taken in Heisenberg representation Â(t) =
eiĤ t/�Âe−iĤ t , where ρ0 = Z−1 exp[−(Ĥ − μN̂ )/T ] is the
equilibrium statistical operator of the grand-canonical ensem-
ble with Z = Tr{e−(Ĥ−μN̂)/T }, where N̂ is the electron particle
number operator. The equilibrium correlation function

〈Â; B̂〉z =
∫ ∞

0
dteizt (Â(t); B̂) (13)

denotes the Laplace transform of the Kubo scalar product of
the operators.

From Eqs. (4), (7), and (8) one can express the local field
factor in terms of correlation functions (10) containing the
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observables Bn as

G(k,ω) = 1 + 1

v(k)

[
1

χ (k,ω)
− 1

χ0(k,ω)

]
= −iωT M(k,ω) + 1 − [v(k)χ0(k,ω)]−1, (14)

where χ0(kω) and M(k,ω) are given by Eqs. (6) and (9),
respectively.

C. Long-wavelength limit and dynamical collision frequency

In the following it is assumed that the mean free path
of an electron between successive collisions Vth/νeff and the
path during the laser period Vth/ω are much smaller than the
characteristic length scale of the electric-field nonuniformity
L∇ . Here Vth = √

T/m is proportional to the mean thermal
velocity and νeff is the characteristic collision frequency of
electrons; see below Sec. III. L∇ can be of the order of the
plasma skin depth ls = c/ωpl, which is created on the surface
of a solid target if irradiated by short (subpicosecond) laser
pulses, where ω2

pl = 4πe2n/m is the plasma frequency [42]. In
this case, one can disregard the spacial dispersion of the plasma
and calculate its optical properties within the long-wavelength
limit, i.e., for k → 0. For warm dense matter, the above
inequalities mean that the considered long-wavelength limit
for uniform plasmas is valid for electron temperatures below
several hundred eV [24].

In the long-wavelength limit is limk→0 v(k)	RPA =
ω2

pl/ω
2 . Using Eqs. (4) and (7), one finds a Drude-like

expression for the permittivity,

lim
k→0

ε(k,ω) = ε(ω) = 1 − ω2
pl

ω[ω + iν(ω)]
, (15)

where the dynamical collision frequency,

ν(ω) = −ω2
pl

iω
lim
k→0

G(k,ω) (16)

= ω2
plT M(0,ω) + i

(
ω − ω2

pl/ω
)
, (17)

is, generally speaking, a complex quantity which is closely
related to the effective collision frequency of electrons (see
below).

It should be noted that in the long-wavelength limit
there is no difference between longitudinal and transverse
permittivities, and expression (15), originally derived for the
longitudinal permittivity, is also valid for the transverse one.

In accordance with Eqs. (17), (9), and (10), the dynamical
collision frequency ν(ω) is expressed in terms of correlation
functions. The respective expressions can be derived directly
from the general expressions (10), as done in Refs. [19,27]. It
is instructive to describe briefly the derivation directly from
linear response equations; see Appendix A. Subsequently,
the permittivity (15) can be calculated using the dynamical
collision frequency

ν(ω) = ν1(ω)rω(ω), (18)

ν1(ω) = ωau
C11

N11
, rω(ω) = N11

C11

1 + iω∗ ∑
m N1mFm∑

m N1mFm

(19)

(for details and elimination of Fm see Appendix B), with the
following designation of dimensionless correlation functions
and response parameter

Nnm = ( P̂n; P̂m)

mnT
, Cnm(ω) = 〈 ˆ̇Pn; ˆ̇Pm〉ω+iδ

mnT ωau
,

Fm = Fm

eE
mT

, (20)

where ωau is the atomic unit of frequency, �ωau = EH =
me4/�

2 ≈ 27.2 eV is Hartree energy, and ω∗ = ω/ωau is the
dimensionless frequency.

In Eq. (18), ν1(ω) is the collision frequency calculated in
the one-moment approximation. For this, only one observable
B̂1 = P̂1 is used in (A3). In order to take into account higher
moments of the distribution function [see Eq. (11)], the so
called renormalization factor rω(ω) is introduced [19,27].
A low-order expansion of the correlation functions within
perturbation theory with respect to the interaction parameter
e2 may lead to different results if different reduced sets of
relevant observables are used. Therefore, partial summation
of the perturbation expansion must be performed to obtain
correct results for transport coefficients in this case; see [43]
and references therein.

Equations (18) and (19) determine implicitly an effective
collision frequency of electrons in terms of dimensionless
correlation functions Cnm through dimensionless response
parameters Fn, which are solutions of the system of Eqs. (A8).
In previous works (see, for example, [19,27]) correlation
functions with only first and third moments of the distribution
function (11) in the sum (19) were considered. It was
shown that this leads to an accuracy of few % for the calculation
of the renormalization factor, at least at low frequencies
(ω/ωpl < 1), as well as at high frequencies ω > ωpl, when
limω→∞ rω(ω) → 1. Using these two moments, the solution
of (A8) makes it possible to write down a clearly structured
expression for rω(ω) in terms of those correlation functions:

rω(ω) = 1

C11

1 + iω∗Qω

Qω

,

Qω = A33 − 2N31A31 + N2
31A11

A11A33 − A2
31

,

Alm = Clm − iω∗Nlm, l,m � 1. (21)

For the calculation of the correlation functions Nlm, l,m �
1, the following expressions are used (see Ref. [28]),

Nlm = �[(l + m + 3)/2]

�(5/2)

I(l+m−1)/2(εμ)

I1/2(εμ)
, l,m � 1, (22)

with εμ = μ/T , from which one has N11 = 1 and

N31 = 5

2

I3/2(εμ)

I1/2(εμ)
, N33 = 35

4

I5/2(εμ)

I1/2(εμ)
. (23)

Here Iν(y) = �(ν + 1)
∫ ∞

0 xν[ex−y + 1]−1dx are Fermi inte-
grals; the dimensionless chemical potential is expressed via
the inverse Fermi integral X1/2(x) reverse to the Fermi integral
I1/2(x) as

εμ = X1/2
(
2ε

3/2
F /3

)
. (24)
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In the nondegenerate case Iν(εμ) = eεμ for all ν and N31 =
5/2, N33 = 35/4; see Ref. [19].

According to the definitions (13) and (20), the correlation
functions Cnm(ω) are expressed in terms of correlation func-
tions of occupation numbers as

Cnm(ω) = β�
2

mnωau

∑
p,p′

pzp
′
z(βEp)

n+1
2 (βEp′ )

m+1
2

×〈 ˆ̇np; ˆ̇np′ 〉ω+iδ, (25)

where n̂p = n̂p,k=0. Using the time dependence ˆ̇np =
(i/�)[Ĥ ,n̂p], the Hamiltonian (1), and the relation 〈Â; B̂〉z =
i
β

∫ ∞
−∞

dω′
π

Im {G
AB† }(ω′+iδ)

ω′(z−ω′) , where GAB† is the thermodynamic
Green’s function, one can express correlation functions Cnm in
terms of four-particle Green’s functions, containing products
of potentials for electron-ion Vei(q)Vei(q ′) or electron-electron
Vee(q)Vee(q ′) interactions; see, for example, [27].

These Green’s functions can be evaluated by diagram
technique. At the lowest order of interaction the four-particle
Green’s functions are expressed as products of single-particle
Green’s functions and the Born approximation follows. Sum-
mation of ring diagrams leads to account for dynamical
screening of interaction potential and permits one to avoid
artificial cutoffs as adopted in classical KT. Summation of
ladder diagrams permits one to account for strong collisions
with large-angle scattering; see Ref. [27] for details. It should
be noted that for simplicity it is reasonable to calculate the
renormalization factor (19) in the Born or screened Born (see
below) approximation and take into account strong-coupling
effects only in the calculation of the collision frequency
ν1(ω) in a one-moment approximation while calculating the
correlation function C11(ω).

The account of screening of the interaction potential is
necessary to avoid divergences at low frequencies [43] and
to get numerically accurate results at finite frequencies. An
account of the dynamical screening via summation of ring
diagrams [20,27] gives rise to the Lenard-Balescu result
for the dynamical collision frequency ν1(ω). Adopting the
dimensionless units

k̃ = kλ̄ = k�/
√

mT ; ω̃ = �ω/T , (26)

it can be written in the form

ν̃LB(ω̃) = iν0Z

ω̃

∫ ∞

0
k̃2dk̃

[
ε−1

RPA(k̃,ω̃) − ε−1
RPA(k̃,0)

]
, (27)

with ν0 = 2
√

�ωau/T /(3π ) and εRPA = ε′
RPA + iε′′

RPA is the
RPA permittivity,

ε′
RPA(k̃,ω̃) = 1 + ν0

k̃3

[
g

(
ω̃

k̃
+ k̃

2

)
− g

(
ω̃

k̃
− k̃

2

)]
,

g(x) =
∫ ∞

0

ξdξ

exp(ξ 2/2 − εμ) + 1
ln

∣∣∣∣x + ξ

x − ξ

∣∣∣∣; (28)

ε′′
RPA(k̃,ω̃) = ν0

k̃3
ln

{
1+ exp[εμ − 1/2(ω̃/k̃−k̃/2)2]

1+ exp[εμ − 1/2(ω̃/k̃+k̃/2)2]

}
. (29)

These formulas (28) and (29) are for plasmas at arbitrary
degeneracy and were derived in [44]. For nondegenerate
plasmas (εF � 1) they go into the form

ε′
RPA(k̃,ω̃) = 1 +

√
2

ω̃2
pl

k̃3

[
D

{
1√
2

(
ω̃

k̃
+ k̃

2

)2
}

−D

{
1√
2

(
ω̃

k̃
− k̃

2

)2
}]

, (30)

ε′′
RPA(k̃,ω̃) =

√
2

ω̃2
pl

k̃3
sinh

(
ω̃

2

)
exp

[
−1

2

ω̃2

k̃2
− k̃2

8

]
, (31)

where D(x) = e−x2 ∫ x

0 et2
dt is the Dawson integral.

The Drude-like expression (15) with the dynamical colli-
sion frequency (27) describes the permittivity in the whole
frequency range. Particularly, it gives the plasmon peak near
the plasma frequency ωpl. Results very close to that obtained
by Eq. (27), but with a lack of details for ε(ω) near ω = ωpl,
can be obtained within a simpler approach by using a statically
screened Coulomb potential (Debye potential) [43] in the Born
approximation. Thus, one obtains

ν̃D(ω̃) = − iν0Z

ω̃

∫ ∞

0

k̃2[εRPA(k̃,ω̃) − εRPA(k̃,0)]dk̃[
1 + k̃2

D/k̃2
]2 , (32)

where k̃D is the inverse screening length, as obtained for
arbitrary degeneracy [20],

k̃2
D = 3/4

[
R̃2

Dε
3/2
F

]−1
I−1/2(εμ), (33)

and R̃D = RD/λ̄ is the dimensionless Debye radius, with RD =
Vth/ωpl.

Following [19], we write expression (32) in a more explicit
form since similar expressions are obtained for higher order
correlation functions,

ν̃D(ω) = iωauZ/(3π2)
∫ ∞

0
dyfscr(y)

∫ ∞

−∞

dx

x

× 1

w + iδ − x
ln

[
1 + eεμ−(x/y−y)2

1 + eεμ−(x/y+y)2

]
, (34)

where w = ω̃/4, y = k̃/(2
√

2), and fscr(y) is the screening
function. The latter can be written for the case (32) of statical
screening as

fscr(y) = y3/
[
y2 + k̃2

D/8
]2

. (35)

Using the Sokhotski-Plemej formula [w − x + iδ]−1 =
P

w−x
− iπ Res(x = w), the expressions for real and imaginary

parts of ν̃D(ω) = ν̃ ′
D(ω) + iν̃ ′′

D(ω) can be written as

ν̃ ′
D(ω) = ωauZ

3πw

∫ ∞

0
dyfscr(y) ln

[
1 + eεμ−(w/y−y)2

1 + eεμ−(w/y+y)2

]
, (36)

ν̃ ′′
D(ω) = ωauZ

3π2w

∫ ∞

0
dyfscr(y)

[∑
δ=±1

Iδ
11(y) − 2I0

11(y)

]
, (37)

I l
11 =

∫ ∞

0

dξ

ξ

∑
σ=±1

σ ln[1 + eεμ−[ξ+σ (y+lw/y)]2
], (38)

l = 0, ± 1.
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According to Eq. (19), the above expressions for ν1(ω) are
equal to the correlation function C11(ω) multiplied by ωau. The
expressions for correlation functions Cnm(ω) for n or (and)
m > 1 in a screened Born (or Debye) approximation have
a form similar to Eq. (34) (see Ref. [19]) and are given in
Appendix B.

D. Effective screening parameter

In this section we show how the inverse screening length
for statical screening (35) can be derived from expression (27)
for the case of dynamical screening. In addition, this approach
gives us the possibility to introduce dynamical screening into
higher order correlation functions (B1) and (B6). Using a
formal comparison of (27) with (32), keeping in mind the
definition of the screening function (35), we get an expression
for the screening function in the case of dynamical screening,

fscr(y,w) = ε∗
RPA(y,w)/[yε′

RPA(y,0)|εRPA(y,w)|2], (39)

where εRPA is the RPA permittivity (28) and (29), which in
new variables can be rewritten in an equivalent form as

εRPA(y,w) = 1 +
√

ω̃au

8
√

2π

1

y3

[
−

∑
δ=±1

Iδ
11(y)

+ iπ ln

{
1 + exp[εμ − (w/y − y)2]

1 + exp[εμ − (w/y + y)2]

}]
, (40)

where I±1
11 is given by (38).

Keeping in mind that in the considered case of dynamical
screening the screening function fscr(y,w) (39) is a complex
function [45], one can rewrite the expressions for real and
imaginary parts of the correlation functions stipulated by
electron-ion interactions as

C′einm = C′einm(f ′
scr) − C′′einm(f ′′

scr),

C′′einm = C′′xgeinm,D(f ′
scr) + C′einm(f ′′

scr),
(41)

where designations C′ei
nm(f ′

scr) and C′′ei
nm(f ′

scr) (where super-
scripts “ei” designate e-i interactions) mean that in the respec-
tive expressions (B5) and (B6) for real and imaginary parts of
correlation functions the real part of screening function (39) is
substituted for fscr and, similarly, designations C′ei

nm(f ′′
scr) and

C′′ei
nm(f ′′

scr) mean substitution of the imaginary part of fscr (39).
One can show from Eqs. (39) and (40) that in the

nondegenerate low-frequency case, i.e., at εF � 1 and w � 1,

fscr ≈ y3[
y2 + 1/

(
8R̃2

D

)]2

[
1 − i

√
πw/y

1 + 8R̃2
Dy2

]
, (42)

and in the degenerate low-frequency case, i.e., at εF � 1 and
w � 1,

fscr ≈ y3[
y2 + 3/

(
16R̃2

DεF
)]2

[
1 − i

3πw/(2y
√

εF)

3 + 16R̃2
Dy2εF

]
. (43)

In the low-frequency case the main contribution to the
integrals like (B5) and (B6) comes from y ∼ √

w � 1; hence,
one can disregard the imaginary parts in Eqs. (42) and (43)
and use the following expression in (35) to ensure proper

interpolation between (42) and (43),

k̃2
D ≈ k̃2

D,deg = [
R̃2

D(1 + 2εF/3)
]−1

, (44)

which also gives an interpolation of Eq. (33). It ensures
good agreement between calculations using expressions (27)
and (32); see Sec. IV below. A similar expression k̃2

D =
R̃−2

D /[1 + ε4
F]1/4 was introduced in Ref. [46], but it gives wrong

asymptotics at low temperatures and less agreement when
comparing with results obtained from Eqs. (27) and (32).

For strongly coupled plasmas, the perturbative approach,
which is the basis for LRT, is, generally speaking, not valid.
In this case, the screening parameter can be different from that
described above. In Ref. [35] it was argued that one should use
the maximum of the Debye length and interatomic distance (3)
as screening length in dense coupled plasmas. That means that
formula (44) in strongly coupled plasmas could be rewritten
as

k̃2
D = min

{
k̃2

D,deg,k̃
2
max

}
, (45)

k̃2
max = 8εF/(18πZ)2/3. (46)

Keeping in mind (45) and (35), one can suppose that in the
case of dynamical screening (39) the screening function fscr

will also be restricted from below by the value

fscr,min = y3/
[
y2 + k̃2

max/8
]
, (47)

where k̃max is given by Eq. (46).
The importance of taking into account the screening of

the Coulomb potential was underlined in a recent paper
[47]. Unlike Ref. [47], our approach permits to take into
account different versions of screening and does not need
special “Drude-like infrared regularization” [48,49] at small
frequencies of radiation.

It is interesting to note that expression (44) can be rewritten
as

k̃2
D,deg = 8�ei

(2
√

3πZ)2/3

εF

1 + 2εF/3
. (48)

In Sec. III A below, we derive an expression for the generalized
electron-ion coupling parameter �deg. Keeping in mind the
relation (76) given there, one can conclude from expressions
(46) and (48) that the restrictions of screening occur at

�deg > 1/3.

E. High-frequency asymptotics and inverse bremsstrahlung

For ω̃ � εμ and ω̃ � ω̃pl it can be shown that one can
disregard k̃2

D in Eq. (36) (the respective terms are exponentially
small, ∼eεμ−w) and rewrite it as

ν̃ ′
D(ω) = ωauZ

3πw

∫ ∞

0

dy

y
ln

[
1 + eεμ−(w/y−y)2

1 + eεμ−(w/y+y)2

]
. (49)

With account of the inequality w � 1, the expression (49)
can be simplified and written in terms of an asymptotic series
with respect to the parameter w−1. With account for only
leading order terms this can be written as [50]

ν̃ ′
D(ω) = ω̃auZ

3πw3/2

∫ ∞

−∞
dt ln[1 + eεμ−4t2

] (50)
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for the case of arbitrary degeneracy or

ν̃ ′
D(ω) ≈ 2ω̃auZε

3/2
μ

9πw3/2

[
1 + π2

8ε2
μ

+ 7π4

640ε4
μ

]
(51)

for the highly degenerate case εμ > 1.
From (49) one immediately can obtain the well-known

expression [53] for nondegenerate plasmas

ν̃ ′
D(ω) = 32ω̃auZ

9π3/2ω̃
ε

3/2
F sinh

(
ω̃

2

)
K0

(
ω̃

2

)
, (52)

where K0(x) = ∫ ∞
0 dt exp[−x cosh(t)] = ∫ ∞

0 dy exp[−y2 −
x2/(4y2)]/y is the modified Bessel function of the second
kind. Keeping in mind the limit ω̃ � 1, one can derive from
(52) the following asymptotic:

ν̃ ′
D(ω � 1) = 16ω̃auZ

9πω̃3/2
ε

3/2
F . (53)

This expression coincides with the first term of a similar
expression for degenerate plasmas, Eq. (51), if one takes into
account that w = ω̃/4 and εμ ≈ εF for the degenerate case.

For the imaginary part of the permittivity and large ω̃ one
has from Eq. (37) the expression

ν̃ ′′
D(ω) = −8ω̃auZ

3π2ω̃

∫ ∞

0
dyfscr(y) I0

11(εμ,y), (54)

where I0
11 is given by Eq. (38); it does not depend on ω.

The dielectric function ε(ω) = [n(ω) + ic/(2ω)α(ω)]2 de-
termines the refraction index n(ω) as well as the absorption
coefficient α(ω), which is related in thermal equilibrium with
emission coefficient j (ω) by Kirchhoff’s law of radiation
j (ω) = α(ω)Lω(ω), where Lω(ω) is the spectral power density
of blackbody radiation.

In the high-frequency limit, where n(ω) ≈ 1 and ω � ν ′
D,

one has

α(ω) = ω

c n(ω)
Im ε(ω) ≈ ω2

pl

ω2c
ν ′

D(ω), (55)

so that the inverse bremsstrahlung absorption coefficient is
directly related to the real part of the dynamical collision
frequency obtained above.

Using Eqs. (55) and (52) in the nondegenerate limit, one
can write an expression for α(ω) in the form

c�α

T
= 32

9

√
π

3
Z

ωauω
2
pl

ω3
ε

3/2
F (1 − e−ω̃)gBorn

ff (ω),

gBorn
ff = (

√
3/π2) exp(ω̃/2)K0(ω̃/2), (56)

where gBorn
ff is the free-free Gaunt factor in Born approxima-

tion; see Refs. [20,54–56].
The expression (56) coincides with the result derived in [53]

and with the well-known Bethe-Heitler expression resulting
from QED in second order of interaction [57] for a hydrogen
plasma in the nonrelativistic limit.

The well-known Kramers formula for the inverse
bremsstrahlung absorption [58] results with the Gaunt factor
gKramers

ff (ω) = 1. The same approximation for the Gaunt factor
was used in a recent paper [47].

This one-moment Born approximation can be improved
taking into account dynamical screening, strong collisions,

and higher moments in the statistical operator, as discussed
earlier. However, in the high-frequency limit, the dynamical
screening is not of relevance. Similarly, the renormalization
factor rω(ω) → 1 for ω � ωpl; see Refs. [19,20] and Fig. 3
below.

Strong collisions have been considered and lead to the
famous Sommerfeld result for the Gaunt factor [54,59]. For
dense plasmas, the account of ion correlation has a major
effect and can be directly included in the Born approximation
[60] via the static structure factor Sii(k̃); see Sec. II G below.

The standard treatment of the kinetic equation using
a relaxation time ansatz (see Sec. III) fails to describe
inverse bremsstrahlung absorption at high frequencies. The
frequently used classical kinetic expression for the dynamical
conductivity, or the corresponding expression for the dielectric
function, is restricted to the low-frequency region since a static,
p-dependent (and ω-independent) relaxation time cannot be
applied to the high-frequency region. Different approaches
using Fermi’s golden rule have been used [53,61] to derive
expressions for the emission of radiation. A common treatment
unifying both limiting cases, ω → 0 and ω → ∞, is missing
in KT if the relaxation time approximation is used.

In contrast, our approach within LRT covers the entire
frequency regime consistently, is applicable to the degenerate
case [62], and can also be applied to the relativistic regime
[63]. An important feature of the LRT is the possibility
to include medium effects in dense plasmas such as the
Landau-Pomeranchuk-Migdal effect [55,56].

F. Low-frequency asymptote

For ω̃ � 1 one has the asymptotic behavior from expres-
sions (B5) and (B6),

C′eq
nm(ω̃) = 4αq

3π

∫ ∞

0
f q

scr(y)Req
nm(0,y)

eεμ−y2
dy

1 + eεμ−y2 , (57)

C′′eq
nm(ω̃) = wαq

3π2

∫ ∞

0

dy

y2
f q

scr(y)
∫ ∞

0

dξ

ξ

∑
σ=±1

σ

× ∂2

∂ξ 2

{
Req

nm(ξ,y) ln[1 + eεμ−(ξ+σy)2
]
}
, (58)

where superscripts “eq” designate e-e or e-i interactions; w =
ω̃/4.

From these expressions it is seen, that the real part of the
correlation functions is independent of ω, while the imaginary
part is vanishing proportional to ω.

Disregarding the small imaginary part C′′ei
11, one obtains

from (57) and (18) an expression for the dynamical collision
frequency ν by LRT in the considered low-frequency limit,

ν(ω̃ � 1) ≈ νpl,0 r ′
ω �LRT, νpl,0 = 4

√
2π

3

nee
4Z√

mT 3/2
, (59)

where r ′
ω is the real part of renormalization factor and

�LRT = 3
√

π/4

ε
3/2
F

∫ ∞

0
fscr(y)

eεμ−y2

1 + eεμ−y2 dy (60)
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is the Coulomb logarithm. In the nondegenerate case and with
expression (44) for fscr one has from (60) the expression

�LRT(εF � 1) ≈ (ln �−1 − C − 1)/2, � = k̃2
D/8, (61)

coincident with the Brooks-Herring Coulomb logarithm [64],
where k̃2

D/8 is given by (44) and (48) and C ≈ 0.5772 is Euler’s
constant.

G. Ion correlations and screening

We now consider the incorporation of ion correlations
explicitly according to Eq. (2) via the static structure factor.
For the estimation of the ion structure factor for noncrystalline
materials, like liquid metals or dense plasmas, an analytical
model [65,66], derived within a one-component plasma model,
can be used,

Sii(k) =
{

1 − 3�ii

(kR0)4a2
2

[cos(kR0a1) + 2 cos(kR0a2)

− 3 sin(kR0a1)/(kR0a1)]

}−1

, (62)

a1 = −0.1455 × 10−2�ii + a1Z(Z),

a1Z(Z) =

⎧⎪⎨⎪⎩
0.96, Z = 1,

1.0, Z = 2,

1.08, Z = 3,

1.15, Z � 4,

a2(Z) =

⎧⎪⎨⎪⎩
1.45, Z = 1,

1.80, Z = 2,

2.10, Z = 3,

2.25, Z � 4,

where �ii = (Ze)2/(R0Ti) and R0 is interatomic distance, see
Eq. (3) above. Since this model does not incorporate properties
of specific metals, it can be used for an estimation of the ion
structure factor Sii for WDM, including Al plasmas.

Besides ion correlations, it is important to take into account
the influence on the permittivity of warm dense matter caused
by the screening of the Coulomb potential and Pauli blocking
due to the interaction with bound and valence electrons near the
nucleus [46] of complex ions. This can be done by introducing
some pseudopotential instead of the Coulomb potential of the
ion. The most simple form of such a pseudopotential is the
empty core potential [46,67] in the form

Vei(r) =
{
Ze2/r for r > rcut ,

0 for r � rcut ,
(63)

where the radius rcut is treated as a free parameter which can
be fitted to match experimental data on transport and optical
properties. Keeping in mind the respective expression for the
Fourier transform of the potential (63) (see Ref. [46]), one
gets a modified expression for the screening function fscr(y)
[remember that y = k̃/(2

√
2)], which takes into account

the difference between the screening function for the pure
Coulomb potential and the potential (63) in the expressions
for correlation functions containing the interactions between
electrons and ions,

f ei
scr(y) = fscr(y) cos2(2

√
2yr̃cut). (64)

In the case of complex ions expression (64) is taken for f i
scr in

expressions (B5) and (B6) for the e-i-correlation functions.

III. DIELECTRIC FUNCTION FROM KINETIC THEORY

A. Effective collision frequency

The more simple, though less common, treatment of plasma
permittivity can be done using kinetic equations for the
single-particle electron distribution function. In Ref. [19] it
was demonstrated that quantum kinetic equations can be
derived within the scope of quantum statistical theory and
hence it is formally equivalent to the method of quantum
statistical operator used above.

On the other hand, frequently used classical kinetic equa-
tions within relaxation time approximation [23] are, generally
speaking, applicable only for low-frequency perturbations, as
long as the electron-ion collisions in relaxation time approxi-
mation are independent on frequency. Nevertheless, due to its
simplicity this method is widely used in hydrodynamic codes
and also it is convenient for the construction of semiempirical
models based on experimental data [9,10,13].

A slightly more complex, but still elementary, approach
is based on an approximate solution of the Fokker-Planck
equation as proposed in Ref. [68]. This permits to take into
account not only the contribution of electron-ion collisions to
the DF ε(ω) (as in the case of relaxation time approximation),
but also the electron-electron collisions. In accordance with
[68], the permittivity of plasmas due to intraband transitions
is expressed as

ε(ω) = 1 − (ωpl/ω0)2K0(ω), (65)

K0 = −2iχ
Z

ξωε
3/2
F

∫ ∞

0
F (1; α

Z
; iβ

Z
ξ 3)fF (ξ )[1 − fF (ξ )]ξ 7dξ,

(66)

where the function K0 is expressed in terms of the confluent
hypergeometric function F (a; b; z); χ

Z
= [1 + 5/Z∗]−1, ξω =

(3
√

π/4)(νnd
eff/ω), ξ = v/(

√
2Vth), α

Z
= (Z∗ + 8)/3,β

Z
= Z∗

/(3ξω); the Fermi function fF (ξ ) = [1 + exp(ξ 2 − εμ)]
−1

;
and Z∗ = Z/� is an effective charge. The function � is
constructed in such a way [68] that limits at high and low
laser frequencies and for nondegenerate [69], as well as for
degenerate [34], matter are fulfilled,

�(ω) = �0/[1 + (C/ξω)s], �0 = Z
[
γ̃ −1

σ (Z) − 1
]
/5,

γ̃σ = γσ (Z) + 1 − γσ (Z)

1 + 0.6 ln[1 + (20εF)−1]
, γσ = a + Z

b + Z
,

(67)

where the constants were determined as a = 0.87, b = 2.2,
C = s = 1. The value

ν
ndeg
eff = νpl,0 � (68)

is an effective electron-ion collision frequency for nondegen-
erate plasma, expressed in terms of the Coulomb logarithm
�, which can be determined in a wide range of plasma
parameters by respective interpolation formulas [34,35,68,70];
see Sec. III B.

The above formulas ensure proper well-known high-
and low-frequency skin effect asymptotes for nondegener-
ate [25,69] and for degenerate Lorentz plasmas [71–74]
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(disregarding electron-electron collisions). Therefore, the cal-
culation of optical properties is possible for matter in a wide
range of parameters of laser and plasmas with arbitrary ion
charge.

We now analyze further the general expression (66). A
power series expansion of F with respect to its third argument
for the case β

Z
ξ 3 � 1 reads

F (1; α
Z

; iβ
Z
ξ 3) = 1 + i

β
Z
ξ 3

α
Z

−
β2
Z
ξ 6

α
Z

(α
Z

+ 1)
+ · · · , (69)

and the asymptotic expansion of F in the limit Z∗ � 1 reads

F (1; α
Z

; iβ
Z
ξ 3) = 1

1 − β̃
Z

+
∑
n�1

1

Zn∗

β̃
Z
Pn(β̃

Z
)

(1 − β̃
Z

)2n+1
, (70)

where β̃
Z

= iξ 3/ξω and Pn(β̃
Z

) are polynomials of β̃
Z

to the
nth power [68].

Taking only the first term in the expansion (70), in the
leading order one gets from (66) the expression

K0(ω) = 2

ε
3/2
F

∫ ∞

0

fF (ξ )[1 − fF (ξ )]

ξ 3 + iξω

ξ 7dξ, (71)

which coincides with a result obtained earlier [25,71–73,75]
for the electron conductivity of the Lorentz plasma.

From Eqs. (70) and (66) one gets the expression

K0(ω) = 1 − iχ
Z3

ξωε
−3/2
F (1 + e−εμ )−1 (72)

in the high-frequency limit ω � νeff . From Eqs. (69) and (66)
one gets the expression

K0(ω) =
3χ

Z1

ξ 2
ω

I7/2(εμ)

I1/2(εμ)
− 2iχ

Z

ξω

I2(εμ)

I1/2(εμ)
(73)

for low frequencies ω � νeff , where χ
Z3

= 1 + 2/Z∗ and

χ
Z1

= (1 + 5/Z∗)−1(1 + 8/Z∗)−1.
From Eq. (72) it follows [76] that in a wide range of degener-

acy parameter the effective electron collision frequency, which
determines the dynamical conductivity and the absorption in
kinetic models, can be expressed in the form

νeff = 3
√

πνpl,0

4ε
3/2
F

1

1 + e−εμ
�, (74)

which reproduces known limiting cases for nondegenerate and
highly degenerate plasmas [68,76], in particular, Eq. (68) for
a nondegenerate plasmas.

One can rewrite (74) in the form

νeff =
√

2/(3π )ωpl�
3/2
deg�(�deg,Z,�), (75)

where

�deg = �ei

εF[4(1 + e−εμ(εF))/(3
√

π)]2/3
(76)

is the generalized electron-ion coupling parameter for plasma
at arbitrary degeneracy. In the nondegenerate case, (76) is
the usual expression �deg ≈ �ei = Ze2/(R0T ). In the case
of strongly degenerate (εF � 1) plasmas, the respective
coupling parameter depends on the Fermi energy, �deg ≈
(9π/16)1/3Ze2/(R0EF ) = 1.21Ze2/(R0EF ).

Alternatively, expression (76) can be rewritten as

�deg = 2−1/6Z2/3(�ωau/T )1/2D�(�), (77)

D� = �1/2{1 + exp[−X1/2(2�−3/2/3)]}−1. (78)

The function D�(�) has a minimum at � = �∗ ≈ 0.519,
with D�(�∗) ≈ 1.514. It is slowly varying in the vicinity of
�∗ [D� ∈ (1.51; 1.72) for � ∈ (0.27; 0.94)]. From this fact
and Eq. (75) it follows that in strongly coupled plasmas the
effective collision frequency is proportional to the plasma
frequency,

νeff,max = k1ωpl, (79)

with some numerical coefficient k1, which is in the order of 1.
Effectively, the maximum of the effective collision frequency
is a function of the plasma density. The actual value of k1 can
be determined from the comparison with experimental data
[9,10,76].

It should be noted that if one takes into account not
only electron-ion and electron-electron scattering, as in the
above consideration, but also electron-phonon interaction
and umklapp processes [77], then the effective frequency
of collisions and absorption will have some maximum as a
function of the electron temperature [9,13,78].

B. Coulomb logarithm

From the considerations given above it is clear that the
differences of various kinetic and semiempirical models in de-
termining the laser energy absorption are crucially dependent
on the determination of the the Coulomb logarithm �, which is
a slowly varying function of density and temperature. Different
authors give different expressions for � within the quantum or
the classical kinetic approach. Below, some of them are briefly
considered.

A well-known wide-range model for � was proposed
in [71]. This model was refined by different authors who
had proposed expressions that show better agreement with
experimental data. A common expression for � can be written
as

� = C�,0 ln[1 + (C�,1bmax/bmin)1/C�,0 ], (80)

where C�,0 and C�,1 are constants and bmax and bmin are
maximum and minimum impact parameters.

An approximation for �, which is accurate up to nonloga-
rithmic terms, was suggested in [35] for weakly coupled, high-
temperature, low-density, high-Z plasmas (with bmax/bmin �
1). Extending the interpolation formula proposed in [35] to the
case of moderately coupled plasmas, one can rewrite it in the
form (80), with

bmax = min {max {λD,R0},Vth/ω},
(81)

bmin = max{b90(v1),λq(v1)},
where v1 = √

3Vth, b90(v) = Ze2/(mv2) is the impact param-
eter for 90◦ scattering, and λq(v) = �/(2mv) is the quantum-
mechanical minimum impact parameter. The screening length

λD = RD/
√

1/(1 + 2εF/3) + ZT/Ti, (82)
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accounts for both the electrons’ degeneracy [79] via the term
(1 + 2εF/3)−1 [see (45)] and screening by ions via the term
ZT/Ti.

The constant C�,0 in Eq. (80) is usually taken as C�,0 =
1/2, which leads to the result obtained from the classical
trajectory approximation [35,71,80]. Another choice C�,0 =
2/3 ensures proper high-frequency asymptotics (see Sec. II E)
of the real part of the permittivity. The term Vth/ω in
(81) represents the Dawson-Oberman (DO) correction to the
dynamical conductivity in the high-frequency case [81,82].
The numerical coefficient of this term was substantiated
in [35].

The constant C�,1 in Eq. (80) is determined by the
high-temperature asymptotics, where bmax/bmin � 1 and � ≈
ln(bmax/bmin) + ln(C�,1). In [35] the value of C�,1 ≈ 0.287
was proposed. However, in [35] only weakly coupled, high-
temperature plasmas were considered. The consideration of
moderately coupled plasmas shows that C�,1 ≈ 1 will be a
better choice. More precisely, calculations presented below
have shown that a better agreement between results of the
kinetic approach considered here with the QS ones are obtained
with C�,1 = 1 for frequencies ω < ωpl and C�,1 = 0.5 for
frequencies ω � ωpl. We propose the expression

C�,1 ≈ 1 − 0.25[tanh(ω/ωpl − 5) + 1], (83)

which interpolates between limits C�,1 = 1 and C�,1 = 0.5
and is applicable in the entire frequency range.

The expressions (80) and (81) have been obtained following
the relaxation time approximations of the respective integrals
over the velocity space with the electron distribution function.
More general expressions can be obtained for a velocity-
dependent Coulomb logarithm, which can be expressed as
[83]

�(v) = 1

2

[
ln(1 + Q) − Q

1 + Q
− 1

2

Q2

(1 + Q)2

]
, (84)

where Q = [λD/bmin(v)]2 and bmin(v) is given by (81), but
with the replacement v1 ↔ v.

The DO-like correction can also be introduced in (84) by
replacing the above expression for Q by

Q = min{[λD/bmin(v)]2,8/ω̃2}. (85)

The expression (84) with only the first and second terms
on the right side was derived, for example, in [19] within the
first Born approximation using the quantum kinetic equation
and the screened Coulomb potential (bmin = λq(v), i.e., the
quantum-mechanical limit was used in Ref. [19]). The third
term in (84) arises if one takes into account ionic correlations
[80,84] (in [80] the classical limit bmin = b90 was used).

The expression (84) cannot be extrapolated into the high-
frequency region by a simple replacement of λD with v/ω,
like in Eq. (81). In particular, for small Q (corresponding to
large ω) one has from (84) �(v) ∼ Q2 ∼ ω−4 in the case when
we consider only the first two terms on the right-hand side or
�(v) ∼ Q3 ∼ ω−6 in the case of three terms. Note that the
correct asymptote �(v) ∼ ω−3/2 for ω � ωpl follows from
comparison of Eqs. (68) and (50).

In Ref. [34] an expression for the Coulomb logarithm is
derived in second Born approximation. It can be written in the

form

� = ln

(
bmx1

λq∗

)
− 1

2
+ 2b90∗

bmx1

[
ln

(
bmx1

λq∗

)
− ln 24/3

]
,

(86)

where bmx1 = max {λD,R0}, λq∗ = �/(2mv∗), b90∗ =
Ze2/(mv2

∗), and v∗ = √
(7T + 2EF )/m [85]. In accordance

with [34], expression (86) is valid for moderately coupled
plasmas, when �ei < 1. The extrapolation of expression
(86) to the high-frequency case is also difficult because of
nonlogarithmic terms, which leads to negative values for �.

Calculations according to the models discussed above are
considered in the following section. Before, however, it is
instructive to compare LRT and KT results for the case of small
frequencies ω̃ � 1, when the dynamical collision frequency
ν, calculated by LRT, can be approximated by expression (59).
With the additional requirement |ν| � ω, the function K0 [see
Eq. (65)] calculated by LRT can be written as K0 ≈ 1 − iν ′/ω
with ν ′ given by Eq. (59). In the same domain of parameters,
the function K0 calculated by KT is given, in accordance
with (72) and (74), as K0 ≈ 1 − iνeff/ω. The permittivities
calculated by LRT and KT have the same functional form.
They differ in the expression for the Coulomb logarithm. The
similarity is especially obvious in the nondegenerate case.

Furthermore, the formal condition for the applicability of
the Born approximation used in the above formulas (15),
(18), (19), and (B5)–(B7) for LRT is mv2/2 > Ze2/[�/(mv)],
where v ≈ √

3T/m is the average electron velocity, or T >

(4/3)Z2EH , or 2.5 �2
ei�Z2/3 < 1. This case corresponds to the

condition bmin = λq(v) in expression (81) for the minimum
impact parameter (“quantum mechanical limit” [35]). As
shown in [35], the KT model leading to Eqs. (80)–(82)
can cover the full domain of the parameter �2

ei�Z2/3, i.e.,
is formally applicable in both classical [bmin = b90(v)] and
quantum [bmin = λq(v)] limits. On the other hand, as it was
shown above, LRT is applicable in a wide frequency range,
while KT is well grounded only for low frequencies ω � ωpl;
see Sec. IV C below.

It is important to note that even at T < (4/3)Z2EH the
results for the permittivity from LRT are very close to
the ones obtained by KT with semiempirical expressions
for the effective collision frequency if ω � ωpl, i.e., in the
frequency range of the applicability of KT; see Sec. IV below.
That means that the LRT constructed above can be used for
the extension of the KT to be used in a wider frequency range.

IV. RESULTS OF CALCULATIONS

In this section we present an extensive comparison of
numerical results calculated for the LRT and KT approaches.
For the consistency of the LRT calculations, the Kramers-
Kronig relations and sum rules [41] were checked numerically
for such conditions as considered in the following sections. We
looked at solid-density aluminum plasmas (ρ = 2.7 g cm−3)
for different temperatures (T = 2,20,300 eV). The accuracy
of the s-sum rule was better than 0.4% for T = 2,20 eV
and 0.6% for T = 300 eV. The accuracy of the f -sum rule
was better than 0.4% for T = 2, 20 eV and 1% at T =
300 eV. The Kramers-Kronig relations were checked using the
frequency range �ω ∈ [0.01; 2000] eV. The error was found
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TABLE I. Different models as used in the calculations with a brief description are given. Restrictions for the applicability are indicated.

Abbreviation Description of the model Restrictions of the model

SB-1(2) LRT model (15), (18), (19), (B3)–(B7), 1(2)-moment approach (using P1 or P1

and P3), within statically screened Born approximation (44)
�ei < 1, formal condition of

applicability is
T > (4/3)Z2EH or
2.5 �2

ei�Z2/3 < 1
RSB-1(2) As SB-1(2), but with restriction of screening by R0 (3) As SB-1(2), but applicable at

larger �ei

LB-1(2) LRT model with dynamical screening (39), (41) of Lenard-Balescu type,
1(2)-moment approach

As SB-1(2), but more accuracy
near ω ≈ ωpl

GDW-1(2) LRT model with account of electron-ion collisions by Gould-DeWitt (GDW)
approximation (see [27]), 1(2)-moment approach (in the case of 2-moments
approach, higher-moments correlation functions in renormalization factor rω

are calculated by SB-2 model)

�ei � 1; formal condition of
applicability is
2.5 �2

ei�Z2/3 > 1

LRT + PSEC Some of the LRT models listed above, using empty core pseudopotential as (64)
with rcut = 0.4 Å

LRT + PSR Some of the LRT models listed above, using the pseudopotential by Rogers et al.
[86]

Pov + � Semiempirical kinetic model by Povarnitsyn et al. [10] using different Coulomb
logarithms � as listed below

ω � ωpl, Z � 1 (electron
-electron collisions are not
accounted for)

Ner + � Kinetic model (65) and (66) by Nersisyan et al., which takes into account
electron-electron collisions in degenerate plasmas, using different Coulomb
logarithms � as listed below

�ei � 1, ω � ωpl

RNer + � As Ner, but with effective collision frequency restricted by νeff,max (79) (k1 = 0.9
for argon and xenon plasmas)

As for Ner

�Sk-1/2(2/3) Skupsky [35]-like model for Coulomb logarithm (80)–(83) with C�,0 = 1/2(2/3),
without screening by ions [with only the 1-st term under square root in (82)]

� < 1; DO correction for
�ω � T —the term Vth/ω in
(81)—is valid only for real
part of Drude-like collision
frequency νDr (87)

�Sk,i-1/2(2/3) As �Sk-1/2(2/3), but taking into account screening by ions [with all terms in (82)] As for �Sk-1/2(2/3)
�St Stygar et al. [34] model for the Coulomb logarithm (86) �ei < 1, ω � ωpl, formal

condition of applicability of
the Born approximation used
in the derivation is
2.5 �2

ei�Z2/3 > 1
�ERR ERR fit formula for the Coulomb logarithm [68,70] �ei < 1, Z = 1, ω � ωpl

�p-2(3) Velocity-dependent Coulomb logarithm (84) with 2 (3) terms in the right-hand
side of (84)

�ei < 1, ω � ωpl

�p,DO-2(3) As �p-2(3), but including DO correction, Eq. (85) �ei < 1, DO correction (85) for
�ω � T is valid only for real
part of Drude-like collision
frequency νDr (87)

+ee Including electron-electron collisions in LRT
+Sii Including ion correlations via a structure factor Sii (62) in LRT models Valid for estimation of the ion

structure factor for
noncrystalline materials, like
liquid metals or dense plasmas

to be less than 1.5%. This accuracy can be further improved
by increasing the accuracy of the integrals in the respective
expressions for the correlation functions.

A. Brief summary of the models used in the calculations

For the readers’ convenience we give here a brief summary
of the models, described above and used below in particular
calculations. In Table I the abbreviated designations of the
models together with the references to the respective formulas
and literature citations are given, as well as a note on the

applicability. The abbreviated designations of the models in
Table I have the form like “A”, or “A + B”, or “C + �”,
where “A” stands for the type of approximation within the
LRT approach, “B” stands for the (pseudo)potential used, “C”
gives an abbreviation for the the kinetic model, and “�” stands
for the different models for the Coulomb logarithm, which are
listed in the table as well. Unless stated otherwise (see the
last lines in Table I), the electron-electron collisions and ion
correlations in the form of a structure factor Sii in LRT models
are not accounted for.
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B. Dependence of the DF on electron temperature

We investigate first the dependence of the DF ε(ω) on tem-
perature. Additionally, we calculate the absorption coefficient
A = Ia/IL, where Ia and IL are the flux densities absorbed in
matter and incident from vacuum laser, respectively [87]. The
absorption coefficient at normal incidence of laser radiation
is related to the DF via A = 4 Re {ζ }/|1 + ζ |2 [90], with
ζ = 1/

√
ε in the considered long-wavelength limit. As an

example, we consider solid-density aluminum plasma with
a constant average ion charge Z = 3 [91]. The plasma (with
Ti = T ) is irradiated by a laser of wavelength λ = 0.4 nm.
The laser frequency ω = 4.71 × 1015 s−1 (�ω = 3.09 eV)
is smaller than the plasma frequency ωpl = 23.9 × 1015 s−1

(�ωpl = 15.7 eV), and therefore ω̃ � 1 is considered. The
results of our comparative studies are shown in Figs. 1 and 2.

Figure 1 shows the real and imaginary part of the permittiv-
ity ε(ω) as well as the absorption coefficient A in dependence
on the temperature considering different approximations. The
plasma parameters �ei, �deg, and � are also given. For
the frequency considered here, the LRT as described above
gives practically identical results for the static (SB model)
and dynamical (LB model) screening. The introduction of a
minimum screening length in accordance with Eq. (45) leads
to better agreement of the LRT with the semiempirical model
by Povarnitsyn et al. [10], which was constructed using data
of the reflectivity for laser-heated aluminum in the region of
coupled plasmas.

Comparing the two graphs—SB-1 and SB-2—
demonstrates that it is important to take into account
higher moments of the electron distribution function. This can
be done using a renormalization factor rω; see Ref. [19]. The
one-moment approximation strongly overestimates the value
of imaginary part of ε(ω).

Taking into account strong collisions via the Gould-DeWitt
(GDW) model (see [27] for details of T-matrix and GDW
calculations) and higher moments via the renormalization
factor rω (GDW-2) leads to a good agreement for the absorption
coefficient with the kinetic approximation for �ei � 0.4.
Above temperatures of 100 eV, the effect of strong collisions
(GDW-2) shows an effect of about 20% in the imaginary part
of the permittivity in comparison to LB-2, SB-2, or RSB-2
models. The difference decreases with increasing temperature.

Using a pseudopotential of Rogers et al. [86] instead of
a screened Coulomb potential, dynamical conductivity and
absorption coefficient are strongly overestimated; see light
green short-dashed curves SB-2 + PSR compared with full
circle SB-2 in Figs. 1(a)–1(c). It actually leads to an increase
of the effective number of conducting electrons in comparison
to the number of valence electrons, thus taking into account
the influence of core electrons on the permittivity. Contrary
to that, the empty core pseudopotential model [46] leads
to an underestimation of the absorption in the considered
case of aluminum plasmas; see dark green dashed curves
SB-2 + PSEC.

Figure 2 shows another set of calculations in order to
compare LRT and kinetic models for the permittivity and the
absorption coefficient. For some of the approaches, the effec-
tive collision frequency (74) is shown in (d). The semiempirical
kinetic model of Povarnitsyn et al. [10] (see black dash-dotted

FIG. 1. Temperature dependence of the real (a) and the imaginary
(b) part of the DF ε(ω) and the absorption coefficient A (c) at a
frequency of 3.09 eV. The coupling parameters �ei and �deg and
degeneracy parameter � are given in (d). The vertical dotted line
denotes the Fermi energy. The models used are given in the legend;
see Table I for explanations.

curves Pov+�Sk-1/2) interpolates at T ∼ EF between two
different expressions: the phenomenological Drude formula
for metallic plasma (T < EF ) and for T > EF and the integral
formula for the ideal plasma permittivity of nondegenerate
plasmas [24,25]. The two branches of the respective effective
collision frequencies are shown in (d), the descending curve for
the nondegenerate plasma (T > EF ) and the ascending curve
for metallic plasmas. Calculations by Cauble and Rozmus [89]
for a plasma with a steplike density profile are only shown for
the absorption coefficient A at normal laser incidence; see
brown curve with stars in Fig. 2(c). In the region of strongly
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FIG. 2. The same as in Figs. 1(a)–1(c) and the electron-ion effec-
tive collision frequency νeff (d) for a slightly extended temperature
range. Not all models are shown again. Some additional models are
added.

coupled plasmas (at temperatures T � 50 eV), their results
considerably underestimate the absorption when comparing
with the semi-empirical kinetic or LRT models. The ERR fit
formula by Esser et al. [70] (green dashed curve Ner + �ERR)
and the Skupsky [35] model for the Coulomb logarithm �

(thin orange solid curve Ner + �Sk-1/2) also underestimate
the absorption. The much lower absorption obtained by the
Ner + �ERR model at T < 50 eV is due to a lower � and
consequently lower νeff , in comparison to the expressions given
by Stygar et al. [34] (thick violet solid curves Ner + �St) and
in the Povarnitsyn et al. [10] model (dash-dotted black curves
Pov + �Sk-1/2). Note, that the validity of the ERR fit formula,
which is based on numerical results of the LRT model and
known limiting cases, does not extend to low temperatures.

On the other hand, for T > 10 eV, calculations using Sty-
gar’s interpolating expression for � (thick violet solid curves
Ner + �St) and the LRT model in the two-moment screened

Born approximation (magenta curves with rectangular marks
RSB-2) are in good agreement with the semiempirical model
of Povarnitsyn et al. [10] (dash-dotted black curves Pov +
Sk-1/2�). The latter is based on experimental data on the
reflectivity of laser-heated aluminum. The ERR fit formula was
originally derived for plasma with singly charged ions. This
could be a reason why it underestimates slightly the dynamical
conductivity for aluminum with Z = 3 at higher temperatures.
The discrepancies at T < 15 eV are connected to the fact
that electron-phonon interactions and absorption in metal-like
plasmas, which lead to the ascending curve of absorption as a
function of electron temperature and a maximum of absorption
near T = 15 eV, are neither considered in the plasma LRT
model described above or in the model of Nersisyan et al.
for the permittivity [68] with Stygar’s et al. [34] Coulomb
logarithm. An approximate way to account for absorption in
metal-like plasmas within the scope of the latter model is
proposed in Ref. [76].

C. Frequency dependence of the dynamical collision frequency

The frequency dependence of the complex collision fre-
quency νDr = ν ′

Dr + iν ′′
Dr, defined in accordance with the

generalized Drude formula (15) by

ν ′
Dr(ω) = ω Im {n/nc/[1 − ε(ω)]},

(87)
ν ′′

Dr(ω) = ω Re {1 − n/nc/[1 − ε(ω)]},

where nc = mω2/(4πe2) is the critical density, is shown in
Figs. 3 and 4. Note that the value of νDr(ω) defined by (87)
is identical to the value ν(ω) in LRT calculations (15) and
(18), while for the KT calculations with the DF ε(ω) given by
Eqs. (65) and (66), this complex value νDr(ω) is quite different
from the real value of the effective collision frequency νeff ,
though ν ′

Dr(ω) is comparable to νeff ; see Fig. 3.
From Fig. 3 it is seen that for an accurate description of the

permittivity by the LRT approach, for frequencies lower than
the plasma frequency, one needs to take into account not only
the first, but also higher moments of the electron distribution
function when calculating the correlation functions. For ω >

ωpl the first-moment approach is sufficient, i.e., rω → 1 for
ω � ωpl.

It is also seen from Fig. 3 that at ω > 0.03 ωpl and
especially at ω > 0.5 ωpl the imaginary part of νDr(ω) is not
well described by the kinetic model. This is due to the fact
that the collisional term is independent on the frequency ω.
On the contrary, the LRT model gives a consistent imaginary
part of νDr(ω) which satisfies the Kramers-Kronig relations, as
discussed already above.

Figure 4 demonstrates a comparison of the LRT and
different kinetic models using different expressions for the
Coulomb logarithm, however taking the same parameters as
in Fig. 3. For the temperature T = Ti = 300 eV the plasma is
nondegenerate (� = 26) and weakly coupled (�ei = 0.091).
For the average ion charge Z = 3, the influence of electron-
electron collisions is not significant. Therefore, the results
using the expression for ε(ω) according to the Povarnitsyn
et al. semiempirical kinetic model [10] and to the Nersisyan
et al. model [68] for plasmas with arbitrary Z and similar
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FIG. 3. Real (a),(c) and imaginary (b),(d) parts of the generalized
Drude-like collision frequency νDr(ω) (87) as function of the laser
frequency radiating solid-density aluminum plasma at Ti = T =
300 eV considered in different frequency ranges. The models used
are given in the legend; see Table I for explanations and asymptotic
formulas in Sec. II E.

models for Lorentz plasmas [73] are very close; differences
arise from different forms of the Coulomb logarithm.

It is seen from Fig. 4 that, for plasma parameters considered
here, the second Born approximation for � as used by Stygar
et al. [Eq. (86) and Ref. [34]; see violet solid curves Ner +
�St] almost coincides with the Skupsky-like model (80)–(83)
(see black dash-dotted curve Pov + �Sk-2/3) for moderate
frequencies ω < ωpl. Furthermore, the expression (84) without
the contribution of ion correlations [i.e., with only two terms
on the right hand side of Eq. (84)], see black triangular marks
Ner + �p-2, gives also very similar results for small laser
frequencies ω < 0.1 ωpl.

FIG. 4. The same as in Fig. 3. The models used are different and
given in the legend; see Table I for explanations.

Still considering Fig. 4, the model (80)–(83), graph Pov +
�Sk-2/3, is in good agreement with the LRT for ν ′

Dr(ω), graph
LB-2, in the entire frequency range. The account of screening
by ions slightly decreases the value of ν ′

Dr(ω); see the graphs
Ner + �Sk,i-2/3 with the diamond markers. Very similar
results are obtained by the ERR fit formula for � [68,70]
(see the graphs Ner + �ERR), at moderate laser frequencies
and temperature considered in this figure.

Figure 5 demonstrates the effect of different screening
and ion correlations for moderately coupled (�ei ∼ 1) solid-
density, partially degenerated aluminum plasmas at temper-
ature Ti = T = 20 eV. For the coupled plasmas considered
here, the restriction of the screening radius from below by R0

(3) substantially influences the value of νDr(ω), especially in
the region ω ∈ (0.4 − 2) ωpl. The real part as well as |ν ′′

Dr(ω)|
are considerably increased. The account of ion correlations
through Sii also substantially influence the value of νDr(ω),
leading to a decreasing peak near ω = ωpl. As already stated,
for the ion charge Z = 3 considered here, the influence of e-e
collisions on the dynamical collision frequency is marginal.
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FIG. 5. Real and imaginary parts of the generalized Drude-like
collision frequency νDr(ω) (87), as functions of the laser frequency
radiating solid-density aluminum plasma at Ti = T = 20 eV. The
models used are given in the legend; see Table I for explanations.

Unlike the case of weakly coupled plasmas (Fig. 3), it
is seen from Fig. 5 that for moderately coupled plasmas
the agreement between LRT and kinetic calculations can be
observed only for relatively small frequencies ω � 0.3 ωpl.
For higher frequencies, all kinetic models underestimate the
value of |νDr(ω)|.

Figure 6 complements Fig. 5. Additionally it shows calcu-
lations with various options for the Coulomb logarithm (84)
and the ERR Coulomb logarithm [68,70]. The account of the
third term in Eq. (84), responsible for the ion correlations
[80], improves the correspondence with LRT results for
ω � 0.3 ωpl. However, the discrepancies at higher frequencies
between both approaches are not removed. Using the ERR fit
formula for � underestimates |νDr(ω)| in the entire frequency
range for the coupled plasmas considered here, which, as
already stated, can be related to the fact that originally this
model was formulated for plasmas with singly charged ions.

D. Comparison with experimental data

An interesting experimental quantity is the dc conductivity
σdc = σ (ω → 0). It is here considered as the dimensionless
quantity

σ ∗ = Z
√

me2

T 3/2
σdc = 3

4
√

2π
�−1

dc , (88)

FIG. 6. The same as in Fig. 5. The models used are different and
given in the legend; see Table I for explanations.

which is basically proportional to the inverse of the Coulomb
logarithm �dc.

Figure 7 shows σ ∗ at a fixed temperature of about 25 000 K
as a function of the coupling parameter �ei. For direct
comparison with experiments, in this section the temperatures
are given in units of K. Several theoretical approaches
presented in this paper are compared with experimental data
obtained from rare gas plasmas argon and xenon. Both LRT
and kinetic approaches describe the experimental data points
reasonably well, if one takes into account the restriction (79)
of the maximum of the effective collision frequency as well
as electron-electron collisions. In addition, results are shown
taking into account simultaneously both the ion correlations
through Sii, the restriction of the screening radius through
R0 (3), and the effect of the interaction of the conducting
electrons with inner core electrons through a pseudopotential
[see Eq. (63)] with radius rcut = 0.5 Å. The LRT screened
Born calculations, with account of Sii only, give also satisfying
agreement with the experimental data points.

Figure 8 shows the reflectivity R = 1 − A, which was
obtained from shock wave experiments on Xe plasmas at
different free electron densities ne. In the experiment in
[94] the thermodynamic parameters of the plasma were
determined from the measured shock wave velocity. The
plasma composition, in particular ne, was calculated within
the chemical model [95]. At the considered temperatures, only
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FIG. 7. Dimensionless dc conductivity σ ∗ [Eq. (88)] as a function
of the coupling parameter �ei for dense argon and xenon plasmas at
temperature T = Ti ≈ 25 000 K. Experimental points of Ivanov et al.
[92] and Shilkin et al. [93] for xenon and argon plasmas are shown
by large markers and calculations using LRT and KT models are
depicted by (marked) lines; see legend and Table I for explanations.

singly charged ions are present; therefore, we used Z = 1 in
the calculations.

Calculations by the LRT model with and without the
restriction of the screening radius from below by R0 are shown
in Fig. 8. It can be seen that the calculations taking into account
the restriction of screening in strongly coupled plasmas are

FIG. 8. Reflectivity R as a function of the free electron density
ne obtained from shock wave experiments on xenon plasmas, T =
Ti ≈ 30 000 K. Experimental data [94] are shown by large markers:
red squares for wavelength λ = 1.06 μm; green triangles for λ =
0.694 μm; blue circles for λ = 0.532 μm. Marked lines (with the
same colors and markers for the same λ) show the LRT calculations
(model RSB-2 + PSEC + ee); dotted lines show the same, but without
the restriction of the screening radius from below by R0 (model
SB-2 + PSEC + ee).

closer to the experimental points, though still the results are
above the experimentally measured reflectivity.

Note that the plasma density profile of the shock front was
assumed to be steplike. Previous studies had shown that a finite
width of the shock wave front [96–99] and the contribution
of transitions of electrons from bound shells [100] influence
substantially the reflectivity. The account of those effects can
improve significantly the correspondence of theoretical and
experimental results. The contribution of bound-bound transi-
tions and the role of plasma inhomogeneities are investigated
in the following section.

V. ESTIMATION OF CONTRIBUTIONS DUE
TO BOUND-BOUND TRANSITIONS
AND PLASMA INHOMOGENEITIES

A. Role of plasma inhomogeneities

Shock waves have a final width LS at its front where
plasma parameters (for instance, temperature, pressure, ion
concentration, and ionization degree) smoothly change from
their upstream (nonperturbed) values T0, P0, ni,0 to their
downstream values T1, P1, ni,1.

Estimates on the basis of kinetic equations [101] or the
Boltzmann H theorem [102] give a value for the width of the
shock wave front of the order of the mean free path of atoms
or molecules in the nonperturbed gas. Thus, one can write

LS ≈ CLS
/(ni,0σc), (89)

where CLS
is a constant and σc is the cross section of atomic

collisions. The upstream heavy particle density ni,0 is related
to the downstream heavy particle density ni,1 by Rankine-
Hugoniot expressions. For strong shock waves (Mach number
M � 1) in a polytropic gas [101,103] it is found that

ni,1 = ni,0(γ + 1)/(γ − 1), (90)

where γ is the adiabatic coefficient of the gas.
The influence of the plasma inhomogeneity, owing to

the finite width of the shock wave front, on laser radiation
absorption in the plasma depends on the ratio κS = LS/ls ,
where ls is the plasma skin layer depth. From the solution of
the wave equation for a uniform plasma with steplike density
profile, the permittivity (15), and ω < ωpl, one can write an
expression for ls ,

ls ≈ c

ωpl

√
1 + ν̆2√

1 − (ω/ωpl)2(1 + ν̆2)
≈ c

ωpl
, (91)

where ν̆ = Re {ν(ω)}/ω. The second approximate equality is
valid for the case ν̆ � 1 and ωpl � ω.

From Eqs. (89)–(91) one has the following expression for
the ratio κS defined above:

κS ≈ CLS

γ + 1

γ − 1

2
√

πZe√
mc

√
ni,1σc

≈ 6 × 10−2CLS

γ + 1

γ − 1

×
[

Z

ni,1/1021 cm−3

]1/2[ σc

10−15 cm2

]−1
. (92)

Numerical calculations on the basis of the solution of
the Navier-Stokes equations give a parameter value CLS

≈ 4
for shock waves with Mach numbers M of several units in
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argon; see Refs. [104,105]. Similar results for CLS
follow

from the numerical solution of the Burnett equations obtained
in Ref. [106]. Simulations on the basis of the solution of
the Boltzmann kinetic equations indicate even higher values,
CLS

≈ 10 [107].
The value of σc can be estimated using a fitting formula

proposed in Ref. [108] for the total elastic cross section of
argon on argon atoms with the relative energy E,

σc ≈ 2.1

(
E

eV

)−0.4
[

1 +
(

E

15 eV

)2
]0.16

× 10−14 cm2,

(93)

which gives the value σc ∼ 10−14 cm2 for the average relative
energy E ≈ 3 eV. Substituting this value and the values Z = 1,
CLS

= 4, and γ = 5/3 into Eq. (92), one obtains the following
estimate for the experimental conditions relevant for Fig. 8:

κS ∼ 0.1(ni,1/1021 cm−3)−1/2. (94)

In order to elucidate the influence of the parameter κS

on the absorption of laser energy, let us consider a plasma
density profile with a linear ramp: ni(x) = 0 for x < 0, ni(x) =
const = ni,1 for x > LS , ni(x) = ni,1x/LS for 0 < x < LS

(the plasma temperature is assumed to be constant). Under
the assumption of weak absorption (with |ν(ω)|/ω � 1) and
for overcritical plasma density (ωpl � ω) one can express the
solution of the wave equation for such a plasma profile in
terms of the Airy functions Ai and Bi of the first and the
second kind, respectively. Then the change of the absorption
coefficient (see Ref. [109]) α = A/Ast, given by the ratio of
the real absorption coefficient A for a given plasma profile to
the absorption coefficient Ast for a plasma with steplike density
profile [ni(x) = const = ni,1 for x > 0, and = 0 else], can be
expressed as

α =
ω2

pl

ω2

[
1 + 2

κS

∫ L1

−L0
�2(x)(x + L0)2 dx

]
�2(−L0) + �′2(−L0)/L0

,

�(x) ≡ C1 Ai(x) − C2 Bi(x),

C1 = κ
1/3
S Bi(L1) + Bi′(L1)

Ai(L1) Bi′(L1) − Bi(L1) Ai′(L1)
,

C2 = κ
1/3
S Ai(L1) + Ai′(L1)

Ai(L1) Bi′(L1) − Bi(L1) Ai′(L1)
,

L0 = (ω/ωpl)
2κ

2/3
S , L1 = [1 − (ω/ωpl)

2]κ2/3
S , (95)

with �′(L0) ≡ ∂�(x)/∂x|x=L0 , and similarly for Ai′(L1).
From Eq. (95) it follows that, in the limit of weak

absorption, the function α is independent on the absorption
mechanism [i.e., of ν(ω)] and depends on two variables only:
L0 and ωpl/ω. For κS → 0 we have α → 1, and for κS � 1 the
second term in Eq. (95) exceeds the first one, 1. The function
�(x) is of the order of Ai(x), and the function α is mainly
dependent on L0. From that follows that the lower the ratio
n/nc = (ωpl/ω)2 of the maximum plasma density to the critical
density nc, the higher is the influence of a finite width LS of
the plasma density ramp on the absorption.

The behavior of α(κS) for different wavelengths corre-
sponding to the experimental ones (see Fig. 8) and different

FIG. 9. Ratio α = A/Ast as function of ratio κS = LS/ls of
a plasma with linear ramp of its density profile for different
wavelengths λ in μm. Different electron densities are considered:
n = 1.5, 3, 6 × 1021 cm−3 for thick, medium, and thin curves,
respectively. The calculations in the limit of weak plasma absorption
by formula (95) are shown by solid curves, but only as long as
n/nc > 1. Numerical calculations with absorption determined by the
three-moment screened Born approximation for xenon plasmas with
T = Ti = 30 000 K are shown by dashed curves.

electron densities is shown in Fig. 9. Curves are presented
which are calculated using the expression (95) in the limit
of weak absorption as well as curves calculated by the
numerical solution of the wave equation for a plasma with
permittivity given by Eqs. (15), (18), (19), (B5), (B6),
and (B7) (two-moment screened Born approximation with
account of the contribution of electron-electron collisions).

For the plasma parameters considered here, we have
|ν(ω)/ω| � 1. This is the reason why the calculations shown
by dashed lines in Fig. 9 deviate from the analytical estimates
based on Eq. (95). In particular, a saturation of the increase of
absorption with increasing κS is seen for κS exceeding some
value κS = κS∗ . Nevertheless, the above mentioned conclusion
about the increasing influence of κS on absorption with a
decreasing ratio n/nc remains true. From Fig. 9 one can see that
the critical ratio κS∗ is decreasing with shorter wavelengths and
(or) the diminishment of the plasma density. Particularly, κS∗ ≈
1.5, 4, 12 for n = 1.5, 3, 6 × 1021 cm−3, respectively, and
λ = 0.53 μm; κS∗ ≈ 3, 9 for n = 1.5, 3 × 1021 cm−3, respec-
tively, and λ = 0.69 μm; κS∗ ≈ 12 for n = 1.5 × 1021 cm−3

and λ = 1.06 μm. Under the assumption of a finite width of
the shock wave front, this could explain why the discrepancy
between experimental results and theoretical calculations in
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Fig. 8, performed with the assumption κS = 0, is larger for
lower plasma densities and for shorter wavelength. Also,
the dependence of the experimentally determined reflectivity
on the electron density shows concave curves, while the
theoretical calculations under the assumption of κS = 0 leads
to convex ones.

One can see from Fig. 9 that a pronounced effect of a
nonzero κS on the increase of plasma absorption can be
achieved only for κS � 3, while theoretical estimates of the
width of the shock wave front (94) gives about 30 times lower
values of κS � 0.1 for ni � 1021 cm−3.

From the above consideration follows that an increased
absorption or a decreased reflectivity of laser radiation from the
shock wave front, in comparison with theoretical predictions
for Ls = 0, could be a signature of a considerable broadening
of the width of the shock wave front due to ionization or
excitation processes [101,103]. Consequently, such increased
absorption could serve as a diagnostic tool to analyze nonsta-
tionary processes at the shock wave front.

B. Estimates for the contributions of interband transitions

Recently, numerical calculations of the reflectivity of
shock compressed argon and xenon plasmas utilizing the
density functional approach and the Kubo-Greenwood (KG)
formula have been performed. They have shown that interband
transitions play an essential role and should be accounted
for when interpreting the respective experimental results
[100,110]. Below, a semiphenomenological estimate of this
effect is given.

One can note that taking into account interband transition
effects corresponds to the inclusion of collisions with bound
states in particular atoms. These should be considered in
addition to electron collisions with free charge carriers;
see [111].

With the account of interband transitions, the permittivity
can be expressed as

ε(ω) = εDr(ω) + δεb(ω), (96)

where εDr(ω) is the intraband or Drude-like contribution to
the permittivity, given by (15), and δεb(ω) is the interband
contribution to the permittivity.

Different approaches can be used to determine δεb(ω):
Besides first-principles calculations using the KG formula
(see Ref. [100,112]) and their modifications on the basis of
the average-atom model [48], the Drude-Lorentz (DL) model
[113–116] and its modification in the form of the critical
points model [116,117] are widely used for the approximate
description of interband contributions to the permittivity. In
this way, semiempirical interpolation formulas for the optical
properties of a wide class of substances (metals, dielectrics,
amorphous materials) are obtained.

The DL model for δεb(ω) can be rewritten in the form

δεb(ω) = −ω2
pl,ni

∑
m,n

F x
mn

ω2 − ω2
mn + iω�

fF(En)[1 − fF(Em)],

(97)

where we introduced � as a damping factor, ωmn = (Em −
En)/�, and ω2

pl,ni
= 4πnie

2/m. Em is the energy of the

mth energy level (or energy of a continuum state in the
case of bound-free transitions). The matrix element Fx

mn =
2 m ωmn|〈m|x|n〉|2/� is the oscillator strength [118] and
fF(E) = {1 + exp[(E − μ)/T ]}−1 the Fermi function. The
sum in (97) is to be taken over all permitted dipole transitions,
with lm = ln ± 1, where lm,n are the respective orbital quantum
numbers.

Unlike the usual DL model, Eq. (97) contains the factor
fFmn

≡ fF(En)[1 − fF(Em)] which accounts for the population
of the energy levels and the Pauli blocking principle. For � →
0 the imaginary part of Eq. (97) represents a sum of δ functions
δ(ω + ωmn) + δ(ω − ωmn). In this case, similarly to that shown
in Ref. [119], one can derive from Eq. (97) an expression for
the imaginary part of δεb(ω) which is equivalent to the KG
formula.

In the case of laser radiation frequencies much below the
transition frequencies, ω � |ωmn| (which is the case for the
reflectivity measurements depicted at Fig. 8), and for �/ω �
1, the contribution to the imaginary part of δεb(ω) is close
to 0. The main contribution of the interband transitions on
the reflectivity (or absorption) comes from Re {δεb(ω)}. In
accordance with Eq. (97), the contribution of the j th interband
transition to Re {δεb(ω)} is proportional to

δε′
b,j (ω) =

(
ωpl,ni

ωmn,j

)2

Fx
mn,jfFmn,j

[
1 − ω2

ω2
mn,j

]−1

. (98)

For ω � |ωmn| the contribution (98) depends only weakly
on the frequency ω. However, it can be dependent on the
plasma density ni via the expressions for ωpl,ni , ωmn, and fFmn

.
One can assume that ωmn and fFmn

are slowly dependent on
ni in comparison to ω2

pl,ni
∼ ni. Otherwise, the increase of

the energy gap �Ebf between bound pair excited states (with
energies En < 0) and free states of electron gas (with energies
Ef > 0) is approximately proportional to n

1/3
i ,

�Ebf ≈ 4.6 eV Z(ni/1021 cm−3)1/3; (99)

see Refs. [120,121].
Since only states with energies En < −�Ebf can con-

tribute to interband transitions, the number of transitions con-
tributing to δεb(ω) decreases with increasing plasma density,

FIG. 10. The same as in Fig. 8, but with the account of a nonzero
value of Re {δεb(ω)} in the calculations (solid marked lines). A
constant value Re {δεb(ω)} = 0.7 was used in all calculations.
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in accordance with (99). Keeping in mind that transitions from
the upper excited levels can give the main contribution to the
interband absorption (see, e.g., Ref. [48]), such a decrease can
be rather essential and could compensate the linear increase of
ω2

pl,ni
with ni.

Figure 10 illustrates that the simplest assumption of a
constant value independent on density, Re {δεb(ω)} ≈ 0.7
[122], leads to a considerably better agreement between the
experimental results and the calculations. For the considered
plasma and laser radiation parameters, the value of ωpl/ω > 1
is not far from 1 and hence Re {ε(ω)} < 0 for ni > 1021 cm−3.
The addition of a small positive nonzero value for Re {δεb(ω)}
brings Re {ε(ω)} closer to zero, thus making the plasma more
transparent for laser radiation.

VI. CONCLUSIONS

The LRT model has been used to develop a model for
the intraband part of the permittivity in WDM. It is suitable
in a wide frequency range, from the far infrared including
the dc limit to the x-ray region. The model accounts for
both electron-ion and electron-electron collisions, arbitrary
degeneracy, screening, and correlation effects. The relevant
formulas are (15), (18), (19), (B3)–(B7), (39), (41), and
(45)–(48). Approximate expressions have been derived as
simple fits, which enables us to use them in hydrodynamic
codes.

It is shown that the approach elaborated from the LRT is in
good agreement with different versions of the kinetic model
derived from the Boltzmann kinetic equation if higher order
moments of the electron distribution function are taken into
account. This holds for low frequencies (ω < ωpl) and for
moderate coupling.

At high frequencies (ω > ωpl), the introduction of Dawson-
Oberman-like corrections into classical kinetic models ensures
a good agreement of the real part of the Drude-like effective
collision frequency νDr (87), obtained within KT, with the
results of LRT calculations. Nevertheless, the imaginary part
of νDr is not correctly described by this correction procedure
within the classical kinetic approach, and the LRT model
should be used for the calculation of Im {νDr} in this frequency
range. In addition, LRT gives a proper description of the
inverse bremsstrahlung absorption of high-frequency laser
radiation.

Simple expressions are obtained from the LRT approach in
the region of low coupling where the Born approximation
can be applied. Strong collisions are included within the
Gould-DeWitt scheme results. The real and the imaginary
parts of permittivity calculated by the LRT model for optical
frequencies and weak or moderate coupling are almost
identical with those obtained within the kinetic approach.

Effects of screening are studied and it is shown that statical
screening of the interaction potential gives the same results as
obtained from dynamical screening at all frequencies except
the region of the plasmon resonance in the vicinity of ω = ωpl.
In the region of strong coupling, the limitation of the screening
length by the interatomic distance is necessary for the correct
description of optical properties of matter. Furthermore, ion
correlations should be taken into account in the region of

moderate and strong coupling for the accurate description of
permittivity.

As an application of the theory for calculating the DF,
optical properties of shock compressed noble gas plasmas
have been considered. In addition to the contribution of free
electrons (intraband contribution), also the contribution of
bound electrons (inter band contribution) to the permittivity
and the final width LS of the shock wave front must be taken
into account. Furthermore, it was shown that for the considered
plasma densities and wavelengths, a final width LS � 3ls ,
where ls is the skin layer depth, can lead to a considerable
increase of the absorption coefficient A. In this way, a change
of the shape of the reflectivity curve R(n) in dependence on the
free electron density n from initially convex to a more concave
one is possible. This behavior is closer to the results seen in
experiments. On the other hand, such values of LS are about
30 times larger than estimates made for the equilibrium shock
wave front width, determined by ion-ion collisions [101,102].
Therefore, for a more precise estimate of the width of a shock
wave front, it is necessary to take into account relaxation
processes, ionization, and excitation. Our approach shows the
possibility to use optical measurements of the reflectivity of
shock compressed gases as a tool for the diagnostics of the
structure of the shock wave front and relaxation processes
in it.
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APPENDIX A: GENERALIZED LINEAR
RESPONSE THEORY

According to [19] (see also [18,20,43]), the nonequilibrium
statistical operator ρ̂(t) is determined by the dynamical
evolution of the system with Hamiltonian Ĥtot = Ĥ + Ĥext(t),

ρ̂(t) = lim
δ→+0

δ

∫ t

−∞
dt ′e−δ(t−t ′)Û (t,t ′)ρ̂rel(t

′)Û †(t,t ′), (A1)

where Û (t,t ′) is the time evolution operator, which solves
the equation i�∂t Û (t,t ′) = ĤtotÛ (t,t ′) with initial condition
Û (t ′,t ′) = 1. The system Hamiltonian Ĥ is determined by
Eq. (1). The external perturbation Ĥext(t) is determined in
dipole approximation as

Ĥext(t) = −e R̂ · E(t), R̂ =
∑

i
r̂ i ,

ˆ̇R = P̂0,1/m, (A2)

where P̂0,1 is defined by Eq. (11).
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ρ̂rel(t) is the relevant statistical operator. It is introduced
as a generalized Gibbs ensemble, which is derived from the
principle of maximum of entropy,

ρ̂rel(t) = Zrel(t)
−1 exp

[
−β(Ĥ − μN̂ ) +

∑
n

Fn(t)B̂n

]
,

Zrel(t) = Tr exp

[
−β(Ĥ − μN̂ ) +

∑
n

Fn(t)B̂n

]
, (A3)

where the Lagrange parameters β, μ, and Fn(t) are introduced
to fix the given averages,

Tr{B̂nρ(t)} = 〈
B̂t

n

〉 = Tr{B̂nρrel(t)}, (A4)

and similar equations holds for determination of β and μ from
conditions on 〈Ĥ 〉 and 〈N̂〉, where N̂ = ∑

p â
†
pâp. Equation

(A1) means that further correlations are built up from the initial
state, determined by the relevant statistical operator ρ̂rel(t), and
(A4) means that observed statistical averages 〈· · ·t 〉 at time t

are correctly reproduced by ρ̂rel(t).
In LRT the response parameters Fn(t) are considered to

be small. This permits one to perform the expansion of
the relevant ρ̂rel(t) and the irrelevant ρ̂irrel(t) = ρ̂(t) − ρ̂rel(t)
statistical operators with respect to Fn(t); see [19]. Together
with (A4) and using the Kubo identity and partial integration of
correlation functions, this gives rise to a system of equations,

〈δB̂n〉 =
∑
m

(B̂n; δB̂m)Fm, (A5)∑
m

[−iω{(B̂n; Bm)+〈 ˆ̇Bm; δBm〉z}+(B̂n; ˆ̇Bm)+〈 ˆ̇Bn; ˆ̇Bm〉z]Fm

= β
e

m
{(B̂n; P̂1) + 〈 ˆ̇Bm; P̂1〉z}E, (A6)

where z = ω + iδ; δB̂n = B̂n − 〈B̂n〉0, where 〈B̂n〉0 is the
statistical average of B̂n with the equilibrium density
operator ρ0.

The quantity P̂1 = B̂0(0) = P̂0,1 is the operator of the
total momentum of electrons given by Eq. (11) (we consider
the long-wavelength limit k → 0). The operators B̂n are also
chosen in the form of Eq. (11) (as well as P̂1, they are vectors).

At the leading order of the parameter of interaction,
proportional to e2, one can show [27] that the terms containing
only one operator ˆ̇Bn can be omitted. For the set (11)
of observables, the equilibrium averages vanish, 〈B̂n〉0 = 0.
Keeping this in mind, one can derive from (A5) and (A6)
the following expressions, which determine the values of
the density of electric current 〈 Ĵ〉 = e〈 P̂1〉 and the response
parameters Fn:

J = ne2

m
E
∑
m

N1mFm, (A7)∑
m

[Cnm − iω̃Nnm]Fm = Nn1, (A8)

where the dimensionless correlation functions and response
parameters are defined in Eq. (20).

APPENDIX B: EVALUATION
OF CORRELATION FUNCTIONS

Correlation functions introduced in Eq. (20) can be ex-
pressed as

Cei
nm(ω) = iZ/(3π2)

∫ ∞

0
fscr(y)dy

∫ ∞

−∞

dx

x

Rei
nm(x,y)

w + iδ − x

× ln

[
1 + eεμ−(x/y−y)2

1 + eεμ−(x/y+y)2

]
, (B1)

Cee
nm(ω) = i/(3

√
2π2)

∫ ∞

0
f e

scr(y)dy

∫ ∞

−∞

dx

x

Ree
nm(x,y)

w + iδ − x

× ln

[
1 + eεμ−(x/y−y)2

1 + eεμ−(x/y+y)2

]
, (B2)

where Cee
nm(ω) and Cei

nm(ω) are the contributions owing to
electron-electron and electron-ion interaction, respectively,
and Cnm = Cee

nm + Cei
nm. Expressions Rei

nm and Ree
nm are poly-

nomials of x and y. For n,m = 1,3 they have the following
form (see [19]):

Rei
11 = 1, Rei

31 = Rei
13 = 1 + y2 + 3x2,

Rei
33 = 2 + 2y2 + y4 + 2x2(5 + 3y2) + 9x4,

Ree
11 = Ree

31 = Ree
13 = 0, Ree

33 = 1 + 19x2/4. (B3)

Similar expressions can be given for the higher order polyno-
mials; see Refs. [36,123].

The screening function f e
scr(y) is defined as

f e
scr(y) = y3

/[
y2 + k̃2

D

/
4
]

(B4)

and the screening function f i
scr(y) ≡ fscr(y) is defined above;

see Eqs. (35), (39), and (41) and Eq. (64) in the case of
pseudopotentials. The value of k̃D is given by Eq. (45). Note
that in (B4) k̃D contains the numerical factor 1/4 instead of
1/8 in the similar expression (35).

As done above [see Eqs. (36) and (37)], the correlation
functions can be decomposed into a real part and a imaginary
part using the Sokhotski-Plemej formula. One obtains for the
real part of the correlation functions the expression

C′eq
nm = αq/(3πw)

∫ ∞

0
f q

scr(y)dyReq
nm

(
w

y
,y

)

× ln

[
1 + eεμ−(w/y−y)2

1 + eεμ−(w/y+y)2

]
, (B5)

where q = i or e, αi = Z, αe = 1/
√

2.
For the imaginary part of the correlation functions one

obtains

C′′eq
nm = αq

3π2w

∫ ∞

0
f q

scr(y)dy

[∑
δ=±1

Ieq,δ
nm (y) − 2Ieq,0

nm (y)

]
,

(B6)

Ieq,l
nm =

∫ ∞

0

dξ

ξ

∑
σ=±1

σReq
nm

(
ξ + σ

lw

y
,y

)
× ln[1 + eεμ−[ξ+σ (y+lw/y)]2

], (B7)

with l = 0, ± 1.
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