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Passive manipulation of free-surface instability by deformable solid bilayers
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This study deals with the elastohydrodynamic coupling that occurs in the flow of a liquid layer down an
inclined plane lined with a deformable solid bilayer and its consequences on the stability of the free surface
of the liquid layer. The fluid is Newtonian and incompressible, while the linear elastic constitutive relation has
been considered for the deformable solid bilayer, and the densities of the fluid and the two solids are kept equal.
A temporal linear stability analysis is carried out for this coupled solid-fluid system. A long-wave asymptotic
analysis is employed to obtain an analytical expression for the complex wavespeed in the low wave-number
regime, and a numerical shooting method is used to solve the coupled set of governing differential equations in
order to obtain the stability criterion for arbitrary values of the wave number. In a previous work on plane Couette
flow past an elastic bilayer, Neelmegam et al. [Phys. Rev. E 90, 043004 (2014)] showed that the instability of
the flow can be significantly influenced by the nature of the solid layer, which is adjacent to the liquid layer.
In stark contrast, for free-surface flow past a bilayer, our long-wave asymptotic analysis demonstrates that the
stability of the free-surface mode is insensitive to the nature of the solid adjacent to the liquid layer. Instead, it
is the effective shear modulus of the bilayer Geff (given by H/Geff = H1/G1 + H2/G2, where H = H1 + H2

is the total thickness of the solid bilayer, H1 and H2 are the thicknesses of the two solid layers, and G1 and G2

are the shear moduli of the two solid layers) that determines the stability of the free surface in the long-wave
limit. We show that for a given Reynolds number, the free-surface instability is stabilized when Geff decreases
below a critical value. At finite wave numbers, our numerical solution indicates that additional instabilities at the
free surface and the liquid-solid interface can be induced by wall deformability and inertia in the fluid and solid.
Interestingly, the onset of these additional instabilities is sensitive to the relative placements of the two solid
layers comprising the bilayer. We show that it is possible to delay the onset of these additional instabilities, while
still suppressing the free-surface instability, by manipulating the ratio of the shear moduli and the thicknesses of
the two solid layers in the bilayer. At moderate Reynolds number and finite wave number, we demonstrate that an
exchange of modes occurs between the gas-liquid and liquid-solid interfacial modes as the solid bilayer becomes
more deformable. We demonstrate further that dissipative effects in the individual solid layers have an important
bearing on the stability of the system, and they could also be exploited in suppressing the instability. This study
thus shows that the ability to passively manipulate and control interfacial instabilities increases substantially with
the use of solid bilayers.
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I. INTRODUCTION

Interfacial instabilities are often encountered in two-layer
and multilayer flows of dissimilar liquids [1–3] due to
discontinuity in physical properties such as viscosity or
elasticity of the liquid layers across the interface. The origin
of these instabilities can be elastic or viscous depending
upon the viscoelastic [4,5] or Newtonian nature of the liquid
layers [6–8] considered. In many practical settings, it is often
desired to control and manipulate these instabilities at the
interface. In some instances such as coating flows, instabilities
are undesirable, while in some other applications such as
drop formation using microfluidic flow-focusing [9,10], it
is desirable to induce interfacial instabilities. There have
been several earlier investigations that have explored “active”
manipulation techniques such as imposed wall oscillations and
heating of the substrate, with an objective toward suppressing
the interfacial instabilities [8,11]. Recently, “passive” manip-
ulation of these instabilities using deformable solid layers
has been suggested [12–14] as a possible alternative. Passive
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manipulation techniques have the potential to be of relevance
to microfluidic applications and coating processes, wherein
interfacial instabilities need to be induced or suppressed.
In microfluidic devices made of the elastomer PDMS, it
is possible to tune the shear modulus of the elastomer
to manipulate and control the interfacial instability in a
passive way. In the present work, we propose and evaluate
a passive manipulation methodology that exploits the use of
a deformable solid bilayer, and we study its impact on the
stability of a liquid film flowing down an inclined plane lined
with the bilayer. The onset of instability in such a flow was
first analyzed by Yih [15,16] for flow down a rigid inclined
plane using linear stability analysis. In particular, it was shown
that the free-surface flow down a vertical rigid plate is always
unstable at any nonzero Reynolds number, while for plates
inclined at an angle, there is a nonzero critical Re beyond
which the flow is unstable in the long-wave limit.

In the case of two-layer flow down an inclined plane,
the interaction between the two interfaces renders the flow
unstable [1,2,6,7] even at zero Reynolds number. When the
rigid substrate over which the liquid layer is flowing is
lined with a soft deformable solid layer, the coupling of
deformation occurring in the soft wall with the dynamical
variables governing the fluid flow could potentially lead to
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the stabilization of the free surface [13]. However, since an
additional interface (i.e., liquid-solid) has been introduced that
itself is deformable, there could be potential destabilization
of the liquid-solid interface [17] as well. In the creeping-
flow limit, the coupling arises solely due to the continuity
conditions imposed at the fluid-solid interface. Thus, while
the deformable solid layers are considered in the interest
of suppressing the free-surface and interfacial instabilities,
the liquid-solid interface itself can get destabilized in this
process. In particular, Shankar and Sahu [13] carried out a
linear stability analysis on a Newtonian liquid flowing down
an inclined plane lined with a deformable solid layer, modeled
as linear viscoelastic solid [18], and they showed that the
deformability of the solid layer always has a stabilizing effect
on the free-surface instability in the long-wave limit. However,
at finite wave numbers, an increase in the nondimensional
parameter � (which represents the elasticity of the solid
layer) above its critical value leads to the destabilization of
either the free-surface instability or the liquid-solid interface.
However, Shankar and co-workers [12,13] have shown that
there exists a sufficient window of tuning parameters (mainly,
the critical strain rate in a solid layer, or equivalently the shear
modulus of the solid layer) wherein the free-surface instability
is suppressed without destabilizing the liquid-solid interface.

Gkanis and Kumar [19,20] observed that while considering
finite deformations in the deformable solid, necessary mod-
ifications must be made to the linear elastic model in order
for a constitutive relation to be consistent with the principle
of material-frame indifference [21,22]. They considered the
neo-Hookean model instead of the linear viscoelastic model
for a solid layer, which is a rigorous generalization of the
Hookean elastic solid subjected to finite deformations. Gkanis
and Kumar [23] have also analyzed the configuration used
in Ref. [13] using the neo-Hookean model to describe the
solid deformation. The creeping-flow limit was considered
in which free-surface disturbances were found to destabilize
the flow. The work of Gaurav and Shankar [24] extended the
work Gkanis and Kumar [23] to a finite Reynolds number.
At a finite Reynolds number, it was shown that for both
of the solid models (linear viscoelastic and neo-Hookean),
the free-surface instability in flow down a rigid plane can
be suppressed at all wavelengths by the deformability of the
solid layer, and that there exists a significant window in the
shear modulus of the solid considered, for moderate values of
solid thickness, where both modes remain stable for all wave
numbers. Jain and Shankar [14] extended previous studies
for the case of a viscoelastic liquid down an inclined plane
lined with a deformable solid modeled as a linear viscoelastic
solid. In contrast to Newtonian liquid, viscoelastic liquid flow
becomes unstable even in the absence of inertia due to elastic
effects in the fluid. The solid deformability is again found to
have a stabilizing effect on the free-surface instability, and
it can suppress this instability at all wave numbers when the
solid becomes sufficiently deformable. The passive mode of
manipulation by the deformable solid layer makes it feasible
to be exploited in practical applications.

Gkanis and Kumar [25] carried out a linear stability analysis
to examine the role of a depth-dependent modulus on the
stability of the creeping flow of a Newtonian fluid past a
linear elastic solid. Two different variations of the modulus

were considered: one in which the modulus of the solid is
a continuous function of position, and the second in which
there is flow past two adjacent solid layers. For the case of
continuous variation of the modulus, they found that if the
average modulus is the same, then the case when the higher
modulus is close to the interface is more stable. The subsequent
experimental work of Neelmegam et al. [26] on plane Couette
flow also considered a solid bilayer, and it showed that the solid
layer adjacent to the liquid layer has a dominant effect on the
liquid-solid interfacial instability, in broad agreement with the
predictions of Gkanis and Kumar [25]. In the present work,
we explore the possibility of using a solid-bilayer as a possible
candidate for manipulating the free-surface instability.

In what follows, we carry out a linear stability analysis
for a liquid layer flowing down an inclined plane [15], where
the rigid surface of the inclined plane is lined now with the
deformable solid bilayer with each solid layer modeled as
a linear viscoelastic solid. While the neo-Hookean model
of a solid is known to take into account the nonlinearities
originating for finite deformation in a solid layer, in the present
analysis we will restrict ourselves to the linear viscoelastic
model of a solid so as to obtain the qualitative behavior of
free-surface and liquid-solid interfacial instability with respect
to the deformation in the solid layer. We also thereby extend
the earlier study of [13] to the case of a solid bilayer, and we
demonstrate that the bilayer offers significantly more control
on the free-surface instability. A long-wave analysis is used
to demonstrate the stabilizing role of the solid bilayer, and
the long-wave results are continued to finite wavelengths
using a numerical solution of the coupled governing stability
equations.

The rest of this paper is divided into four sections:
Section II describes the equations governing the three-layer
system and the associated boundary conditions. The base
state solutions and the coupled linearized governing equations
and boundary conditions are also discussed in this section in
brief. Section III presents the discussion on the asymptotic
results obtained from solving the governing equations in the
low-wave-number regime. Appendix A provides the details
of the asymptotic analysis, and it demonstrates how the wave
speed is determined using asymptotic analysis. Section IV
is divided into two subsections: Sec. IV A deals with the
description of the numerical procedure used for solving the
obtained fourth-order ordinary differential equations, while
Sec. IV B provides a detailed discussion of the results obtained.
Finally, we end the paper by summarizing the key conclusions
in Sec. V. Appendixes A and B provide additional details on
the asymptotic analysis and the numerical procedure employed
in this study.

II. PROBLEM FORMULATION

A. Governing equations

The three-layer system is comprised of a deformable solid
bilayer with both of the constituent layers modeled as linear
viscoelastic solids in the present study (Fig. 1) and a layer of
Newtonian liquid flowing over the bilayer. The lower solid is
assumed to be perfectly bonded to a rigid surface at z∗ = (1 +
H )R, which is inclined at an angle θ . In the unperturbed state,
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βΗ

FIG. 1. Schematic diagram explaining the system under consid-
eration and the nondimensional coordinate system used.

the lower solid layer occupies the region (1 + βH )R < z∗ <

(1 + H )R, and the upper solid layer is present in the region
1 < z∗ < (1 + βH )R. The liquid layer flows over the upper
solid layer under the influence of gravity, and it is exposed to
a passive gas at the unperturbed free surface z∗ = 0. Here, a
superscript asterisk has been used to denote all the dimensional
variables.

Considering unidirectional and steady flow in the base state,
with the solid layers at rest, the liquid film flows in the x

direction with the velocity distribution

v̄x(z∗) = ρg sin θ

2η
(R2 − z∗2). (1)

The parameters used are defined as follows: ρ is the density of
the liquid, η is its viscosity, g is the acceleration due to gravity,
and θ is the inclination angle. The average velocity of the
flow in the liquid layer can be given by Va = ρgR2 sin θ/3η.
The following scales are used to nondimensionalize various
dynamical quantities: the thickness of the fluid R is used for
lengths and displacements, the average velocity of the laminar
flow Va is used for velocities, R/Va for time, and ηVa/R for
stresses and pressure.

The liquid is assumed to be incompressible and Newtonian,
hence the nondimensional equations governing the liquid flow
are, respectively, the continuity equation and Navier-Stokes
momentum equations:

∂xvx + ∂zvz = 0, (2)

Re[∂t + vx∂x + vz∂z]vx = −∂xp + 3 + ∇2vx, (3)

Re[∂t + vx∂x + vz∂z]vz = −∂zp + 3 cot θ + ∇2vz, (4)

where ∂t is given by ∂/∂t and similar definitions hold for
∂x and ∂z, and ∇2 = (∂2

x + ∂2
z ). The variation of the physical

quantities is neglected in the y direction, since we restrict
ourselves to two-dimensional disturbances in the x-z plane
in the present study. The Reynolds number used in Eqs. (3)

and (4) is defined as Re = ρV̄aR/η. Since the flow is gravity-
driven, the contribution due to the gravitational body force
enters through the terms 3 and 3 cot θ appearing in the x and
z momentum equations, respectively. The total stress tensor in
the liquid layer can be written as Tij = −p δij + τij , where p is
the isotropic pressure, and τij = (∂ivj + ∂jvi) is the deviatoric
stress tensor for the Newtonian liquid. The liquid-gas interface
is exposed to a passive gas and can be treated as a free surface,
as the shear stress exerted by the gas is negligible. When the
interface is perturbed about its base state location z = 0, the
dynamics of the position of the interface [z = h(x)] follows
the well-known kinematic condition

∂th + vx∂xh = vz. (5)

The deformation in the solid bilayer is considered to
be small, and therefore the linear viscoelastic solid model
is used to describe the deformation dynamics in the solid.
Although the neo-Hookean solid model is more accurate [19],
many of the qualitative conclusions of the present study are
expected to hold even for the more accurate neo-Hookean
model. The dynamics of the solid layer can be represented
by a displacement field ui , which physically represents the
deviation of the material points from their base-state positions.
The velocity field in the solid layer is given by vi = ∂tui . In
the interest of brevity, we provide the governing equations for
both solids below, without indicating the dynamical variables
with different subscripts for the two solid layers. When we
carry out the linear stability analysis, the displacement fields
in the two solid layers will be distinguished by a subscript.
Both of the solid layers are assumed to be incompressible, and
the respective displacement field satisfies

∂iui = 0. (6)

The nondimensional Cauchy momentum equation in the two
solid layers is given by

Re ∂2
t ui = ∂j
ij + 3

ĝi

sin β
. (7)

Analogous to the liquid layer, the total stress tensor in the solid
layer, 
ij , is given by a sum of isotropic pressure pg and a
deviatoric stress σij , 
ij = −pg δij + σij , where ĝi is the unit
vector pointing in the direction of gravity. The deviatoric stress
σij can be further represented by a sum of elastic and viscous
stresses in the solid layers as σij = (1/� + ηr∂t )(∂iuj + ∂jui).
Here, the nondimensional parameter � represents the (inverse)
elasticity of the solid layers, � = V̄aη/(GR), and ηr = ηw/η

is the ratio of solid to fluid viscosities. Note that the shear
modulus G and viscosity ηw correspond to the solid layer under
consideration. From this point onward, subscript 1 is used to
denote the variables corresponding to the top solid layer, and
subscript 2 is used to denote the variables corresponding to
the bottom solid layer. For simplicity, we set the densities
of both solid layers to be the same as the density of the
liquid layer. Many soft elastomers have densities that are
very close to the density of liquids such as water. Further,
as we demonstrate below, the instability (and its suppression)
is primarily brought out by an asymptotic analysis in the
low-wave-number limit. In this limit, the inertial stresses
in the solid layers are proportional to k2, and hence they
are negligible. Even if the densities of the two solids are
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different, the density contrast will be subdominant in the low-k
regime. There will be some effect of the density contrast when
k ∼ O(1), but the qualitative predictions obtained for equal
densities are expected to be valid even for the case when there
is a density contrast.

The boundary conditions to be used are given as follows:
The lower solid layer is assumed to be perfectly bonded to
the rigid surface at z = (1 + H ), and so zero displacement
conditions apply at this surface. The conditions at the perturbed
liquid-solid interface are the continuity of velocities and
stresses at this interface. The boundary conditions at the
solid-solid interface at z = 1 + βH are the continuity of the
displacement fields and stress balance in the two solid layers.

B. Base state

The steady velocity and the pressure field in the liquid layer
under laminar conditions are given by

v̄x = 3
2 (1 − z2), (8)

p̄ = 3z cot θ . (9)

These base flow quantities here and henceforth will be
represented by an overbar. The shear stresses at the liquid-solid
interface z = 1 along with gravitational body force drives the
deformation in the solid, and the corresponding displacement
field is given by

ūx1 = 3�1

2
[(1 + βH )2 − z2], (10)

where �1 ≡ Vaη/(G1R). The pressure field results only from
the gravitational body force and therefore can be represented
by

p̄g1 = 3 z cot θ . (11)

Similarly, the base state variables in the lower solid layer are
given by

ūx2 = 3�2

2
[(1 + H )2 − z2], (12)

p̄g2 = 3 z cot θ, (13)

where �2 ≡ Vaη/(G2R).

C. Linear stability analysis

A temporal linear stability analysis is used to analyze the
stability of the present problem. Small perturbations (denoted
by primed quantities) are imposed on a given dynamical
quantity as φ = φ̄ + φ

′
, and the perturbed quantity φ′ is

expanded in the form of Fourier modes in the x direction
having an exponential dependence in time:

φ
′
(x,z,t) = φ̃(z) exp[ik(x − ct)]. (14)

The governing parameters used are defined as follows: k is the
wave number of the perturbations, c is a complex wave speed
that represents the growth of perturbations, and φ̃(z) is the
eigenfunction of the dynamical variable in consideration and
can be determined while solving the framed linearized differ-
ential equations using linear stability analysis. As mentioned
earlier, only two-dimensional perturbations are considered
here. The complex wave speed c = cr + ici , where the real

part cr represents the phase velocity of perturbations, and the
imaginary part ci governs the growth or decay of perturbations.
The given base state is considered to be temporally unstable
when ci > 0.

The linearization of the governing equations (2)–(7), around
the base state (8), is obtained by substituting the above
expansion (14). We define the operator L ≡ (d2

z − k2), which
recurs in the following set of equations. The linearized
equations obtained for the liquid layer are

dzṽz + ikṽx = 0, (15)

Re[ik(v̄x − c)ṽx + (dzv̄x)ṽz] = −ikp̃ + Lṽx, (16)

Re[ik(v̄x − c)ṽz] = −dzp̃ + Lṽz. (17)

The above equations are combined to give a fourth-order
ordinary differential equation, which is essentially the Orr-
Sommerfeld equation for the dynamical variable ṽz:

ik Re
[
(v̄x − c)L − d2

z v̄x

]
ṽz = L2ṽz. (18)

The linearized stability equations for the displacement field in
the upper solid layer are

dzũz1 + ikũx1 = 0, (19)

−Re k2 c2 ũx1 = −i k p̃g1 +
(

1

�1
− ikcηr1

)
Lũx1, (20)

−Re k2 c2ũz1 = −dzp̃g1 +
(

1

�1
− ikcηr1

)
Lũz1, (21)

and the fourth-order differential equation for ũz1 is given by

(1 − ikcηr1�1)L2ũz1 + Re k2 c2 �1Lũz1 = 0. (22)

In a similar manner, the linearized equations for the lower solid
layer are given by

dzũz2 + i k ũx2 = 0, (23)

−Re k2 c2 ũx2 = −i k p̃g2 +
(

1

�2
− ikcηr2

)
Lũx2, (24)

−Re k2 c2 ũz2 = −dzp̃g2 +
(

1

�2
− ikcηr2

)
Lũz2, (25)

and the corresponding fourth-order differential equation for
ũz2 is given by

(1 − ikcηr2�2)L2ũz2 + Re k2 c2 �2Lũz2 = 0. (26)

The kinematic equation (5) can be expressed in terms of the
Fourier modes as

ik(v̄x |z=0 − c)h̃ = ṽz|z=0 (27)

by substituting h(x,t) = h̃ exp[ik(x − ct)] and linearizing the
other dynamical quantities at z = 0. The evolution of the
interface position is now described by the Fourier expansion
coefficient h̃. The linearized tangential stress and normal
stress condition at z = 0 are obtained by Taylor-expanding
the boundary conditions at the perturbed free-surface interface
about z = 0 to give

− 3h̃ + (dzṽx + ikṽz) = 0, (28)

−p̃ − 3h̃ cot β + 2dzṽz − k2h̃ = 0. (29)
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The nondimensional parameter  used is defined as  =
γ /(V̄aη) and represents the nondimensional surface tension
between the liquid and the gas, considering γ as the dimen-
sional surface tension. It could easily be deduced that while
linearizing, an additional contribution arises in the boundary
conditions that is proportional to −3h̃ and couples the base
laminar flow with the height fluctuations of the free interface.

The velocity and stress continuity conditions are linearized
about the interface z = 1 to obtain

ṽz = −ikcũz1, (30)

ṽx + dzv̄x |z=1ũz1 = −ikcũx1, (31)

dzṽx + ikṽz =
(

1

�1
− ikcηr1

)
[dzũx1 + ikũz1], (32)

−p̃ + 2dzṽz = −p̃g1 + 2

(
1

�1
− ikcηr1

)
dzũz1

−k21ũz1, (33)

where 1 is the nondimensional interfacial tension between
the liquid and upper solid layers. It can be verified that the
interface position can be represented as g̃ = ũz1|z=1 within
the realm of the linear stability analysis. The interaction of
the first derivative of base velocity with the displacement field
in the upper solid layer, appearing in Eq. (31), results from
the Taylor expansion of the velocity about the unperturbed
interface z = 1. Kumaran [17] showed that this interaction is
responsible for destabilizing the fluid-solid interface.

The conditions at the interface between the two solid layers
are given by the continuity of displacements and stresses at
z = (1 + βH ):

ũz1 = ũz2, (34)

ũx1 = ũx2, (35)(
1

�1
− ikcηr1

)
[dzũx1 + ikũz1] =

(
1

�2
− ikcηr2

)
[dzũx2

+ ikũz2], (36)

−p̃g1 + 2

(
1

�1
− ikcηr1

)
dzũz1 = −p̃g2

+ 2

(
1

�2
− ikcηr2

)
dzũz2

(37)

− k22ũz2, (38)

where 2 is the nondimensional surface tension between the
two solid layers.

The lower solid layer is bonded to the rigid inclined plane,
and thus the corresponding displacement field follows the no-
slip boundary conditions at z = (1 + H ) and is given by

ũz2 = 0, ũx2 = 0. (39)

The stability of the three-layer configuration under con-
sideration has now been fully specified with these linearized
governing equations and boundary conditions. The complex
wave speed c is an unknown eigenvalue that is a function of
Re, k, �eff, β, H , surface tensions, and viscosity ratios. The
linearized equations are solved numerically in general, for

arbitrary values of k and Re. A long-wave asymptotic analysis
is considered first for the present problem, similar to the classic
analysis of Yih [15], to obtain analytically tractable solutions
in this limit.

III. LOW-WAVE-NUMBER ASYMPTOTIC ANALYSIS

The results of the low-wave-number asymptotic analysis,
carried out along the lines of the analysis used by Yih [15], are
presented in this section. The goal of this asymptotic analysis
is to understand the effect of wall layer deformability on the
disturbances of the liquid-gas interface. The wavelength of
the disturbances is considered to be large in the asymptotic
analysis when compared to the widths of the various layers
present, and therefore the condition k � 1/(1 + H ) should be
met in order for the analysis to be valid. This relation reduces to
k � 1 [in the case of H ∼ O(1)] and k � 1/H (in the case of
H � 1) for two extreme values of H chosen. Thus, for larger
values of H , the long-wave analysis is valid at much smaller
values of k. The total solid-layer thickness H is considered to
be an O(1) quantity in the present analysis, and therefore the
low-wave-number limit k � 1 is considered here. For k � 1,
the complex wave speed can be expanded in an asymptotic
series in k as

c = c(0) + k c(1) + · · · . (40)

In this study, the leading-order wavespeed and the O(k)
correction to c are sufficient to determine the stability of the
disturbances in the low-wave-number regime. This asymptotic
analysis closely resembles the one previously carried out
by Shankar and Sahu [13]. Here, we present the main
results obtained from the asymptotic analysis, and the details
are presented in Appendix A. The leading-order and first
corrections to the wave speed obtained are

c(0) = 3, (41)

c(1) = i
([

6
5 Re − cot β

] − 9[�1β + �2(1 − β)]H
)
. (42)

The stability of the system is governed by the evolution of
disturbances, and c(1), being a purely imaginary quantity,
dictates this evolution. The validity of the asymptotic solution
could be checked with the terms involving Re and cot β, which
were reported by Yih [15] as well as Shankar and Sahu [13].
These terms correspond to the free-surface instability in the
liquid layer flowing down a rigid inclined plane for the case
when 6

5 Re > cot β.
The effect of the solid-layer deformability on the free-

surface instability mode comes into effect with the involvement
of �1 and �2. It is useful to reinterpret this result using the
“effective modulus” of the solid bilayer defined as H/Geff =
H1/G1 + H2/G2, and further define �eff = V η/(GeffR) based
on this effective shear modulus. This implies that [�1β +
�2(1 − β)]H in Eq. (42) can be replaced with �effH . This
term occurs with a negative sign implying that the solid bilayer
always has a stabilizing effect on the free-surface instability.

In the limit of a rigid solid layer, the effective shear
modulus Geff → ∞, and therefore �eff approaches zero. From
a mathematical viewpoint, it can be easily understood that the
contribution from the deformable solid bilayer vanishes when
either �eff → 0 or H = 0. However, both cases relate to the
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absence of the deformable layer and therefore would not be
considered further in this study. Under the criterion

9�effH >
(

6
5 Re − cot β

)
, (43)

the free-surface instability is completely stabilized in the
long-wave limit. This result bears a striking resemblance to
the earlier asymptotic result [13] for a single layer, with �eff

replacing � in the earlier work. This relation also serves as a
consistency check to our numerical solutions in the long-wave
limit. Further, the dissipative stresses in the solid layers are
subdominant in the low-k limit compared to elastic stresses in
the solid layers, and hence they will not affect the result for ci

in this limit. However, at finite wave numbers, as we show in
the next section, the dissipative stresses in the solid layers also
play a critical role in determining the stability of the system.

Interestingly, the above asymptotic result shows that the
stabilization of the free-surface instability is influenced only
by the effective modulus Geff, and hence it is unaffected by
the relative placement of the two solid layers with respect to
the liquid layer. In other words, the stabilizing nature of the
bilayer would be present even if the two solid layers were to
be flipped. This is one of the main results of the present study.
It is pertinent to discuss whether this prediction for a bilayer
solid would be valid even for the case of a single solid layer
with a continuously varying modulus [25]. While a precise
answer to this question would require a similar analysis of
that configuration, it is nonetheless possible to speculate that
the stabilizing nature of the solid would be independent of
the direction of variation of modulus in cases in which the
modulus is continuously varying, when the average modulus
is kept the same.

However, the predictions of the asymptotic analysis are
valid only in the limit of k � 1. In the following section, the
prediction of the analysis is extended to arbitrary values of
wave number k by a numerical solution.

IV. NUMERICAL SOLUTION

A. Solution methodology

A brief description of the numerical technique used to solve
the governing equations and boundary conditions is presented
here. The overall idea is to express the coupled fourth-
order ordinary differential equations and the corresponding
boundary conditions in terms of a matrix eigenvalue problem,
with the complex wave speed c being the eigenvalue. The
eigenvalue has been obtained by evaluating the roots of the
characteristic equation, which in turn is obtained by setting
the determinant of the matrix to zero. The convergence of the
eigenvalue was achieved iteratively using the above procedure
with the help of a Newton-Raphson iterative procedure. We
start our numerical solution by taking the initial guess for the
eigenvalue from asymptotic analysis, which is only valid in
the low-k regime. The eigenvalue obtained from the above
numerical computation acts as an initial guess for the next
increment in wave number, and similarly this procedure is
repeated for finite wave numbers. A more detailed description
of the numerical technique is provided in Appendix B.

B. Results and discussion

As shown by the low-k analysis, the stabilization of the
free-surface instability is achieved when �eff is increased
beyond a critical value. For higher values of �eff when the solid
layer is sufficiently deformable, the liquid-solid interface itself
can potentially become unstable. This liquid-solid interfacial
instability was reported in [13] for the case of free-surface flow
down a single deformable layer. Moreover, a recent study on
the stability of plane Couette flow past an elastic bilayer [26]
showed that the instability of the liquid-solid interface is
sensitive to the relative placement of the two solid layers.
In particular, when the softer solid layer is adjacent to the
liquid, the system is found to be more unstable. Interestingly,
the low-k asymptotic results of the present study show that
the suppression of the free-surface instability is determined
only by the effective modulus of the solid layer, and it is
independent of the relative placement of the two layers. Thus
the two interfacial modes, i.e., the gas-liquid interfacial and
liquid-solid interfacial modes, behave differently with respect
to the relative placement of the two solid layers in the bilayer
in the low-wave-number limit. This motivates us to explore
the possibility of suppression of the free-surface instability
without inducing additional instabilities at the liquid-solid
interface by manipulating the relative placement and properties
(i.e., shear modulus, viscosity, and thickness) of the two
solid layers comprising the bilayer. This is addressed using
the numerical solution of the linear stability equations. To
capture the free-surface mode in the numerical solution, we
use the low-k asymptotic results from the preceding section as
a starting guess, and we use the numerical procedure outlined
above to continue the low-k results to finite values of k. For
the liquid-solid interfacial instability, which happens at finite k,
we use a Re = 0 analysis (similar to [17], where an analytical
solution is possible for arbitrary k) to identify the presence
of the unstable liquid-solid interfacial mode. The solutions of
the Re = 0 analysis reveal that the disturbances are stable in
the creeping-flow limit for the present system, but when these
solutions are further continued using numerical computations
to nonzero values of Re, the liquid-solid interface becomes
unstable at finite Re, which clearly shows that the instability
induced at the liquid-solid interface occurs only because of
inertia of the coupled solid-fluid system. Henceforth, this
unstable mode is referred to as inertial LS mode. By way of
nomenclature, we refer to the gas-liquid interfacial mode as the
“GL” mode, and inertial liquid-solid interfacial disturbances
as the “LS” mode in the ensuing discussion.

We next present numerical results in the ci-k plane in order
to demonstrate the origin and evolution of instabilities with
wave number as the bilayer solid is made more deformable.
This will assist us in understanding the evolution of both the
GL and LS mode instabilities clearly as �eff is increased. We
define the ratio Gr = G2/G1, the ratio of bottom- to top-layer
shear moduli of the two solids. Figure 2 shows the variation of
the imaginary part of the wave speed ci for the GL mode as a
function of the wave number k, obtained from the asymptotic
analysis and the numerical solution for fixed values of other
parameters. The asymptotic result is correct only to O(k), and it
is expected to break down at k ∼ O(1). Our numerical solution
agrees well with the asymptotic result in the low-k regime,
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FIG. 2. Comparison of low-k asymptotic and numerical results
for the GL mode: ci vs k for Gr = 1, θ = π/4, Re = 1.0, H = 0.5,
β = 0.5, �eff = 1, ηr1 = 0, ηr2 = 0,  = 0, 1 = 0, and 2 = 0. The
horizontal line with ci = 0 serves as a visual aid to demarcate stable
and unstable regions.

but quickly starts to deviate from the asymptotic result for
k ∼ 0.3.

In Fig. 3, we show how ci varies as a function of wave
number for the GL mode as �eff is increased for a given bilayer
configuration with Gr = 16 (softer layer on top), and with
both layers of equal thickness (β = 0.5). As predicted by the
asymptotic analysis, as �eff is increased, the free-surface mode
is stabilized (i.e., ci < 0) at low values of k. Also noteworthy
is the fact that the free-surface mode is stabilized at all wave
numbers when �eff is increased up to 1. It is also interesting to
observe that the ci-k curves for �eff = 0, 0.5, and 1 all merge
at sufficiently higher values of k ∼ 10, since at such small
wavelengths the disturbances at the free surface decay rather
rapidly, and hence the extent of deformability of the solid bi-
layer does not affect the decay rates of these small-wavelength
fluctuations. An interesting feature emerges as �eff is increased
to 2.5, wherein we note first that the free-surface mode be-
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FIG. 3. ci vs k for the GL mode for different values of �eff :
Data for Gr = 16, θ = π/4, Re = 1.0, H = 0.5, and β = 0.5. The
remaining parameters, viz., ηr1, ηr2, , 1, and 2, are set to zero.
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parameters, viz., ηr1, ηr2, , 1, and 2, are set to zero.

comes unstable at finite values of k ∼ 2, indicating that further
decrease in the effective modulus of the bilayer leads to an
instability at finite wave numbers, which is absent in flow down
a rigid incline. Furthermore, as k ∼ 10, for �eff = 2.5 and 5,
the ci-k curves do not merge with the results obtained for �eff =
0, 0.5, and 1. One might have expected that for such short-wave
fluctuations, the ci values at higher k must be independent of
the extent of deformability �eff. This suggests that at k � 1, the
GL mode has transformed into a different mode. This change
in behavior is attributed to a mode exchange phenomenon,
which we discuss in detail later in relation to Fig. 6.

In Fig. 4, we analyze the role of solid deformability on
the GL mode instability for a given configuration of the
solid bilayer, as well as for the corresponding “flipped”
configuration (where the softer and harder solid layers are
interchanged). The other parameters are fixed as follows:
θ = π/4, Re = 1.0, Gr = 16 (softer layer adjacent to the
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FIG. 5. Effect of solid-layer deformability on the inertial LS
mode: ci vs Re for Gr = 1/50, θ = π/4, β = 0.05, H = 0.5,
k = 0.1, and different values of �eff. The remaining parameters, viz.,
ηr1, ηr2, , 1, and 2, are set to zero.
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FIG. 6. Effect of solid-layer deformability on the two different
interfacial modes present in the system at Re = 5.0: ci vs k for Gr =
1/50, θ = π/4, β = 0.05, H = 0.5, and different values of �eff. The
remaining parameters, viz., ηr1, ηr2, , 1, and 2, are set to zero.

liquid layer), and for Gr = 1/16 (harder layer adjacent to
the liquid layer). When �eff = 0 (rigid inclined plane), ci is
positive (free surface is unstable) from k � 1 to k ∼ 0.3,
and for larger values of k the system is stable. We have set
the nondimensional gas-liquid surface tension  = 0, since
even the flow down a rigid inclined plane is stable for k >

0.3. A nonzero gas-liquid surface tension  would stabilize
only higher wave-number perturbations. For Gr = 1/16, as
�eff is increased to 2.5, the instability is suppressed by the
solid bilayer at all wave numbers. However, for the flipped
configuration with Gr = 16, when �eff is further increased to
2.5, we find that the perturbations with k ∼ 2.5 are destabilized
by the deformability of the solid layer. Thus, when the softer
solid is adjacent to the fluid layer, at sufficiently higher
values of �eff, the GL mode is destabilized at finite k, while
perturbations with similar wavelengths are stable in a rigid
inclined plane, clearly indicating the destabilizing nature of
the deformable solid layer. Interestingly, when the bilayer is
flipped (Gr = 1/16), the free-surface mode is found to be
stable at all wave numbers for the same value of �eff, clearly
suggesting that the finite-k behavior is very sensitive to the
relative placements of the two solid layers in the bilayer.

We next turn our attention to the possibility of the existence
of another unstable mode due to the instability of the liquid-
solid interface. As mentioned earlier, we use a zero-Re
analysis, wherein it is possible to obtain an analytical solution
to the wavespeed in that limit. One of the solutions to c

corresponds to the GL interfacial mode, and the other solution
pertains to the liquid-solid (LS) interface. Our analysis shows
that this mode is stable in the limit of zero Re, unlike the
case of plane Couette flow [17], wherein the flow destabilizes
the liquid-solid interfacial mode even at Re = 0. However, as
we continue this mode to finite Re (Fig. 5), we find that the
mode does get destabilized due to wall deformability. It is
more accurate to characterize these modes as the “inertial LS”
modes since the results clearly demonstrate that the instability
exists only for nonzero values of Re, and inertial effects are
required in the fluid and solid for destabilization.

Figure 6 shows the behavior of the GL mode at higher Re
for different values of �eff. As �eff increases from 1.5 to 2.0,
there is a qualitative change in the behavior of the variation
of ci with k. For �eff up to 1.5, at sufficiently large k ∼ 10,
all the curves for different values of �eff merge with each
other. As mentioned above, this is to be expected since the ci

variation with k is shown for the GL mode, and for large k

the interfacial disturbances would be confined locally to the
gas-liquid interface, hence any change in the deformable nature
of the solid should not have an effect on the GL modes at high
k. Instead, for �eff > 1.5, at higher values of k, the ci variation
with k (for k � 1) differs significantly, even when the k � 1
results for all the modes have the same behavior with |ci | → 0.
The behavior seen in this figure is typical of “exchange” of the
two modes present in the system (the GL mode and the inertial
LS mode) at finite values of fluid inertia. Such exchanges
between the two modes coexisting in the system have been
observed in earlier studies as well; see, for example, Gaurav
and Shankar [24].

Although such exchanges between the modes are often
encountered in the context of hydrodynamic stability, the
nature of the exchange is quite intriguing. To understand this
in detail, we demonstrate the above phenomenon of mode
exchange in Fig. 7, in which we focus on the sudden change in
behavior of the respective modes. The mode exchange starts
after �eff = 1.5, and it could be clearly noted that at the point of
exchange, near k ∼ 0.9, the behavior of ci versus k is smooth
for �eff = 1.5. As soon as �eff is increased to 1.8, the ci-k
behavior shows a cusp, and upon further increase of �eff, the
mode exchange occurs. When �eff is increased further, beyond
2.0, the GL and the inertial LS modes are found to be totally
independent of each other while coexisting in the system. No
exchange of modes was found after increasing �eff beyond 2.
This figure further suggests that labeling the two modes as GL
and LS at finite values of �eff is somewhat arbitrary, and it
depends on whether one considers the behavior of the mode to
be consistent with k � 1 or k � 1. Before the mode exchange,
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the GL mode has a characteristic value as k → 0, and the ci

values tend to each other for k � 1 for different values of �eff.
However, after mode exchange, if we use the high-k behavior
to identify the GL mode, then because of mode exchange, this
mode does not continue all way to k � 1 with the behavior
expected for a GL mode. Instead, at some intermediate (but
finite) k, this mode takes on the behavior of the LS mode. The
same holds for the low-k limit as well: if we identify a mode
based on its behavior at low values of k, when this is continued
to higher values, it does not approach the value expected for a
GL mode, but indeed approaches the high-k value appropriate
for the LS mode.

This discussion goes on to show that at finite values of Re
and �eff, it is difficult to label a given mode as GL or LS,
since the behavior gets interchanged. With this, we end our
discussion on the two modes in the system, and we proceed
to present the complete picture of the two modes in the �eff-k
plane, clearly demarcating the boundaries between the stable
and unstable regions. This would also provide us with an
unambiguous method to identify the suitable range of the
nondimensional parameter �eff in order to induce or suppress
the instabilities.

We first consider the case of equal thickness of the two solid
layers. Figure 8 depicts the neutral stability curves (where the
imaginary part of the wave speed ci = 0) for two values of Gr

(corresponding to two bilayer configurations that are flipped
versions of each other). We examine the effect of solid-layer
deformability on this configuration. Consider first the bottom
left neutral stability curve and choose any k value in this region.
As �eff is increased beyond 0.065, there is a transition from
unstable to stable perturbations of the GL mode. Similarly, if
we consider the top right neutral stability curve, for a given
wave number of 10, the GL mode will face a transition from
stable to unstable disturbances at either 30 or 1.5 depending
upon the Gr value used. There is a large region in �eff (for
fixed values of other parameters), which translates into a large
region in the shear modulus of the effective combination of the
solid layer, where the GL mode is stabilized by the solid-layer
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FIG. 8. Neutral stability curves for the GL and LS modes of
instability in the �eff-k plane: Gr = 1/16 and 16, θ = π/4, β = 0.5,
Re = 1.0, and H = 0.5. The remaining parameters, viz., ηr1, ηr2, ,
1, and 2, are set to zero.

deformability. Thus, a large “window” in the parameter space
is available for the choice of �eff for the system to be stable at
all wave numbers.

Moreover, Fig. 8 focuses on the effect of solid-layer
deformability on the GL mode (the bottommost curves and
the two curves on the top) and the LS mode (the middle
curves) -type instabilities present in the system. We observe
that qualitatively it is only the effective shear modulus of both
of the solid layers and not the individual shear moduli that
affects the bottommost curves for the GL mode, as predicted
by the low-k asymptotic analysis. However, the other curves
are sensitive to the placement of the two layers with respect to
the fluid. The results show that the instabilities can be delayed
to a certain extent when we use a hard solid adjacent to a
fluid layer (Gr = 1/16) compared to the case when it is not
(Gr = 16). This also demonstrates that the presence of a hard
solid layer adjacent to a fluid layer has a stabilizing effect on
the GL interfacial instability.

Figure 9 deals with the flipping of the two solid layers when
the thickness ratio of the two layers is not unity (i.e., β �= 0.5,
solid layers with unequal thickness). We have kept all the
parameters to be the same, other than the ratio of the thickness
of the two solid layers, β. Our objective is to analyze the effect
of the relative thickness of two solid layers on the various
instabilities. As the top-layer thickness is decreased, we found
a destabilizing effect on the GL mode instabilities, though the
LS mode instabilities remained unaffected. However, even for
β �= 0.5, the general trend seems to be that when the solid layer
adjacent to the fluid is harder, the GL and LS upper neutral
curves shift upward, indicating a stabilizing effect.

The low-k asymptotic analysis further indicated that the
solid-fluid viscosity ratio ηr is sub-dominant in that limit, and
hence does not affect the stabilization at low k. In Fig. 10,
we examine the effect of changing ηr1 (i.e., the ratio of the
viscosity of the top solid layer to the viscosity of the fluid)
on the neutral stability curves. When Gr = 1/50 (harder layer
on top), an increase in ηr1 (the viscosity ratio of the hard
layer) has virtually no effect on the lower neutral curve,
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which was expected from asymptotic analysis. Interestingly,
this increase only has a marginal stabilizing effect on the
uppermost neutral stability curves. In contrast, when Gr = 50
(softer layer on top), the change in viscosity ηr1 of the top layer
now has a significant stabilizing effect on both of the upper
neutral curves. Thus, an increase in the viscosity of the softer
layer further increases the gap between the lower and upper
neutral curves, and hence increases the region where mode 1
is completely suppressed. A similar trend is seen in Fig. 11,
wherein the viscosity ηr2 of the bottom solid layer is increased,
and even here, only the increase in the viscosity of the softer
layer has a significant stabilizing effect. This discussion thus
shows that while the viscosity of either of the two solid layers
does not have a destabilizing effect, the viscosity of the softer
layer (regardless of its placement) has a substantial stabilizing
impact on the upper neutral curves, and hence it increases the
window of stability.
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FIG. 11. Neutral stability curves for GL and LS modes of
instability in the �eff-k plane: Gr = 1/50 and 50, θ = π/4, Re = 1.0,
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FIG. 12. Neutral stability curves for GL and LS modes of
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1.0, H = 0.25, β = 0.05, ηr1 = ηr2 = 0, and  = 1 = 2 = 0.

We next consider the case of a very thin hard layer of solid
that is placed over a much thicker softer solid. Figure 12 shows
that if the parameters are chosen carefully, the free-surface
instability can be suppressed up to a large domain of �eff.
As Gr is decreased (at a fixed β, thickness of the top layer),
we find the upper neutral curves to shift upward, indicating
a strong stabilizing effect. This clearly demonstrates that the
upper neutral curves are highly sensitive to the modulus of the
solid layer adjacent to the fluid, while the lower neutral curve
is independent of those changes, and is a function only of the
effective modulus.

V. CONCLUSION

Previous studies have demonstrated that passive suppres-
sion of free-surface and interfacial instabilities (which other-
wise exist in flow past rigid surfaces) is possible by considering
a deformable solid layer lining over the rigid substrate in
a variety of contexts. However, a major aspect of using a
deformable solid layer is that new instabilities due to the
deformability of the solid layer could potentially proliferate,
and hence it is necessary to have an accurate understanding
of the window in the parameter space in which free-surface
and other deformability-induced instabilities are suppressed
at all wave numbers. In the present study, we proposed and
evaluated the possibility of using a deformable “bilayer” solid,
in which two solid layers, of different physical properties
(elastic moduli, viscosity, and thickness) are sandwiched
together, for the specific case of suppression of the free-surface
instability in flow down an inclined plane. Such a flow is
known to become unstable in flow down a rigid incline, and
a key feature of this instability is that the flow is unstable in
the limit of long wavelengths. We carried out an asymptotic
analysis in the long-wave limit for free-surface flow past a
bilayer, which showed that the free-surface instability could
indeed be suppressed in the long-wave limit, and the parameter
that determines the suppression is the effective shear modulus
of the bilayer, and not the individual shear moduli of the
solid layers. Thus, our asymptotic analysis shows that the
suppression of the instability is independent of the ordering
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of the two solid layers in the bilayer. Interestingly, the recent
work of Neelamegam et al. [26] showed that for single-layer
plane Couette flow past a bilayer, the liquid-solid interfacial
instability depends on the specific bilayer configuration. Even
in the present case, as the solid is made sufficiently deformable,
new instabilities (absent in flow down a rigid incline) appear,
and these new instabilities do depend on the relative placement
of the two solid layers.

The asymptotic result [Eq. (43)] can be used to provide
some estimates on the values of physical parameters for
which the present predictions could be realized in experiments.
For a vertical plate, the asymptotic result predicts that
9�effH > 6

5 Re for suppression of instability, which in terms of
dimensional parameters reduces to Geff < 15

2 η2H/ρR2. Using
η ∼ 10−1 Pa s, ρ ∼ 103 kg/m3, R ∼ 10−4 m, and H = 1/4,
we obtain Geff < 2000 Pa. Upon using the expression for
Geff and β = 0.05, we obtain G1 ∼ 105 Pa and G2 ∼ 103

Pa. Thus, the present predictions are expected to be valid
for the flow of highly viscous liquid layers (with viscosity
∼10−1 Pa s), of thickness in the range of 100 microns, with
the shear modulus of the hard and soft layers in the range
105 and 103 Pa, respectively. We also carried out numerical
computations at finite inertia and wave number to demonstrate
that it is possible to choose the bilayer configuration (based
on relative placement, elastic moduli, thickness, and viscosity)
in such a manner that the window of parameters in which the
system is stable to perturbations of all wavelengths can be
significantly enhanced. Further, incorporation of dissipative
effects in the solid showed that it is the viscosity of the
softer solid that leads to a substantial increase in the stable
window, and that the viscosity of the harder layer does not
have a major impact on the stability. While this study has
focused on the stability of flow down an inclined plane, we
expect that the qualitative trends would carry over to more
complicated flows such as two-layer or core-annular flows with
two immiscible fluids. Thus, deformable solid bilayers offer
significantly more options in the control and manipulation of
interfacial instabilities in free-surface and multilayer flows.

APPENDIX A: WAVE SPEED FROM
ASYMPTOTIC ANALYSIS

In the asymptotic analysis, the complex wave speed can be
expanded in a series of k for k � 1. As discussed in Sec. III,
it is sufficient to consider terms up to O(k) correction to wave
speed in the present study. Thus, the expansion of c leads to

c = c(0) + kc(1) + · · · . (A1)

We consider small perturbations in the present study in which
ṽz could be assumed to be of O(1), and using continuity
equation (15) and x-momentum equation (16), we conclude
ṽx ∼ O(k−1) and p̃ ∼ O(k−2), respectively. The expansion of
the velocity and pressure in the liquid layer now are as follows:

ṽz = ṽ(0)
z + kṽ(1)

z + · · · , (A2)

ṽx = k−1ṽ(0)
x + ṽ(1)

x + · · · , (A3)

p̃ = k−2p̃(0) + k−1p̃(1) + · · · . (A4)

On a similar ground, the expansion of the dynamic quantities
governing the dynamics of the upper solid layer, up to O(k)

consideration of uz1, could be expanded as

ũz1 = ũ
(0)
z1 + kũ

(1)
z1 + · · · , (A5)

ũx1 = k−1ũ
(0)
x1 + ũ

(1)
x1 + · · · , (A6)

p̃g1 = k−2p̃
(0)
g1 + k−1p̃

(1)
g1 + · · · . (A7)

Similarly, the displacements and pressure fields in the lower
solid layer are expanded as follows:

ũz2 = ũ
(0)
z2 + kũ

(1)
z2 + · · · , (A8)

ũx2 = k−1ũ
(0)
x2 + ũ

(1)
x2 + · · · , (A9)

p̃g2 = k−2p̃
(0)
g2 + k−1p̃

(1)
g2 + · · · . (A10)

Since the displacement fields in the solid layers are defined, the
kinematic equation of the evolution of the free surface interface
from Eq. (27) dictates that the coefficient of the free-surface
height fluctuation can be expanded in a similar asymptotic
series in k:

h̃ = k−1h̃(0) + h̃(1) + · · · . (A11)

To obtain the governing linearized equation in the liquid and
solid layers at the corresponding leading order and the first
correction, we substitute the series expansion of the perturbed
dynamical quantities into the linearized equations for liquid,
Eqs. (15)–(18), and for the two solid layers, Eqs. (19)–(22)
and Eqs. (23)–(26), respectively. Similarly, the boundary and
the interface conditions at the leading order and O(k) could
be obtained from substituting the expansion into Eqs. (27)–
(39). We further divide this appendix into two subparts that
deal with the sequential procedure of the calculations of the
leading-order and O(k) dynamical quantities.

1. Leading-order dynamics

The governing equations for the leading-order velocity field
ṽ(0)

z in the liquid layer and the leading-order deformation fields
ũ

(0)
z1 and ũ

(0)
z2 in the solid layers, as obtained from the asymptotic

series expansion, are

d4
z ṽ(0)

z = 0, (A12)

d4
z ũ

(0)
z1 = 0, (A13)

d4
z ũ

(0)
z2 = 0. (A14)

The leading-order boundary conditions at the free-surface
interface, z = 0, are

− 3h̃(0) + dzṽ
(0)
x = 0, (A15)

−p̃(0) = 0. (A16)

Similarly, the leading-order interface conditions at the fluid-
solid interface, z = 1, are

ṽ(0)
z = 0, (A17)

ṽ(0)
x = 0, (A18)

dzṽ
(0)
x = 1

�1
dzũ

(0)
x1 , (A19)

p̃(0) = p̃
(0)
g1 . (A20)
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The interface conditions at the solid-solid interface at z =
(1 + βH ) are

ũ
(0)
z1 = ũ

(0)
z2 , (A21)

ũ
(0)
x1 = ũ

(0)
x2 , (A22)

1

�1
dzũ

(0)
x1 = 1

�2
dzũ

(0)
x2 , (A23)

p̃
(0)
g1 = p̃

(0)
g2 . (A24)

Lastly, the boundary conditions at z = (1 + H ) are

ũ
(0)
z2 = 0, ũ

(0)
x2 = 0. (A25)

An important consequence of the low-wave-number expansion
for the interface conditions [Eqs. (30) and (31)] is that to
leading order, the fluid velocities ṽ(0)

z and ṽ(0)
x satisfy the no-

slip conditions at z = 1 as in a rigid boundary [Eqs. (A17)
and (A18)]. This is because the right side of Eqs. (30) and (31)
is O(k) smaller than the fluid velocities on the left side. This
implies that the solid-layer deformability does not influence
the leading-order fluid velocity field, and so the leading-order
wave speed in the present problem must be identical to that of
Yih’s [15] analysis. However, the leading-order velocity field
in the liquid layer exerts a shear stress on the solid layer via
the tangential stress condition [Eq. (A19)], and this causes a
deformation in the solid layer at leading order. We now present
the solution to the leading-order velocity and displacement
fields, and the leading-order wave speed.

The analytical solution to the fourth-order differential
equation (A12) is given as

ṽ(0)
z = A1 + A2z + A3z

2 + A4z
3. (A26)

Since this ordinary differential equation (ODE) is linear and
homogeneous in itself, the eigenfunction ṽz obtained from it is
determined only to a multiplicative constant. Therefore, A1 =
1 could be chosen without any loss of generality. Physically, we
can interpret this as the normalization of the amplitude of the
normal component of the leading-order liquid velocity at the
free surface by 1. The solutions to the leading-order dynamical
variables of the liquid layer could be obtained by satisfying
the leading-order boundary conditions [Eqs. (A16)–(A18)],

ṽ(0)
z = (z − 1)2, (A27)

ṽ(0)
x = 2i(z − 1), (A28)

p̃(0) = 0. (A29)

The free-surface height fluctuation at z = 0, to a leading order,
could be found using Eq. (A16),

h̃(0) = 2i/3. (A30)

Therefore, the leading-order wave speed could be found using
the linearized kinematic condition (27), and it is given as

c(0) = 3, (A31)

which matches Yih’s [15] result for liquid flow down an
inclined rigid plane, as expected. Since the flow is neutrally
stable to leading order, the stability of the system would be
determined from the first correction to the wave speed. We
would also be requiring the leading-order deformation in both

of the solid layers, and this could be obtained by solving the
differential equations (A13) and (A14), whose solutions are
given as

ũ
(0)
z1 = B1 + B2z + B3z

2 + B4z
3, (A32)

ũ
(0)
z2 = C1 + C2z + C3z

2 + C4z
3. (A33)

The multiplicative constants in the above solutions could be de-
termined using the boundary conditions [Eqs. (A19)–(A25)].
Finally, the leading-order deformation fields are given as

ũ
(0)
z1 = �1{z − (1 + βH )}2 (A34)

+ (1 − β)�2H {2 + (1 + β)H − 2z}, (A35)

ũ
(0)
x1 = 2i[�1{z − (1 + βH )} − �2H (1 − β)], (A36)

p̃
(0)
g1 = 0, (A37)

ũ
(0)
z2 = �2[z − (1 + H )]2, (A38)

ũ
(0)
x2 = 2i�2[z − (1 + H )], (A39)

p̃
(0)
g2 = 0. (A40)

With the calculation of the above leading-order dynamical
quantities, we now proceed to evaluate the first correction to
the wave speed c(1).

2. First correction to the wave speed

The O(k) equation obtained for the velocity field ṽz, which
represents the dynamics of ṽ(1)

z , is

d4
z ṽ(1)

z = i Re
[
(v̄x − c(0))d2

z ṽ(0)
z − (

d2
z v̄x

)
ṽ(0)

z

]
. (A41)

The general solution to this inhomogeneous fourth-order
differential equation (A41) is given as

ṽ(1)
z = D1 + D2z + D3z

2 + D4z
3 − i Re

20
z5. (A42)

The multiplicative constant D1 must be set to zero since
previously we have fixed the amplitude of ṽz at z = 0 to be
1 by setting the coefficient A1 at the leading order to be 1.
The boundary conditions at z = 0 and 1, Eqs. (27)–(30), are
used to determine the remaining three constant coefficients. At
the free-surface interface z = 0, the continuity conditions for
tangential and normal stress equations at order O(k) are

− 3h̃(1) + dzṽ
(1)
x = 0, (A43)

−p̃(1) − 3h̃(0) cot β = 0. (A44)

At the solid-liquid interface z = 1, the velocity continuity
conditions at order O(k) are

ṽ(1)
z = −ic(0)ũ

(0)
z1 , (A45)

ṽ(1)
x + dzv̄x |z=1ũ

(0)
z1 = −ic(0)ũ

(0)
x1 . (A46)

This coupling of liquid-solid at the interface gives rise to the
O(k) velocity perturbation field, which is solely affected by
the leading-order deformation field in the upper solid layer.
Using Eqs. (A44)–(A46), the O(k) component of the perturbed
velocity field is determined. The obtained solution for ṽ(1)

z is
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as follows:

ṽ(1)
z = − iz

60
{3 [60β2(�1 − �2)H 2 + 60�2H (2 + H − 2z)

− 120β(�1 − �2)H (−1 + z)

+ Re(−1 + z)2(−7 + 2z + z2)]

+ 20(−1 + z)2 cot β}.
The inclusion of solid-layer deformation in the first correction
is through the terms that are proportional to �1 and �2. The
first correction to the height fluctuation h̃(1) obtained from
Eq. (A43) is

h̃(1) = −4H [�1β + �2(1 − β)] + 8
15 Re − 4

9 cot β.

(A47)
Finally, the linearized kinematic condition, Eq. (27), to O(k),
given as

i[v̄x |z=0 − c(0)]h̃(1) − ic(1)h̃(0) = ṽ(1)
z |z=0, (A48)

is used to calculate the first correction to the wave speed c(1),

c(1) = i
([

6
5 Re − cot β

] − 9H [�1β + �2(1 − β)]
)
.

(A49)

APPENDIX B: CHARACTERISTIC EQUATION AT
ARBITRARY WAVE NUMBERS

In this appendix, we illustrate the numerical technique used
to solve the governing equations and boundary conditions
described in Sec. II C. A shooting technique is implemented in
which an initial guess of the solution (c, here) is provided, and
with the help of the Newton-Raphson method, the final value
of the iterated eigenvalue is obtained after following sufficient
iterations so as to meet the suitable convergence criterion. This
method of numerical integration is very common in the linear
stability analysis, and therefore the solution methodology has
been adopted from [12,13]. A brief explanation of the coding
procedure is further explained here: The governing equations
for the liquid and solid layers can be recast into respective
single fourth-order ordinary differential equations (ODEs).
Therefore, we have three fourth-order ODEs governing ṽz for
liquid and ũz1 and ũz2 in the solid layers. These three fourth-
order ODEs along with boundary conditions completely
specify the eigenvalue problem, the parameter c (complex

wave speed) being the eigenvalue. The numerical code for
arbitrary Re uses the fourth-order Runge-Kutta integrator with
a uniform step-size control to numerically integrate the ODEs,
and a Newton-Raphson technique to find the solution of a
characteristic equation. We first started from the lower solid
layer and we began moving toward the free surface of the liquid
layer. To carry this out, we must specify “initial conditions”
for the function ũz2 and its first three derivatives at a given
value of the independent variable z. For the lower solid layer
at z = (1 + H ), we have the zero displacement conditions
ũz2 = 0 and ũx2 = i

k
dzũz2 = 0. We use two different (linearly

independent) sets of higher derivatives, d2
z ũz2 = (1,0) and

d3
z ũz2 = (0,1), at z = (1 + H ) and we numerically integrate

the differential equation (26) up to z = (1 + βH ). This yields
two linearly independent solutions to the displacement field
consistent with the two zero displacement conditions at z =
(1 + H ) in the solid layer. Corresponding to these two linearly
independent solutions, we evaluate the displacement field of
the upper solid layer ũz1 and its higher derivatives [which
will be acting as the initial guesses for the shooting method
while integrating the fourth-order differential equation in the
upper solid layer ranging from z = (1 + βH ) to z = 1] from
the interfacial conditions at z = (1 + βH ) [Eqs. (34)–(37)].
Using these two sets of values of ũz1 acting as initial guesses,
we now numerically integrate the fourth-order differential
equation (22) from z = (1 + βH ) to z = 1. After applying the
interface conditions [Eqs. (30)–(33)], we obtain the velocity
field ṽz and its higher derivatives in the liquid layer at z = 1,
which again will be acting as the initial guesses for integrating
the fourth-order differential equation (18). Using these two
sets of values for ṽz and its derivatives as the initial guesses,
we integrate the Orr-Sommerfeld equation (18) for the fluid
starting from z = 1 to the free surface at z = 0. The velocity
field in the fluid is obtained as a linear combination of these
two solutions. At z = 0, the fluid velocity field must satisfy the
free-surface conditions (28) and (29). This is written in matrix
form, and the determinant of this matrix is set to zero to obtain
the characteristic equation. This is solved numerically using a
Newton-Raphson iteration procedure to obtain the eigenvalue
c, for species values of �eff, Re, k, β, H,, 1, 2, ηr1, and
ηr2. We use the low-k asymptotic results as a starting guess
for the numerical procedure, and we continue with the low-k
results numerically to finite values of k.
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