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Reynolds analogy for the Rayleigh problem at various flow modes
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The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a
viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert
number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number
has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo
method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy
flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended
Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the
surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time
the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature
mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds
analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert
numbers of the order of unity or less.
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I. INTRODUCTION

One of the most interesting results of fluid dynamics is the
Reynolds analogy, i.e., the proportionality of the shear stress
and heat flux in the boundary layer flow problem [1].

The extended Reynolds analogy along a sharp leading-edge
flat plate at zero angle of attack in a hypersonic flow was proved
in [2] using the Burnett equation in the near-continuum flow
regime and direct simulation Monte Carlo (DSMC) method
for the transitional regime. Similar results for blunt-nosed
bodies in hypersonic flows were obtained in [3]. The extended
Reynolds analogy near the leading-edge region has been
observed for the transitional regime in experimental data [4,5].
Recall that the extended Reynolds analogy is the relation
between the momentum flux and energy flux transferred to
the plate. In the limit of small Knudsen numbers the Reynolds
analogy and the extended Reynolds analogy coincide.

There exists the Reynolds analogy for the Navier-Stokes
plane Couette problem for arbitrary plate temperatures [6]. In
the case of equal plate temperatures this result leads to the fact
that the energy fluxes transferred to the plate are equal to each
other and are equal to half the product of the shear stress and
the relative velocity of the plates [7].

In this article we study the Reynolds analogy and the
extended Reynolds analogy for another classical problem of
gas dynamics namely, the Rayleigh problem.

This paper is organized as follows. In Sec. II we state the
problem. In Sec. III we study the problem for the viscous
incompressible fluid. In Sec. IV we consider the rarefied gas
flow. In Sec. V the results of the study are summarized.

II. PROBLEM STATEMENT

We consider a semi-infinite space y > 0 filled with an
undisturbed fluid of temperature T∞. Let a plane y = 0 acquire
temperature Ts at time t = 0 and begin to move in its own plane
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with velocity Us . Velocity Us is directed opposite to the x axis.
The axes x and y form a Cartesian coordinate system and the y

axis is normal to the plate. In Sec. III we consider the case of a
viscous incompressible fluid of dynamic viscosity μ, thermal
conductivity k, and specific heat с. The fluid flow satisfies the
Navier-Stokes equations and the no-slip boundary conditions
on the plane. In Sec. IV we consider the case of a monatomic
gas of numerical density n∞. The gas flow satisfies the Boltz-
mann equation for the molecule distribution function f and the
conditions of diffuse reflection at a plane. The initial condition
for f is the Maxwell distribution for undisturbed gas flow.
Note that in the limit of small Us and large t the formulations
of the problems for fluid and gas are equivalent [8].

III. REYNOLDS ANALOGY FOR THE RAYLEIGH
PROBLEM: INCOMPRESSIBLE FLUID FLOW

First of all, it should be noted that due to a self-similar
solution of the Rayleigh problem for an incompressible fluid,
the Reynolds analogy is not time dependent. Using [9], we
obtain for the incompressible Rayleigh flow at any time,

E

τUs

≡ R(Pr ,Ec)

= 2√
π Pr

∫ ∞

0
erfc(x) exp

[(
1 − 2

Pr

)
x2

]
dx − 1

Ec
√

Pr
.

(3.1)

Here τ is the shear stress at the plate, E is the energy flux
transferred to the plate (heat flux), Pr = μc/k is the Prandtl
number, and Ec = U 2

s /c(Ts − T∞) is the Eckert number.
The dependence of the Reynolds analogy on the Prandtl

number for the incompressible Rayleigh flow at Ts = T∞ is
shown in Fig. 1.

It is easy to see that if Ts = T∞, then

lim R(Pr) =
√

2

2
,

Pr → 0.
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FIG. 1. The Reynolds analogy for the incompressible Rayleigh
flow at plate temperature equal to the undisturbed gas temperature.

In the important special case when Pr = 1, we have

R(1,Ec) = 1

2
− 1

Ec
. (3.2)

If Ec > 0 (i.e., Ts > T∞) and the Prandtl number is small
enough, the energy flux is negative (that is, the flux is directed
away from the plate). However, viscosity increase and/or
thermal conductivity decrease change the direction of the
energy flux at some value of the Prandtl number. On the other
hand R(Pr,Ec) → 0 as Pr → ∞. Therefore, at a certain Prandtl
number R(Pr,Ec > 0) reaches the positive maximum.

The value of the Eckert number at which the energy flux
transferred to the plate equals zero is

Ec0(Pr) =
√

π

2
∫ ∞

0 erfc(x) exp
[(

1 − 2
Pr

)
x2

]
dx

,

Ec0(Pr) → ∞; Ec0(Pr) → 0

Pr → 0 Pr → ∞ .

(3.3)

Figure 2 shows this dependence. The dependencies
R(Pr ,Ec) at different values of the Eckert number are shown
in Fig. 3.

IV. EXTENDED REYNOLDS ANALOGY FOR THE
RAYLEIGH PROBLEM: RAREFIED GAS FLOW

First, we consider the free molecular flow. Using [10],
we easily obtain for the free molecular Rayleigh flow of
polyatomic ideal gas the extended Reynolds analogy:

Es

pxyUs

= 1

2
− κ + 1

2κ

1

Ec
. (4.1)

Here κ is the adiabatic index, Es is the energy flux trans-
ferred to the plate, pxy is shear stress, Ec = U 2

s /cp(Ts − T∞),
and cp is the heat capacity at constant pressure.

Thus, the extended free molecular Reynolds analogy as
well as the Reynolds analogy for viscous incompressible fluid
depends only on the Prandtl number [κ = κ(Pr)] and on the
Eckert number and does not depend on time.

FIG. 2. The dependence of the Eckert number at which the energy
flux transferred to the plate equals zero vs. the Prandtl number.

Now we move on to the Rayleigh problem for the transi-
tional regime. This problem is solved in [10] using the DSMC
method. The solution of the Rayleigh problem depends on
the dimensionless variables Tw = Ts/T∞; Uw = Us/c∞; t =
tc∞/λ∞. Here c∞ = √

2RgasT∞, Rgas is the gas constant, and
λ∞ is the mean free path of the molecules in the undisturbed
gas. In the paper we use the “hard spheres” molecular colli-
sional model. For this model λ∞ = (

√
2σn∞)−1, where σ is

the collision cross section of the molecules. The dimensionless
time t plays the role of the inverse Knudsen number. Initially,
at t � 1 the Rayleigh flow is close to the free molecular flow.
As t increases, the regime of the flow changes. Namely, at
t ∼ 1 the regime becomes transitional and at t � 1 it becomes
Navier-Stokes regime.

It should be noted that the properties of the Rayleigh flow
are not investigated in [10], since the purpose of [10] is only to
demonstrate the effectiveness of the DSMC method. We use
the programming code [10] to investigate a relation between
the energy flux transferred to the plate, shear stress on the

FIG. 3. The dependence of the Reynolds analogy on the Prandtl
number for the incompressible Rayleigh flow at different values of
the Eckert number.
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FIG. 4. The time dependence of the extended Reynolds analogy at different velocities for Tw = 1.

plate, and the velocity of the plate in the transitional mode of
the Rayleigh problem for monatomic gas.

First, we consider rarefied gas flow with the temperature of
the undisturbed gas equal to the plate surface temperature.

For the free molecular mode at Ts = T∞ we have

Es

pxyUs

= 1

2
. (4.2)

On the other hand, using (3.1), for incompressible fluid
at Pr = 2/3 (Prandtl number of a monatomic gas) we obtain
R(2/3, 0) = 0.527. Thus, it is natural to assume that for the
Rayleigh gas flow of monatomic gas in the transitional mode
as well as in the compressible Navier-Stokes mode we have at
Tw = 1,

Es

pxyUs

≈ 1

2
. (4.3)

The dependencies Es/(pxyUs) on t are shown in Fig. 4 for
various Uw from 1 to 5. Note that at Uw = 1 the changes in
the gas density are not large. At Uw = 5 the density of the gas
varies quite significantly. In these graphs dimensionless time
t increases from 0 to 100. This corresponds to a change in
the flow mode from the free molecular to the Navier-Stokes
one. As can be seen from Fig. 4, for t close to zero the value
of Es/(pxyUs)is very close to its free molecular value of
0.5. On the other hand, at Uw = 1 and t = 100 the value of
Es/(pxyUs) is close to 0.527, i.e., to the corresponding value
for the incompressible fluid at the Prandtl number equal to
the Prandtl number of a monatomic gas. As seen from the
graphs, the increase of Uw does not lead to the increase of
the influence of t on Es/(pxyUs). Thus, as one can see from
the graphs, the extended Reynolds analogy for the transitional
regime at Tw = 1 weakly depends on time and plate velocity,
so that the formula (4.2) remains valid to an accuracy of a few
percent.

Certainly, the results of the numerical calculations pre-
sented in Fig. 4 do not prove the validity of (4.3) for any
Uw and t . However, they are definitely a strong argument in
favor of this conclusion as well as a stimulus for the further
analysis. We assume that at Tw = 1 the extended Reynolds

analogy for Rayleigh problem (4.3) is also true for polyatomic
gases.

Let us consider now the influence of the energy flux
that is created by the difference between the temperatures
of the plate and undisturbed gas on the extended Reynolds
analogy.

The dependencies Es/(pxyUs) on t are shown in Figs. 5 and
7 for various Uw and Tw. The free molecular values Es/(pxyUs)
are shown in Figs. 5 and 7 by the solid line segments and the
values for an incompressible fluid are shown as dashed line
segments. As seen from Figs. 5 and 7, Uw and Tw affect the ratio
Es/(pxyUs) mainly via the Eckert number. Thus, these results
indicate that the extended Reynolds analogy in the transient
mode is mainly a function of two independent parameters (t
and Ec), rather than the three (t , Uw, and Tw).

The extended Reynolds analogy may be positive or nega-
tive, or it may even change the sign at some point (see Fig. 5).
The latter is caused by the sign change effect of the energy
flux in the rarefied Rayleigh problem [11].

As follows from Fig. 5, the values of the extended
Reynolds analogy for all the considered parameters are located
approximately in the range between its free molecular value
and the value of the Reynolds analogy for an incompressible
fluid,

1

2
− 4

5

1

Ec
<∼

Es

pxyUs

<∼
1

2
−

√
3

2

1

Ec
. (4.4)

The results presented in Fig. 5 allow us to generalize the
extended Reynolds analogy for Ec ∼ 1 or less by normalizing.

Rg =
(

1

2
− κ + 1

2κ

1

Ec
− Es

pxyUs

)
Ec.

The dependencies Rg on t are shown in Fig. 6 for various
Ec ∼ 1 and Ec � 1. As seen from Fig. 6 the generalized
Reynolds analogy depends mainly only on t for all the Eckert
numbers considered.

For |Ec| � 1 the dependencies Es/(pxyUs) on t are shown
in Fig. 7. As seen from Fig. 7, in this case the extended
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FIG. 5. The time dependence of the extended Reynolds analogy at different values of the Eckert number.
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FIG. 6. The time dependence of the generalized Reynolds analogy at different values of the Eckert number.

Reynolds analogy also satisfies (4.4) and may be written as

Es

pxyUs

≈ 1

2
− 1

Ec
. (4.5)

Note that for the hypersonic velocities of the plate at
|Tw − 1| of the order of unity or less we have |Ec| � 1 and
consequently relation (4.5).

V. CONCLUSION

In this paper the Reynolds analogy for the Rayleigh
problem has been considered for the incompressible,
free molecular, and transitional regimes at arbitrary plate
temperatures and arbitrary undisturbed fluid temperatures. For

FIG. 7. The time dependence of the extended Reynolds analogy
at large absolute values of the Eckert number.

incompressible fluid we have obtained the Reynolds analogy
as a function of the Prandtl number and Eckert number. We
have shown that the Reynolds analogy reaches the maximum
at a certain Prandtl number if the plate temperature is greater
than undisturbed fluid temperature. We have investigated the
relationship between the energy flux transferred to the surface
and the shear stress on it in the free molecular and transitional
regimes (the extended Reynolds analogy) for the various plate
temperatures and undisturbed gas temperatures. The extended
Reynolds analogy for the free molecular Rayleigh flow as
well as the Reynolds analogy for incompressible fluid depend
on the Prandtl number and Eckert number and do not depend
on time. For the transitional regime the extended Reynolds
analogy is unsteady. It depends on dimensionless time, plate
velocity, plate temperature, and undisturbed gas temperature.
We have numerically investigated the extended Reynolds
analogy for the transitional regime of monatomic gas at
various plate velocities and temperatures. We have shown that
at fixed dimensionless time the extended Reynolds analogy
for the transitional regime depends on plate velocity, plate
temperature, and undisturbed gas temperature mainly via the
Eckert number. Thus, for all three flow modes, the Eckert
number is the basic parameter that determines the influence
of the energy flux caused by the difference of temperatures
of the plate and the undisturbed gas on both Reynolds and
extended Reynolds analogies. For Eckert numbers of the order
of unity or less we generalize an extended Reynolds analogy.
The generalized Reynolds analogy is a combination of the
extended Reynolds analogy and the Eckert number. This
combination for all considered Eckert numbers of the order
of unity and less depends mainly only on dimensionless time.

If the plate temperature coincides with the undisturbed
gas temperature, the extended Reynolds analogy for the
transitional regime is steady up to an accuracy of a few percent.
In this case the extended Reynolds analogy is close to 0.5, and
is close to the corresponding values for the cases of viscous
incompressible fluid and free molecular flow.
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