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We devise an efficient methodology to provide a universal statistical description of advection-dominated
dispersion (Péclet → ∞) in natural porous media including carbonates. First, we investigate the dispersion
of tracer particles by direct numerical simulation (DNS). The transverse dispersion is found to be essentially
determined by the tortuosity and it approaches a Fickian limit within a dozen characteristic scales. Longitudinal
dispersion was found to be Fickian in the limit for bead packs and superdiffusive for all other natural media
inspected. We demonstrate that the Lagrangian velocity correlation length is a quantity that characterizes the
spatial variability for transport. Finally, a statistical transport model is presented that sheds light on the connection
between pore-scale characteristics and the resulting macroscopic transport behavior. Our computationally efficient
model accurately reproduces the transport behavior in longitudinal direction and approaches the Fickian limit in
transverse direction.
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I. INTRODUCTION

Flow and transport processes in natural porous media are of
importance in applications such as subsurface hydrology [1],
enhanced oil recovery [2], and carbon capture and storage [3].
Despite its significance, the in situ study of flow and transport at
the pore scale is still at an early stage. Based on nuclear mag-
netic resonance (NMR) pore-size and particle displacement
statistics have been gathered around 1990 as summarized by
Sahimi [4, Section 4] and Scheven et al. [5], respectively. More
detailed experimental investigations focusing on resolved flow
fields in upscaled media, e.g., bead packs, were conducted
by Moroni and Cushman [6] and Moroni et al. [7] at the
beginning of this century. Only quite recently, corresponding
microscale experiments were documented [8,9]. The more
recent studies [6–9] focus on three-dimensional configurations
to inspect transport or dispersion in both mean-flow parallel,
i.e., longitudinal, and transverse directions. Moreover, they
point out the need for devising an efficient macroscopic
representation of the microscopic pore-scale dynamics, which
is the main goal of our work.

Of particular interest in the context of subsurface transport
is the transition from an initially ballistic dispersion regime,
where the particle displacement variance grows quadratically
with time, to an asymptotic Fickian regime with linear
growth. The particle displacement variance is important as
it characterizes the plume spreading. Moreover, the particle
travel length and time scales at which Fickian behavior is
reached determine the range of applicability of Fickian disper-
sion models [10,11]. While in some experiments conducted
by Moroni and Cushman [6] and Moroni et al. [7] the
asymptotic regime was reached within the limited test section,
preasymptotic behavior was recorded in others.

Advances in the area of micro-computerized tomography
(micro-CT) made over the past decade permit the acqui-
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sition of microscale pore-space geometries to extract, for
example, flow and transport characteristics like the effective
permeability, which is useful for Darcy-flow simulations
[12,13]. Moreover, the availability of detailed pore-space
geometries enables single-phase flow and transport direct
numerical simulation (DNS) as documented in Refs. [14–18].
The resulting flow fields provide valuable data to study the
microscopic transport process in detail. Furthermore, this data
gives important guidance for the development of effective
models that can be applied to simulate flow and transport
at scales larger than the pore scale [19,20]. For example,
Kang et al. [19] studied the advection-dominated dispersion
in Berea sandstone based on a flow field stemming from
micro-CT scanning and pore-scale DNS. They found that
the dispersion in longitudinal direction is superdiffusive,
with the variance of tracer particle positions scaling with time
to the power of 1.5. On the other hand, subdiffusive behavior
in transverse direction with an exponent of 0.8 was reported.
Transverse dispersion is of particular importance as it controls
biodegradation of organic contaminant plumes to name only
one prominent example [21–23].

Kang et al. [19], as well as de Anna et al. [24] in a
two-dimensional synthetic porous medium, showed that the
Lagrangian time series of tracer particle velocities are highly
asymmetric with long correlated periods at low velocities
interrupted by high-velocity bursts. A very similar Lagrangian
behavior was observed and successfully modeled at the
Darcy scale, where highly heterogeneous two-dimensional
conductivity fields lead to irregular flow fields involving flow
focusing and defocusing [25–27].

In their model, Meyer et al. [26] applied a coupled
spatiotemporal Markov process, where the irregular behavior
of the velocity magnitude was accounted for by a temporal
Markov process and the particle path-line geometry—which
reflects the spatial conductivity distribution—was represented
by a spatial velocity-direction-angle process. In this work,
we apply an analogous approach at the pore scale for
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monodisperse bead packs, Bentheimer sandstone, and Ketton
and Estaillades carbonates with the goal of efficiently rep-
resenting macroscopic transport behavior from microscopic
pore-scale dynamics. Moreover, we want to rigorously test
our proposed model’s ability to universally describe transport
in pore structures with various degrees of complexity. Unlike
previous studies [19,20], we include carbonate rocks that have
most complex pore structures. Carbonates are very important
geological media that are estimated to hold about 60% of
the world’s remaining hydrocarbon resources [28]. However,
before focusing on the statistical description of flow and
transport at the macroscopic scale, we first document our
microscale DNS-based effort in the next section.

II. PORE-SCALE DNS

The first step in our methodology is to study a range
of samples with various degrees of spatial heterogeneity by
means of pore-scale DNS. On the one hand, the resulting
velocity statistics are used to derive a dispersion description
and model applicable for all samples considered. On the other
hand, the resulting transport data is used as a reference for
model validation. The cubical samples used in this study have
side lengths L0 of the order of 1 mm and were scanned at
voxel resolutions �x around 3 μm. Image segmentation was
applied to identify solid and void voxels [16–18]. The voxel
mesh of the monodisperse bead packs were determined based
on sphere center measurements of Finney [29] and subsequent
segmentation by Prodanovic and Bryant [30]. A characteristic
average pore-length scale L ≡ πV/S was extracted from each
pore geometry based on the ratio of the total sample volume
V (void and solid space) to the solid and void interface area
S. For consolidated sandstones and carbonates, L provides an
estimate for the grain size [31, p.1133]. A summary of sample
cross sections and characteristics including the porosity φ is
provided in Table I. The bead diameter d = 100 μm for the
300 and 500 bead packs were set such that L0/d = 6 and 10,
respectively. It is pointed out that for most samples L0/L is
around 10 or higher. We clarify that samples of the same media
type represent different pore-space geometries and are not the
result of scans of the same geometry with different resolutions.

Flow was induced in the pore space by applying a unit
pressure drop of 1 Pa over the in- and outflow planes located
at positions x1 = 0 and L0, respectively, of the sample cube.
With no-flow boundary conditions applied at all other planes,
this leads to a mean flow in x1-direction of the 3D pore space
x = (x1,x2,x3)T . More details about the numerical calculation
of the flow field u = (u1,u2,u3)T are provided in Ref. [17,
Section 2.3]. We point out that the pore-space geometries,
that are characterized by φ and that are used for the flow
computations, are composed exclusively of all void voxels
that are connected to both the in- and outflow planes. To
normalize the flow field, the mean velocity at the inflow
plane defined as U ≡ ∫ L0

0

∫ L0

0 u1(0,x2,x3) dx2 dx3/(L2
0 φ) was

used. For a statistically space-stationary and sufficiently large
sample, U approximates the mean displacement velocity of
tracer particles in the x1 direction. Lagrangian path lines are
characterized in Table I through the tortuosity κ being the ratio
of the length of the unwrapped tortuous particle path and the
travel distance in the mean flow direction.

To study transport in the listed samples, particles were
released at uniformly distributed random locations in pore
space and tracked with the semianalytical, mass-conservative
scheme of Pollock [32]. To emulate a virtually infinite porous
medium but at the same time recover Lagrangian velocity
time series that are continuous over sample boundaries, the
following algorithm was used to reinject particles at the inflow
plane that have reached the outflow plane. The exit velocity of a
particle sitting at the outflow plane u(o) and all velocity vectors
of voxels at the inflow plane u(i) are expressed in cylindrical
coordinates, i.e., u = (u1,u2,u3)T → uc = (u1,ur ,ψ)T with
ur ≡

√
u2

2 + u2
3 and ψ ≡ arctan(u3/u2). Next, the inflow cell

is identified with component vector (u1,ur )T being closest
to the corresponding particle vector, i.e., where the distance
between (u(o)

1 ,u(o)
r )T and (u(i)

1 ,u(i)
r )T is smallest. Subsequent

particle tracking continues from the identified inflow cell,
but with the sample rotated around the x1 direction by the
difference in the ψ angles of the identified inflow cell and
the particle exit velocity, i.e., ψ (o) − ψ (i). In the case where
the component vectors match, meaning that (u(o)

1 ,u(o)
r )T =

(u(i)
1 ,u(i)

r )T , the particle velocity remains unchanged after
reinjection. Sample rotation is reasonable for samples that are

TABLE I. Characteristics of the samples considered. Sample cross-sections L0 × L0 are provided with the velocity magnitude in the void
space given by the dark blue shading. All samples are in 3d with the image size consisting of n3 voxels.

Samples Bead pack Bead pack Ketton Bentheimer Bentheimer Estaillades
300 500 500 1000

L0 [mm] 0.6 1 2.7 1.5 3 3.31
�x [μm] 2 2 7.7 3 3 3.31
n 300 500 350 500 1000 1000
L0/L 10.7 17.8 8.53 11.2 22.6 11.7
φ [%] 35.9 36.2 14.9 21.1 21.6 10.9
κ 1.26 1.27 1.4 1.54 1.65 2.26
λ/L 4.37 3.89 5.53 8.33 8.32 36.2
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FIG. 1. Convergence of particle plumes in terms of sample size. Depicted are (left) longitudinal and (right) transverse particle position
histograms after nondimensional time t/T = 104.

statistically isotropic. To normalize travel distances and times,
the reference length L and time T ≡ L/U were used.

Plumes that result from tracking of the order of 200 000
particles in the bead pack and Bentheimer sandstone samples
of different nondimensional sizes L0/L are depicted in
Fig. 1. Besides deviations resulting from inaccuracies in the
estimation of the mean plume displacement velocity (U is
estimated based on samples of limited sizes), the longitudinal
plumes corresponding to different sample sizes match quite
well. While the plumes in the sandstone samples are relatively
long and involve a peak at x1 ≈ 0, the bead-pack plumes
are quite compact and no peak is present. In sandstone,
this behavior is not resulting from isolated pores since all
void pores in the simulation are connected to the in- and
outflow. It is rather a reflection of the very heterogeneous
flow fields involving both stagnant and high-velocity flow
zones. In transverse direction, the plumes in the bead packs
show close agreement. Accordingly, the transverse spreading
is independent of the sample size and not prone to boundary ef-
fects. This is, however, not the case for the sandstone samples,
where the larger sample involves more spreading in transverse
direction. The pore-space building blocks in the bead pack,
that is the beads, are equal, and accordingly the pore-space
geometry involves less spatial variability (see Table I). For
natural media like sandstone, the grains themselves are highly
variable and accordingly the pore space is less connected
and geometrically more heterogeneous. As a result, larger
sandstone samples are required to obtain dispersion results
that are not subject to transverse boundary effects and that
are size independent. Similarly, for the very heterogeneous
poorly connected Estaillades carbonate convergence in terms
of sample size could not be observed when comparing with a
smaller sample. It is pointed out that to assess independence
with respect to sample size, the characteristic length L is not
a reliable indicator, since in both bead packs and sandstone
samples of the order of 20L were used with different outcome.
A quantity that better measures the scale of spatial variability
for transport is the Lagrangian velocity correlation length λ

introduced in the next section.

In the top half of Fig. 2, the particle position variances
resulting from our DNS study are depicted and longitudinal
particle plumes are shown in Figs. 3–6. In longitudinal
direction, the bead pack converges after 104 nondimensional
time units from an initially ballistic dispersion regime to a
diffusive Fickian regime. This is in line with the study of
Moroni et al. [7]. All other natural media show superdif-
fusive behavior. Noteworthy is the similarity between the
longitudinal spreading of Ketton and Bentheimer, which have
quite different grain geometries but a similar connectivity
structure (see cross-sections of Ketton and Bentheimer 500
in Table I). The departure from Fickian dispersion is strongest
for Estaillades, which displays the most heterogeneous flow
field. The superdiffusive spreading is caused by particles that
are trapped in stagnant flow zones and that are only gradually
mobilized (see Fig. 6). This element of plume elongation in
the mean-flow direction is absent in transverse direction, where
transitions from ballistic to Fickian are observed in contrast to
Ref. [19] within of the order of 10 time units. A measure for the
magnitude of transverse dispersion seems to be the tortuosity
listed in Table I. In terms of transverse spreading and tortuosity,
the samples are consistently ranked as follows: Bead packs
(smallest), Ketton, Bentheimer, Estaillades (largest).

III. STATISTICAL DESCRIPTION

To describe the tortuous motion of tracer particles, we use
a coordinate system that is aligned with the mean flow in x1

direction and the current particle velocity u(t) at time t [see
Fig. 7(a)]. By tracking one single particle by means of the
previously outlined algorithm over thousands of differently
rotated sample copies (see third paragraph of Sec. II), we are
able to extract converged Lagrangian statistics such as velocity
PDFs or autocorrelation functions. Due to several common
features of these statistics among the different samples, a
universal statistical description or model can be formulated
that is able to reproduce the previously discussed Fickian
behavior and departures thereof.
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FIG. 2. Spreading of particle plumes in (top half) the DNS and
(bottom half) the model computations. Depicted are the particle
position variances in (a) longitudinal x1 and (b) transverse x2

direction, respectively. The thin straight lines at the left and right
ends of the curves correspond to quadratic and linear scalings with t ,
respectively. Superdiffusive spreading exceeds the linear scaling.

A. Velocity process

Like in our earlier work on transport in heterogeneous
conductivity fields [27], we found highly skewed PDFs of
the statistically time-stationary process u(t) ≡ |u(t)| for all
samples (not shown). To quantify the degree of correlation in
u(t) based on its autocorrelation function,

ρu(t) ≡ 〈[u(t0) − 〈u〉][u(t0 + t) − 〈u〉]〉
〈(u − 〈u〉)2〉 ,
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FIG. 3. Comparison of longitudinal particle plumes resulting
from (solid red) DNS and (dashed blue) the statistical model. Plotted
are different snapshot times. Data corresponding to the bead pack 500
sample are depicted.

we have estimated the integral timescale τ ≡ ∫ ∞
0 ρu(t)dt and

list in Table I the corresponding integral length scale λ ≡ Uτ .
For Estaillades, λ/L is highest, which is a result of the long
correlated low-velocity stretches in u(t), which are visible in
Fig. 8. In the bead packs, the velocity PDF is less skewed and
λ is shorter. The skewness in u(t) can be reduced by taking
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FIG. 4. See caption to Fig. 3. Data corresponding to the Ketton
carbonate sample are depicted.

the logarithm, i.e., v(t) ≡ ln[u(t)/U ]. The PDF of the log
velocity-magnitude v(t) can then be parametrized to a good
approximation for all samples with the skew-normal PDF,

p(v) = 1√
2πσ

exp

[
− (v − μ)2

2σ 2

]
erfc

[
−α(v − μ)√

2σ

]
, (1)

where μ, σ , and α are mean, standard deviation, and skew-
ness parameters, respectively. These parameters reflect the
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FIG. 5. See caption to Fig. 3. Data corresponding to the Ben-
theimer sandstone 1000 sample are depicted.

geometrical properties of flow paths in the porous medium.
The temporal autocorrelation of u(t), i.e., ρu(t), shows for
t � 0 a sharp and gradual decay in all samples. Plots of the
velocity autocorrelation functions and log-velocity histograms
are provided in Fig. 9. For Ketton and Bentheimer, p(v)
and ρu(t) are almost equal, which explains the previously
noted similarity in longitudinal spreading, since this process
is governed essentially by u(t). Together with the fact that the
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FIG. 6. See caption to Fig. 3. Data corresponding to the Estail-
lades carbonate sample are depicted.

particle acceleration is approximately white-noise correlated,
the sharp decay in ρu(t) hints at a Markov model for u(t).
However to capitalize on our observation of skew-normality
of v(t), we formulated a Markov process for v(t), i.e.,

dv = a(v)dt +
√

d(v)dW, (2)

where dW is a random Wiener process increment and a(v)
and d(v) are drift and diffusion functions, respectively [33].
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(a)
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PDF of
direction
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FIG. 7. (a) Local coordinate system spanned by the mean velocity
U = (U,0,0)T and the instantaneous particle velocity u(t). Positive
angles are depicted. (b) Gaussian model for flow-direction vectors
u(l)/u(l).

To determine the diffusion function d(v) ≡ lim�t→0〈[v(t +
�t) − v(t)]2|v(t) = v〉/(�t/T ), we estimated the second tran-
sition moment of v(t) based on our Lagrangian DNS data
[34, Eqs. (3.85) and (4.44)]. For all samples, we found
that d(v) can be parametrized by the simple exponential
model d(v) = c exp(b v). Here, the coefficient c quantifies the
degree of fluctuation in v(t), while b measures the growth of
these fluctuations as v increases. Poorly connected samples
like Estaillades have flow fields with both stagnant zones
and high-velocity flow paths (see Fig. 8). Accordingly, c is
comparably large and since the flow path cross section shows
typically high variability, b is large as well. For samples with a
highly connected pore space such as bead packs, the flow fields
show less variability and both c and b are smaller. With both
the PDF of v(t) and the diffusion function d(v) parametrized,
the drift function is determined by

p(v) = C

d(v)
exp

[∫ v

v0

2a(v′)
d(v′)

dv′
]
, (3)

which is the time-stationary solution of the Fokker-Planck
equation that corresponds to Eq. (2) [33, Sec. 5.2.2]. This
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FIG. 8. Exemplary velocity-magnitude time series u(t) resulting
from randomly placed particles in different samples. (a) Bead pack
500, (b) Ketton, (c) Bentheimer 1000, (d) Estaillades.
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expression with constants C and v0 can be isolated for

a(v) = d(v)

2

d

dv
ln[p(v)d(v)], (4)

which fully determines the Markov model for the log velocity-
magnitude process v(t) and eventually u(t) along a particle
path line. An exemplary comparison of the parametric models
of the drift and diffusion coefficients and their corresponding
transition moment estimates is provided in Fig. 10. Function
a(v) results through Eq. (4) from the parametric models for
d(v) and PDF p(v). Therefore, the agreement of a(v) with the
DNS transition moment data provides evidence in support of

-6 -4 -2 0 2
v
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v
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FIG. 10. Drift and diffusion coefficients a(v) and d(v), respec-
tively, for the log velocity-magnitude process v(t) of the Estaillades
carbonate sample. Depicted are the parametric fits (lines) and the
transition moments (dots).

our model formulation for v(t). Moreover, one can observe that
the exponential growth of d(v) for increasing v is compensated
in process Eq. (2) by an exponential decay of a(v). The
analytical link between d(v), a(v), and the stationary PDF
p(v) of process v(t) is given by Eqs. (3) or (4).

B. Angle processes

The particle path-line geometry is determined from the
angle processes θ (l) and β(l). Since these processes are
mainly influenced by the grain arrangement or pore-space geo-
metry, we express them in terms of the travel distance
l(t) ≡ ∫ t

0 u(t ′)dt ′ [26]. If θ (l) and β(l) are known, the entire
path-line geometry can be assembled based on short path-line
segments of length �l = u(t)�t . The segments are oriented
as illustrated in Fig. 7(a) and determined by θ (l) and �β(l) =
β(l + �l) − β(l).

To arrive at a parametric model for the direction angle θ (l),
we first consider the distribution of normalized flow-direction
vectors u(l)/u(l) sampled equidistantly along particle path
lines. As illustrated in Fig. 7(b), we assume that most vectors
will be aligned with the mean flow. Accordingly, we use a
bivariate Gaussian model for the PDF of the direction vectors
[gray surface in u2-u3 plane of Fig. 7(b)]. From this model we
derived analytically the PDF

p(|θ |) = |θ |
σ 2

θ

exp

(
−|θ |2

2σ 2
θ

)
, (5)

with mean
√

π/2 σθ for the absolute value of the direction
angle |θ (l)|. The variance parameter σ 2

θ is directly related to
the tortuosity since the latter can be expressed as

κ = 1∫ ∞
0 cos(|θ |)p(|θ |)d|θ |

= 1

1 − √
2σθDawsonF(σθ/

√
2)

, (6)

where the Dawson integral appears in the denominator. In
support of the Gaussian assumption, we find good agreement of
all angle PDFs extracted from our DNS data and our parametric
model as is documented in Fig. 11.

The dynamics of θ (l) are much more complex than in our
earlier work [26] with the autocorrelation function ρθ (l) having
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FIG. 11. Autocorrelation function ρθ (l) of the Lagrangian velocity direction-angle θ (l) and histogram p(|θ |). Dots represent the analytical
model given by Eq. (5) for p(|θ |).

a sharp drop at l ≈ 0 followed by a gradual decay to zero.
This behavior is shown in Fig. 11 and is resulting from the
combined effect of regular oscillations and occasional abrupt
sign changes in θ . To model this behavior accurately, we treat
the two effects with two designated random processes. An
analysis of the autocorrelation of |θ (l)| (not shown) reveals
an oscillatory behavior for the bead packs and Ketton sample
that is resulting from the spherical grains. For Bentheimer and
Estaillades the autocorrelation of |θ (l)| decays monotonically
to zero within four l/(UL). To model these dynamics, we
apply the integral process zθ (l) of a noisy harmonic oscillator
yθ (l) [34, Sec. 10.2], i.e.,

dzθ = yθdl, with

dyθ = −
(

ω2
0θ zθ + yθ

τθ

)
dl + bθ

√
2

τθ

dW. (7)

Process zθ (l) has a Gaussian stationary PDF and to recover
the PDF of |θ (l)| given by Eq. (5) the analytically derived
mapping,

|θ | = σθ

√
ln(4) − 2 ln[erfc(ωθzθ/

√
2)], (8)

is applied including the complementary error function erfc.
Inspection of the Lagrangian DNS data depicted in Fig. 12

0 50 100 150 200 250 300
Lθ/L

10-5

10-4

10-3

10-2

10-1

Bead pack
Ketton
Bentheimer
Estaillades

p(Lθ/L)

FIG. 12. Histogram of the travel-distance Lθ with no sign change
in θ (l). Dots represent the exponential PDF model.

reveals that the lengths Lθ of periods with equal sign in
θ (l) are distributed by the exponential PDF p(Lθ/L) =
exp[−(Lθ/L)/μθ ]/μθ for all media considered. By combining
all listed elements, we found that a description for θ (l)
based on Eq. (8) for |θ (l)| and the exponentially distributed
travel-distance Lθ for the sign of θ (l) can very accurately
reproduce ρθ (l) for all samples.

By analyzing the compensated variance evolution 〈[β(l +
s) − β(l)]2〉/s in the semilogarithmic plot (see Fig. 13), we
consistently observe for all samples a transition from zero at
small s to a higher plateau at large s. This is characteristic of an
integrated Ornstein-Uhlenbeck process [34, Sec. 3.1], which
we applied to model β(l), i.e.,

dβ = yβdl, with dyβ = −yβ

τβ

dl + bβ

√
2

τβ

dW. (9)

C. Summary and validation

In summary, our stochastic model is composed of a
Lagrangian log velocity-magnitude process v(t) in time t

with exponential diffusion coefficient and stationary PDF
parametrized by b, c and α, μ, σ , respectively. The spatial ve-
locity direction is determined by two direction angles θ (l) and
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s)
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(l)
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FIG. 13. Compensated variance evolution 〈[β(l + s) − β(l)]2〉/s
as a function of separation distance s. Dots represent the compensated
variance resulting from the integrated Wiener process model.
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β(l) as a function of travel distance l. The θ process involves
a standard deviation parameter σθ , a noisy harmonic oscillator
with parameters ω0θ and τθ , and a sign process with parameter
μθ . The β process is based on an Ornstein-Uhlenbeck process
with parameters τβ and bβ . The process parameters for the
different samples are summarized in Fig. 14. Each column
represents a parameter set of a specific sample that may be
interpreted as a transport “fingerprint” of each sample. One
can observe that fingerprints of samples from the same rock
type but different sample sizes are similar. Moreover, while
parameter sets of Ketton carbonate and Bentheimer sandstone
are similar, the bead pack and Estaillades sets are significantly
different.

Particle path lines that resulted from the previously outlined
model and listed parameters are compared with their DNS
counterparts in Fig. 15. The path line characteristics of the
selected media show strong differences, which is represented
well by the statistical model. A qualitative comparison between
the DNS reference and our statistical model is provided in
Fig. 2. The model reproduces the longitudinal spreading be-
havior accurately but shows deviations in transverse direction.
The transverse asymptotic behavior, however, is captured
correctly. In Figs. 3–6, detailed comparisons of the plumes in
x1 direction for all media including the most complex medium,
i.e., Estaillades, are provided. While in Ref. [19] detailed
model comparisons where reported for Berea sandstone up
to 10 nondimensional time units, we validate our model for
four different media up to t/T = 104 and obtain results of
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FIG. 14. List of parameters of our stochastic transport model. The
rows correspond to different parameters and the columns to different
samples. The gray level encodes the parameter value.

FIG. 15. Exemplary particle path lines tracked in the (1) monodis-
perse bead pack and (2) Estaillades carbonate. Panels correspond to
path lines from (a) DNS and (b) the statistical model. The color
represents ln[u(t)/U ].

very similar accuracy. We point out the good performance of
the model for the comparably complex carbonates.

IV. CONCLUSIONS

In summary, we presented a framework that relates the
microscopic pore structure to the emerging macroscopic
dispersion behavior. To this end, a universal statistical transport
model that employs a spatiotemporal Markov process was
devised whose parametrization is based on the geometrical
properties of flow paths. While longitudinal dispersion was
found to depend on the connectivity or roughness of these
flow paths, transverse dispersion depends on their tortuosity.
The dispersion predictions that resulted from our model were
found to be valid for a range of porous media, including highly
complex carbonates.

In the case with molecular diffusion added, the particle
motion is a combination of thermal Brownian motion and
advective transport [35] and the velocity dynamics are ex-
pected to become less complex. This is because molecular
diffusion will enhance the mobilization of trapped particles
in stagnant flow regions, which will simplify the temporal
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correlation behavior of u(t) and enhance Fickian dispersion.
More specifically, the peaks representing trapped particles in
the particle plumes will diffuse more quickly [18, Figs. 12 and
13]. Molecular diffusion effects become appreciable below
Péclet numbers between 300 and 600 depending on the media
[36, Eq. (11.48)], [16].

To resolve the deviations in transverse direction, a more
detailed analysis of the angle processes is necessary. Finally,
except for the bead pack, larger samples are needed to avoid
boundary effects in transverse direction and to have more
statistical variability of the pore-space geometry. This last
point is most critical in the Estaillades sample, where the
velocity correlation length λ is approximately three times the
sample size L0. The acquisition and processing of larger-sized

samples will be the subject of further development in the
experimental techniques and computational capabilities. As
an alternative to the acquisition of large samples, we consider
the use of artificially generated samples, e.g., by means of the
recently outlined cross-correlation method [37].

Data sets used in this work are available online [38].
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