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Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation
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The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source
are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by
linear stability analysis. The convection threshold depends on the strength of internal heat source q and the
aspect ratio of the cylinder �. The stability of axisymmetric flows is strongly affected by these two parameters,
as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal
heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime,
the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime,
intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When
q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence
of Pr on instability is studied at a moderate internal heat strength q = 6.4. An extremely multivalued stability
curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking
instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By
nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the
unsteady toroidal flow is studied.

DOI: 10.1103/PhysRevE.94.013108

I. INTRODUCTION

Convection induced by internal heat generation usually
occurs in geophysical, astrophysical, and industrial processes.
For example, heat produced by radioactive decay of elements
[1] can drive convection in earth’s mantle, absorption of heat
from sunlight yields motion in the atmosphere [2], and a
nuclear fusion reaction causes volumetric heat production
in stellar interiors and the resulting convection is crucial for
studying the history of stars and other astronomical events [3],
and internal heating also arises from chemical reactions and
electric heating [4]. The studies of internal heated convection
generally uses idealized models of thermal convection in
horizontal fluid layers, such as a fluid layer bounded below by a
perfect insulator and above by a perfect conductor, a fluid layer
bounded by two perfect conductors with equal temperature,
and a fluid layer bounded by two perfect conductors with
higher temperature below and lower temperature above [5].
The first configuration is most commonly studied; however,
the other two have received relatively less attention.

Unlike Rayleigh-Bénard convection in a fluid layer, which
has been intensively studied by theoretical, experimental,

*wanzh@ustc.edu.cn.

and numerical approaches, convection driven by internal
heating is mostly investigated theoretically and numerically
due to the difficulties in laboratory experiments. For the
configuration with insulated lower boundary and fixed top
boundary temperature, the first experiment has been conducted
by Tritton and Zarraga [6] using Joule heating in a fluid layer.
They found that the development of cellular patterns with
varied Rayleigh number in many respects is similar to the
observations in Rayleigh-Bénard convections. However, two
major differences were found as well. The first difference is
that the cell structure is formed by fluid descending in the
center and ascending in the periphery, and the other is the
large increases in cell scales in the horizontal direction with
an increase in Rayleigh number. Theoretical studies [7–9]
seem unable to fully explain the observed phenomena. The
elongation of cell patterns had once been regarded as the
result of nonuniformity of internal heat generation in the
experimental apparatus rather than an intrinsic feature of this
problem. Until recently, a series of experimental and numerical
studies confirmed this phenomenon to be an intrinsic feature
of internally heated convection [10–12].

When the fluid layer is confined between two perfect
conductors with either equal temperature or higher temperature
from below, the flow becomes complicated due to the presence

2470-0045/2016/94(1)/013108(8) 013108-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.013108


WANG, ZHOU, WAN, MA, AND SUN PHYSICAL REVIEW E 94, 013108 (2016)

of a stably stratified layer near the bottom. Several experiments
were primarily conducted in the 1970s to study the convection
in a fluid layer heated internally by electric currents [13,14],
where the top and bottom temperatures were kept as close to
equal as possible. Tveitereid [15] theoretically predicted the
hexagons patterns and a subcritical region. Experiments using
periodically distributed heaters in air were performed more
recently [16]. Numerical simulations have been performed for
two-dimensional [14,17] and three-dimensional [18] systems.
The space- and time-averaged temperature of an infinite
Prandtl number fluid confined between isothermal no-slip
boundaries driven by uniform internal heating was derived
theoretically [19]. Deshmukh et al. [20] mainly considered
natural convection in two-dimensional horizontal and inclined
square enclosures with uniform heat generation, and they
performed a parametric study to evaluate different influence
factors on flow pattern. Furthermore, they conducted three-
dimensional simulations and found that the critical Rayleigh
number for transition from steady to oscillation is higher than
that of the two-dimensional cases. Very recently, Goluskin
and Spiegel [21,22] conducted direct numerical simulations of
two- and three-dimensional internally heated convection for
wide ranges of Prandtl number and Rayleigh number, and they
discussed the scaling of mean temperature and heat-flux asym-
metry. Some numerical simulations and experiments relevant
to accidents in nuclear reactor engineering were performed
as well [23–25], where the configurations considered were
related to particular applications.

The present study is concerned with instability of Rayleigh-
Bénard convection in a cylinder with internal heat generation.
Convection simultaneously driven by boundary and internal
heating exists widely in nature and engineering applications.
Nonetheless, this issue is rarely mentioned in the previous
literature. Perekattu and Balaji [26] performed linear stability
analysis for both finite and infinite two-dimensional cavities,
and the effect of aspect ratio on the onset of convection
is evaluated. Kolmychkov et al. [27] numerically studied
linear instability and flow patterns. They investigated the flow
structure for Prandtl number ranging from 0.1 to 100 and
considered both subcritical and supercritical flow patterns. In
this study, the onset of convection and stability of axisymmetric
flow (secondary instability) of the dually driven convection in
a cylinder are analyzed. The results are compared with that
of solely boundary driven convection. The oscillatory flow
patterns beyond instability are simulated, and their evolution
with control parameter is presented.

II. MATHEMATICAL FORMULATION AND
NUMERICAL METHOD

We studied Rayleigh-Bénard convection with internal heat
source in a cylinder of depth H and radius R. The aspect
ratio is defined by � = R/H . The problem is considered
in cylindrical coordinates (r,ϕ,z), where r denotes radial
coordinate, ϕ denotes azimuthal coordinate, and z denotes
vertical coordinate. The fluid has kinematic viscosity ν, density
ρ, thermal diffusivity κ , and thermal expansion coefficient α.
The top and bottom of the cylinder are assumed to be perfectly
conducting and kept at constant temperatures Tc and Th (Th >

Tc), respectively. The lateral wall is adiabatic. We use the

units H , H 2/ν, ν/H , and ρ(ν/H )2 for length, time, velocity,
and pressure, respectively. The dimensionless temperature is
defined by � = (T − Tc)/(Th − Tc). The governing equations
in dimensionless form are

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇p + ∇2u + Ra

Pr
� ez, (2)

∂�

∂t
+ u · ∇� = 1

Pr
∇2� + 1

Pr
q, (3)

where p is the pressure and u is the three-dimensional velocity
field u = (ur,uϕ,uz). The Prandtl number is Pr = ν/κ , the
Rayleigh number is Ra = gα(Th − Tc)H 3/(νκ), q is the heat
source, and ez is a unit vector in the vertical direction. The basic
state of pure conduction is described by the velocity u = 0 and
the temperature distribution �(z) = 1 − z + z(1 − z)q/2. The
conduction state solution is taken as the initial condition in our
nonlinear simulation. The boundary conditions are all assumed
to be no-slip, the top and bottom walls are conducting, and the
side wall is insulating:

ur = uϕ = uz = 0, � = 1 at z = 0, (4)

ur = uϕ = uz = 0, � = 0 at z = 1, (5)

ur = uϕ = uz = 0,
∂�

∂r
= 0 at r = �. (6)

The governing equations are discretized on a structured
grid in cylindrical coordinates. A uniform mesh is employed
in the azimuthal direction, while a nonuniform mesh is used in
the radial and axial directions, with mesh points concentrated
toward the boundaries. The time-dependent solutions of the
governing equations are obtained by using a second-order
fractional step method in three-dimensional cylindrical co-
ordinates [28]. The viscous terms are discretized in time
using an implicit Crank-Nicolson scheme, whereas an explicit
Adams-Bashforth scheme is employed for the nonlinear terms
[29]. A second-order-accuracy central difference method on a
staggered grid is used for spatial discretization.

In this study we consider the instability for both onset
of convection and axisymmetric flow. The base flow for the
stability analysis of convection threshold is analytical, i.e., the
conduction solution. The nonstatic axisymmetric base flow is
captured by a Jacobian-free Newton-Krylov method, which is
able to calculate the stable and unstable steady-state solutions
[30]. The leading eigenvalues and corresponding eigenvectors
of the control equations linearized about the base flow are
determined using the Arnoldi algorithm from the ARPACK
library [31]. The linearized control equations can be written
as ∂tq′ = (Nu + L)q′, where q′ = (u′,�′) are perturbations,
and Nu and L are linearized convection and diffusion operator,
respectively. When considering q′ = q̂eμt , we have the eigen-
value problem (Nu + L)q̂ = μq̂. This eigenvalue problem is
not directly solved to avoid large computational cost. Using an
alternative approach by time-stepping the linearized equations
[30], we are able to construct a small matrix which represents
the action of the Jacobian (Nu + L) on the subspace of leading
eigenvectors. The eigensolution of this matrix gives the leading
eigenvalues and eigenvectors.
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III. RESULTS

A. Onset of convection

Similar to Rayleigh-Bénard convection, the primary state
at a low Rayleigh number is static. The temperature profile
is shown in Fig. 1. It can be observed that the distribution of
temperature is close to that of Rayleigh-Bénard convection
with weak internal heat strength, and the internal heating
becomes predominant at large values of q. The internal heating
and heating from below both play essential roles at a moderate
value of q (around 6). The stability curves for the onset
of convection at different aspect ratios � = 0.5,1,2,4 are
shown in Fig. 2. This instability for convection threshold is
independent on the Prandtl number, which is the same as
Rayleigh-Bénard convection. The critical Rayleigh number
(Racr ) decreases with the increase of � at small values of q,
which also decreases with increasing q for each aspect ratio �.
Given the fact that convection can be driven by pure internal
heating without bottom heating, Racr will approach zero at a
finite q. The decrease rate of Racr is rapid for � = 0.5 and
slow for � = 1,2,4. The critical Rayleigh number for � = 0.5
becomes smaller than the other three when q is greater than 7.3,
indicating that there exist strong geometry effects at a small
aspect ratio. For large aspect ratio, the stability curve is less
affected by the heat strength, and the critical Rayleigh number
gradually approaches the critical value for a system with
infinite horizontal extent [32]. The comparison of computed
critical values at � = 8 with two-dimensional results [27]
(Ra2D

cr ) and theoretical predictions [32] (Ra∞
cr ) is given in

Table I. It can be seen that the critical Rayleigh numbers in
the less confined cylinder are very close to the theoretical
ones. It is worth noting that the instability for the onset of
convection is supercritical in the confined cylinder rather
than subcritical in a large or infinite horizontally extended
system.

B. Secondary instability

When the primary instability is characterized by the
axisymmetric mode, it is interesting to study the secondary
instability. Depending on the control parameters, Ra, Pr,
q, and �, the steady axisymmetric convective flow may
undergo either oscillatory or steady bifurcation to become

Θ

z
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1

q=20

q=0 q=6
q=12

FIG. 1. Conductive temperature distribution for different heat
strength.
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FIG. 2. Variation of critical Rayleigh number for onset of con-
vection with heat strength at different aspect ratios.

three-dimensional flow or oscillatory axisymmetric flow as
will be shown latter. The secondary instabilities for Rayleigh-
Bénard convection in a cylinder have been studied extensively
[33–37]. From the prior results on boundary-driven convection
are expected to aid in understanding the secondary instability
features of such dually driven flows. The typical aspect ratio
� = 1 is chosen for secondary instability analysis. We first
studied the effect of heat strength on the instability under three
fixed Prandtl nubmers, i.e., Pr = 0.02, Pr = 0.4, and Pr = 1,
respectively. Then the influence of Prandtl number is studied
at a moderate internal heat strength number q = 6.4.

The axisymmetric base flows for Pr = 0.02, Pr = 0.4, and
Pr = 1 are shown in Figs. 3, 4, and 5, respectively. For
each Prandtl number, three internal heat strength numbers
are chosen, q = 3, q = 8 and q = 16, to represent base flow
structures under weak, moderate, and strong internal heat
situation. In all cases, base flows are plotted on the meridional
planes (r,z)∈ [−1,1] × [0,1] with streamlines drawn in the
left frames and isothermals drawn in the right frames. The
axisymmetric convective flow has two forms: one is the hot
fluid that rises along the sidewall and descends along the axis,
and the other is hot fluid that ascends along the axis and
descends along the sidewall, which are similar to axisymmetric
base flows for Rayleigh-Bénard convection. These two forms
have the same stability properties.

For Pr = 0.02, as shown in Fig. 3, the base flows are
drawn at Ra = 4000, and a clockwise toroidal roll structure
is exhibited by contours of stream function. The flow strength
increases as q increases. Most of the isothermals are almost
uniformly distributed in the radial direction due to strong
thermal diffusivity of a small Prandtl number fluid. The
largest temperature increases with increasing q, and the

TABLE I. Comparison of critical Rayleigh number at � = 8 with
theoretical values [32] Ra∞

cr and two dimensional results [27] Ra2D
cr

(the ratio of width to height is 5π ).

q 0 1 2 3 5 6 8 10 20

Ra∞
cr 1708 1704 1695 1679 1633 - - 1463 -

Ra2D
cr 1739 1737 1727 1711 1663 1632 1562 1487 1130

Present 1716 1713 1703 1688 1641 1611 1543 1468 1121
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FIG. 3. Axisymmetric base flow at Pr = 0.02, Ra = 4000, and q = 3 (a), q = 8 (b), q = 16 (c). Left: Stream function contours. Right:
Isotherms.

vertical position of the largest value increases as well. The
enhancement of Rayleigh-Bénard instability by internal heat
can be expected from the temperature distribution. It should be
noted here that a stably stratified layer forms near the bottom.
This kind of base flow structure is comparable with that of
thermal convection in a laterally heated cylinder [38], where
an unstably stratified layer is located above a stably stratified
layer. Such stratification greatly affects the flow instability.
Similar to the Pr = 0.02 case, the base flow for Pr = 0.4 is
also characterized by a single toroidal roll structure, whereas
counterclockwise rolls are plotted in Fig. 4. The difference
is the location of maximum stream function located at a
higher position manifesting the increase of buoyancy effect.

Furthermore, the isothermals are curved in the middle of the
cylinder related to the lower thermal diffusivity of fluid with
a higher Prandtl number, and the radial temperature gradient
is clearly exhibited. For Pr = 1, the axisymmetric base flows
consist of two toroidal rolls. The flow structure displayed in
Fig. 5(a) for q = 3 shows an unstable distribution where a
larger convection roll is located above a smaller roll. The
two convection rolls lying alongside are obtained at higher
internal heat strength numbers as shown in Figs. 5(b) and
5(c). The isothermals in this case are significantly distorted,
especially for large values of q. There are a large vertical
and horizontal temperature gradient in the upper half of the
cylinder.
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FIG. 4. Axisymmetric base flow at Pr = 0.4, Ra = 10 000, and q = 3 (a), q = 8 (b), q = 16 (c). Left: Stream function contours. Right:
Isotherms.
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FIG. 5. Axisymmetric base flow at Pr = 1, Ra = 80 000, and q = 3 (a), q = 8 (b), q = 16 (c). Left: Stream function contours. Right:
Isotherms.

Stability curves displaying the dependence of the critical
Rayleigh number on the internal heat strength for three fixed
values of the Prandtl number are shown in Figs. 6(a)–6(c). As
shown in Fig. 6(a), the critical mode for the axisymmetry-
breaking instability at Pr = 0.02 is steady, m = 2, for the
studied heat strength range 0 < q < 20. The internal heating
has little effect on the stability of axisymmetric flow when

the heat strength q < 2, where the critical Rayleigh number
does not change much. When the heat strength is in the
range 2 < q < 6, the stability curve is multivalued. There are
three critical Rayleigh numbers for a fixed q. The critical
Rayleigh number decreases with increasing q as 6 < q < 20,
corresponding to the destabilize effect of strong internal
heating. The multivalued stability curve is usually caused by
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FIG. 6. Critical Rayleigh number, Racr , as a function of the internal heat strength, q, for the transition from the basic state to different
three-dimensional states for Pr = 0.02 (a), Pr = 0.4 (b), and Pr = 1 (c). Note that the vertical coordinate for panel (c) is plotted in natural
logarithm scale. In panel (d) the critical circular frequency, ωcr , as a function of the internal heat strength, q, for the unsteady transitions occurred
in panels (b) and (c) are plotted. Solid curves with hollow symbols represent steady transitions and filled symbols oscillatory transitions.
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FIG. 7. (a) Racr as a function of Pr for q = 6.4. (b) Critical circular frequency ωcr as a function of Pr for q = 6.4. The horizontal coordinates
and vertical coordinate in panel (a) are plotted in natural logarithm scale. Solid curves with hollow symbols represent steady transitions and
filled symbols oscillatory transitions.

competition of several instability mechanisms; here it refers
to buoyancy instability and hydrodynamic instability. Similar
stability curves have been found in Rayleigh-Bénard convec-
tion [34,37] and laterally heated convection in cylinders at
larger Prandtl numbers [38], whereas hydrodynamic instability
is dominant for low Prandtl number convection in these two
configurations. The convection with an internal heat source
considered in this study actually enhances the buoyancy effect,
which interacts with hydrodynamic instability thus bringing
about the multivalued stability curve even at a low Prandtl
number.

The stability curve for Pr = 0.4 is illustrated in Fig. 6(b).
Two steady instability modes m = 1 and m = 2 as well
as two oscillatory instability modes m = 2 and m = 3 are
obtained. These instability modes often appear in convection
in a cylinder without internal heating. The range of q for
multivalued critical Rayleigh number becomes much larger,
from around 1.5 to 13. The critical Rayleigh number at the
lower branch of the folded curve is small and varies little with
q, while the critical value at the upper branch is large. For
Pr = 1 shown in Fig. 6(c), the stability curve becomes more
complicated. Three steady instability modes m = 1, m = 2,
m = 7 and three oscillatory instability modes m = 2, m = 3,
m = 4 are obtained. The hysteresis range for q is further
extended. The value of q is up to 20 in this study. Multiple
critical Rayleigh numbers surely exist at higher q. The critical
Rayleigh number at the lower branch of the curve decreases
with increasing q. The critical value at the upper branch is
one order larger. There exist five critical Rayleigh numbers
in a narrow range of q around q = 6. Intense interaction of
buoyancy instability and hydrodynamic instability arises for

large-Prandtl-number flow as revealed from Figs. 6(b) and
6(c), especially at moderate to high internal heating numbers,
resulting in the complex stability curves. The critical circular
frequencies corresponding to the oscillatory critical modes
for Pr = 0.4 and Pr = 1 are shown in Fig. 6(d). The critical
frequency for convection with internal heat generation is much
higher than that for pure Rayleigh-Bénard convection in a
cylinder [37].

When q is of a moderate value, such as the value of q around
6, the interactions of different instability mechanisms are very
strong as reflected in the multivalued stability curves in Fig. 6.
Therefore we are motivated to study the secondary instability
at a moderate internal heating number (q = 6.4). The variation
of critical Rayleigh number with Prandlt number at q = 6.4 is
shown in Fig. 7(a). The studied Prandtl number range is from
0.02 to 10. There is only one critical Rayleigh number for
Pr < 0.06. The stability curve becomes multivalued for 0.06 <

Pr < 10. We calculated the critical Rayleigh number for large
Prandtl number Pr = 100, and three critical values can still be
obtained. Similar to results in Fig. 6, the steady m = 2 mode
is encountered at low Rayleigh number. The axisymmetric
flow loses stability at a Rayleigh number around 2400 and
becomes stable again at a little higher Rayleigh number. With
the further increase of Rayleigh number, the critical Rayleigh
number for the axisymmetric breaking instability is very large.
The base flow loses stability to three-dimensional periodic
flow with azimuthal wave number m = 3 in 0.05 < Pr < 0.83,
steady flow with m = 7 in 0.83 < Pr < 1.9, periodic flow
with m = 1 in 1.9 < Pr < 2.1, and periodic axisymmetric
flow for Pr > 2.1. The periodic m = 1 mode is not shown
clearly in the figure as this range is too narrow. Note that the

FIG. 8. Contours of azimuthal velocity on the z = 0.8 plane in a period at q = 9, Pr = 1, Ra = 1.52 × 105, oscillation period T = 0.0294,
and patterns at t = 0,T /6, 2T /6, 3T /6, 4T /6, and 5T /6 are plotted. Eight levels are drawn between the values of −2 and 2. Light area (solid
lines) represents positive value, and dark area (dashed lines) represents negative value.
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FIG. 9. Contours of azimuthal velocity on the z = 0.8 plane in a period at q = 10, Pr = 1, Ra = 1.4 × 105, oscillation period T = 0.0317,
and patterns at t = 0,T /6, 2T /6, 3T /6, 4T /6, and 5T /6 are plotted. Eight levels are drawn between the values of −2 and 2. Light area (solid
lines) represents positive value, and dark area (dashed lines) represents negative value.

oscillatory axisymmetric mode is predominant in a large range
of Prandtl number, so far as we have calculated up to Pr = 100.
Moreover there is a closed curve which encloses an unstable
region characterized by the m = 1 mode. The instability island
is also observed in convection in a laterally heated cylinder
[38]. The closed curve appears at Pr around 1, where thermal
diffusivity and momentum diffusivity are comparable, thus the
competition between buoyancy instability and hydrodynamic
instability again results in this stability curve. The variation
of critical circular frequency with Prandtl number is shown
in Fig. 7(b). For each oscillatory mode, the critical circular
frequency decreases with increasing Pr.

C. Three-dimensional oscillatory flow

The transition from an axisymmetric stationary flow to
three-dimensional stationary or time-dependent flows can be
predicted by linear stability analysis. However, nonlinear
simulations are still required to determine flow structures and
their evolutions. Some typical three-dimensional oscillatory
flows are given below.

As seen from Fig. 6(c), bifurcations from a nontrivial base
flow to periodic flows with azimuthal wave numbers m =
2, m = 3, and m = 4 are observed. The corresponding flow
patterns shown by azimuthal velocity on the z = 0.8 plane
over a period are given in Figs. 8, 9, and 10, respectively.
The flow triggered by m = 2 oscillatory instability exhibits a
standing wave state (Fig. 8). The periodic flows induced by
m = 3 and m = 4 instabilities are obviously traveling waves,
as illustrated in Figs. 9 and 10. The Rayleigh numbers for
nonlinear simulations are quite near the critical value, thus
the nonlinear frequencies are in agreement with the predicted
values in Fig. 6(d). These oscillatory patterns are very similar
to that found in Rayleigh-Bénard convection in a cylinder
[36,37]

In Fig. 7(a), an axisymmetric oscillatory instability is
obtained for q = 6.4, � = 1, and Pr > 2.1, which has not been

reported in thermal convection in a cylinder before. Taking
Pr = 6.7 as an example, the critical Rayleigh number for the
m = 0 oscillatory instability is 1.329 × 105. The axisymmetric
unsteady flow will lose stability to three-dimensional oscilla-
tory state with increasing Ra, and the corresponding critical
Ra determined by nonlinear simulation is 1.433 × 105. The
nonaxisymmetric unsteady flow obtained at Ra = 1.45 × 105

is shown in Fig. 11. The flow is reflection symmetric about a
meridional plane at each instant.

IV. CONCLUSION

The flow instabilities of thermal convection in a cylinder
driven by both boundary heating and internal heating have
been studied. The stability for the onset of convection and for
axisymmetric steady state have been considered. The convec-
tion thresholds have been determined under different internal
heat strength and aspect ratio. The critical Rayleigh number
approaches the theoretical predictions for convection between
infinite plates. The stability of axisymmetric steady base flow
is studied for a fixed aspect ratio � = 1 and three Prandtl
numbers Pr = 0.02, Pr = 0.4, and Pr = 1. Strong dependence
on both the Prandtl number and internal heat strength have
been revealed. With regard to the strength of internal heat
source, the flow instability is less affected at small q, and its
properties are similar to convection without an internal heat
source. When q increases to moderate values, the enhanced
unstably stratified upper layer significantly modifies the flow
instability. The strong interaction of buoyancy instability and
hydrodynamic instability leads to more complicate instability
phenomena than sole boundary driven convection. The curve
is multivalued even at a low Prandtl number. At a higher
Prandtl number (Pr = 1), five critical Rayleigh numbers can
be observed in the moderate internal heat strength range.
When q is large enough, the stability curve becomes single
valued for Pr = 0.02 and Pr = 0.4, except for Pr = 1. A
particular moderate internal heat strength q = 6.4 is chosen

FIG. 10. Contours of azimuthal velocity on the z = 0.8 plane in a period at q = 12, Pr = 1, Ra = 1.42 × 105, oscillation period T = 0.0315,
and patterns at t = 0,T /6, 2T /6, 3T /6, 4T /6, and 5T /6 are plotted. Six levels are drawn between the values of −1.4 and 1.5. Light area (solid
lines) represents positive value, and dark area (dashed lines) represents negative value.
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FIG. 11. Contours of azimuthal velocity on the z = 0.8 plane in a period at q = 6.4, Pr = 6.7, Ra = 1.45 × 105, oscillation period
T = 0.161, and patterns at t = 0,T /6, 2T /6, 3T /6, 4T /6, and 5T /6 are plotted. Eight levels are drawn between the values of −1.2 and 1.2.
Light area (solid lines) represents positive value, and dark area (dashed lines) represents negative value.

to study the influence of Prandtl number. The stability curve
is also found to be multivalued as Pr > 0.06. A new unsteady
instability mode with azimuthal wave number zero has been
observed. Finally, nonlinear simulations are conducted to study
the flow patterns. The m = 0 periodic flow loses stability to
three-dimensional unsteady flow through a supercritical Hopf
bifurcation.
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