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Instability of plane-parallel flow of incompressible liquid over a saturated porous medium
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The linear stability of plane-parallel flow of an incompressible viscous fluid over a saturated porous layer is
studied to model the instability of water flow in a river over aquatic plants. The saturated porous layer is bounded
from below by a rigid plate and the pure fluid layer has a free, undeformable upper boundary. A small inclination
of the layers is imposed to simulate the riverbed slope. The layers are inclined at a small angle to the horizon.
The problem is studied within two models: the Brinkman model with the boundary conditions by Ochoa-Tapia
and Whitaker at the interface, and the Darcy-Forchheimer model with the conditions by Beavers and Joseph. The
neutral curves and critical Reynolds numbers are calculated for various porous layer permeabilities and relative
thicknesses of the porous layer. The results obtained within the two models are compared and analyzed.
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I. INTRODUCTION

The flow over a saturated porous layer captures the fluid
inside it. The large drag force in a porous medium leads to
rapid reduction of the horizontal velocity of flow. This, it
its turn, results in instability similar to the Kelvin-Helmholtz
instability: the vortex motion occurs near the interface and
mixes the fluid.

The above phenomenon is widely studied. The most
classical formulation is the problem of an incompressible
fluid flow bounded by a rigid wall from above and by an
infinite porous layer from below, under a horizontal pressure
gradient [1,2]. There are also several works on similar flow in
the layer bounded by the finite-thickness porous layers from
both sides, e.g., [3,4].

The described instability is very important for many
applications. It may cause contaminant surges from the water
or ground plants. It is known that the aquatic plants or forest
canopy slows down the river flow or wind and captures the
contaminants from the surrounded medium. In this case the
instability leads to the rapid flow acceleration in the porous
layer and the contaminants can be ejected to the external
flow [5,6]. This can be significant for regions with a severe
environmental situation.

Another important application is the study of the melt flow
near the solidification front. During directional solidification
of binary melts the two-phase zone (mushy zone) is formed
near the melt-crystal interface and the flow in this zone has
significant influence on the crystal quality. The peculiarities of
the convective flows in systems consisting of the homogeneous
fluid layer and saturated porous medium are investigated in
[7–13]. The linear stability criteria and nonlinear dynamics of
laminar whirl flows which correspond to two main instability
modes are presented in [8]. A similar problem for Oldroyd-B
non-Newtonian fluid is studied in [9]. A number of papers are
devoted to the complex factors effects on the two-layer system
dynamics, e.g., magnetic fields [10,11], solutal convection
[12], and transversal fluid pumping [13].

The flow stability problem associated with the thermal flux
through the interface is studied in [14]. It is applicable for fuel
cell development, biological materials flow studies, etc. [2].

A unique feature of multilayer systems of liquid and
saturated porous medium is the bimodality of neutral stabil-

ity curves which correspond to two independent instability
mechanisms [2,4,8,10–12,15,16]. The first mechanism leads to
the formation of large-scale, large-wavelength vortices which
cover the entire system. The second mechanism results in
the development of short-wave vortices localized near the
interface. The bimodality of neutral curves was discovered
in study of the convection in a three-layer system of liquid and
a porous medium [15].

There are many different theoretical models of filtration
flow and boundary conditions at the interface of pure fluid
and saturated porous medium [1,14,17–19]. In [20,21] the
improvement of the approach by Ochoa-Tapia and Whitaker
[17,18] is suggested. Momentum transfer through the inter-
face is important for theoretical fluid mechanics as well as
for its applications [1,2,4,14,17–23]. The three-layer system
consisting of the Darcy porous layer, homogeneous fluid layer,
and thin transitional Brinkman porous layer between them is
described in [24].

In the present paper, we analyze the linear stability of
stationary plane-parallel flow of homogeneous fluid over
the saturated porous medium in the framework of different
filtration models with corresponding boundary conditions at
the interface of the porous medium and overlying fluid. The
motivation of our work is the analysis of instability of flow
over aquatic plants which is why, different from the papers
[1–4] where the flow induced by horizontal pressure gradient
was considered, we introduce a small inclination of the layers
to imitate the riverbed slope.

The study uses two models. The first model is based on the
Brinkman model. It uses the interface boundary conditions for
the viscous stresses proposed by Ochoa-Tapia and Whitaker
[17,18]. These conditions lead to the tangential stress jump and
break of stationary velocity profile at the interface. The second
model uses the Darcy and Darcy-Forchheimer equations with
the boundary condition at the interface suggested by Beavers
and Joseph [19]. In this case there is a tangential velocity jump
at the interface.

The linear stability of fluid flow over the saturated porous
medium was studied earlier in [25] using the “one-equation”
model. The two-layer system was treated as a single fluid-
saturated porous layer with the nonuniform porosity and
permeability sharply changing at the coordinate which cor-
responds to the interface location.
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FIG. 1. Two-layer system geometry.

There are some very recent papers where similar problems
are studied for different structures of stationary flow. In [26] the
stability of plane-parallel shear flow over the porous medium
is studied within the model with variable porosity changing
from some value to unity in the transition layer between the
Brinkman porous medium and the overlying pure fluid. It
is shown that in this case the shear flow is always unstable
and instability develops near the interface of the porous layer
and the transition zone. In [27,28] granular bed erosion by a
channel flow is investigated.

The paper is organized as follows. Physical models and
boundary conditions are described in Sec. II. The linear
stability results are presented in Sec. III. The general properties
of the solutions and the instability mechanisms are discussed
in Sec. IV. Section V contains concluding remarks.

II. FILTRATION MODELS, GOVERNING EQUATIONS,
AND BOUNDARY CONDITIONS AT THE INTERFACE

A. Problem geometry

We study the two-layer system consisting of a viscous
incompressible fluid overlying the porous medium saturated
by the same fluid (Fig. 1). The lower boundary of the layer is
rigid and impermeable for the fluid and the upper boundary is
free and undeformable. The interface is flat and undeformable.
We consider the two-dimensional problem uniform in the y

direction. The riverbed slope is modeled by the layers’ slope
at the angle α to the horizon, and the fluid flows down due to
the gravity force. There is no longitudinal pumping. We use
two filtration models described below.

B. Brinkman model

In the first model the Navier-Stokes equations describe the
flow in the layer of viscous incompressible fluid:

∂ �v
∂t

+ (�v · �∇)�v = −
�∇p

ρ
+ ν∇2�v − g �γ , (1)

�∇ · �v = 0, (2)

while the governing equations in the saturated porous layer are
as follows:

∂ �vp

∂t
+ (�vp · �∇)�vp = −

�∇pp

ρ
− ν

K
ϕ�vp + ν̃ϕ∇2�vp − g �γ ,

(3)

�∇ · �vp = 0, (4)

where �v is the velocity of the overlying fluid, �vp is the velocity
of the flow in the pores, p is the pressure ϕ, K is the porosity
and permeability, ρ and ν are the density and kinematic
viscosity of the fluid, ν̃ is the effective kinematic viscosity in
the porous layer, �g = −g �γ is the gravity acceleration, and �γ is
the unit vector directed vertically upward. Here, the variables
with subscript p denote the porous medium, while the variables
without subscripts mark the pure fluid.

The momentum equation for the porous medium (3) is
based on the Brinkman model. It contains the porous matrix
drag force (Darcy-like term) and the additional term describing
the momentum diffusion. The quantity ν̃ depends on the
properties of the porous medium. There are some studies where
it is assumed that ν̃ > ν and their ratio grows monotonically
with porosity decrease (see, e.g., [17,18,24]). According to
[17,18] we assume

ν̃

ν
= 1

ϕ
.

The Brinkman model well describes the behavior of highly
permeable media with high porosity [29,30]. Some authors
note that the minimal porosity value when the momentum dif-
fusion should be taken into account is ϕ = 0.6 [1]. We use this
value and study the intermediate range of parameters where
both the Brinkman model and the Darcy model can be applied.

The governing equations (1)–(4) are completed with the
following boundary conditions. We set the impermeability
and tangential stress absence conditions at the upper non-
deformable boundary, and the no-slip condition at the lower
boundary:

z = h : vz = 0,
∂vx

∂z
+ ∂vz

∂x
= 0,

(5)
z = 0 : �vp = 0.

The boundary conditions suggested by Ochoa-Tapia and
Whitaker [17,18] are imposed at the interface:

z = h1 : �v = ϕ�vp,

−p + 2νρ
∂vz

∂z
= −pp + 2ν̃ρϕ

∂vpz

∂z
, (6)

∂vx

∂z
− ν̃

ν
ϕ

∂vpx

∂z
= −βOTW

K1/2
ϕvpx,

where h1 is the porous layer thickness and βOTW is the di-
mensionless coefficient depending on the material parameters
of porous medium and fluid near the interface [17,18]. These
conditions include the continuity of the velocity components
and normal stresses, and the jump of tangential stresses
describing the resistance of porous matrix in the boundary
layer whose thickness is of the order of K1/2. For real systems
the values of βOTW are close to unity [18]. At βOTW = 0
the tangential stress jump condition is transformed into the
tangential stress continuity condition proposed in [15]. The
conditions (6) were obtained by strict mathematical procedure
from the Navier-Stokes equations at pore scale; nevertheless,
they include the empirical parameter β [1,7,19]. Note that the
boundary conditions by le Bars and Worster result in a similar

013104-2



INSTABILITY OF PLANE-PARALLEL FLOW OF . . . PHYSICAL REVIEW E 94, 013104 (2016)

velocity profile within the Darcy model [7]’ however, in our
work these conditions are not analyzed.

We use the following scales:

[�r] = h, [t] = h2

ν
, [U ] = gh2

ν
sin α, [p] = ρgh sin α,

i.e., the full system thickness for the length, the double
maximal velocity of the fluid flowing down the impermeable
inclined plate for the velocity, the viscous time scale for the
time, and the hydrostatic pressure along the inclined layer for
pressure.

The dimensionless equations and boundary conditions are
as follows:

∂ �v
∂t

+ Re(�v · �∇)�v = −�∇p + ∇2�v − 1

sin α
�γ , (7)

�∇ · �v = 0, (8)

∂ �vp

∂t
+ Re(�vp · �∇)�vp = −�∇pp − q2ϕ�vp + ∇2�vp − 1

sin α
�γ ,

(9)

�∇ · �vp = 0, (10)

z = 1 : vz = 0,
∂vx

∂z
+ ∂vz

∂x
= 0,

(11)
z = 0 : �vp = 0,

z = d : �v = ϕ�vp, − p + 2
∂vz

∂z
= −pp + 2ϕ

∂vpz

∂z
,

∂vx

∂z
− ∂vpx

∂z
= −βOTWqϕvpx. (12)

The equation system (7)–(10) is nonlinear for the both
layers, while the boundary conditions are linear. Additional
nonlinearity occurs at βOTW �= 0. It corresponds to the tangen-
tial viscous stresses jump at the interface.

The problem contains the following dimensionless param-
eters: Reynolds number, Darcy number, and relative thickness
of the porous layer:

Re = Uh

ν
= gh3

ν2
sin α, Da = K

h2
, d = h1

h
.

We also use the parameter q = Da−1/2.

C. Darcy-Forchheimer model

In the second model, the Navier-Stokes equations describe
the flow of the viscous incompressible fluid:

∂ �v
∂t

+ (�v · �∇)�v = −
�∇p

ρ
+ ν∇2�v − g �γ , (13)

�∇ · �v = 0, (14)

while the flow in the porous layer is described by the Darcy-
Forchheimer law extension [1]:

∂ �vp

∂t
+ (�vp · �∇)�vp=−

�∇pp

ρ
− ν

K
ϕ�vp − ϕ2 cF

K1/2
|�vp|�vp−g �γ ,

(15)

�∇ · �vp = 0, (16)

where cF ≈ 0.55 is the universal Forchheimer constant. The
variables with subscript p denote the porous medium, while
the variables without subscripts mark the pure fluid, as in the
previous section.

The Forchheimer term is important when the pore-scale
Reynolds number Rep is of the order 1–10 and higher
[1]. For the problem under consideration, the largest val-
ues of Rep are of the order 102–103 which is outside
the Darcy law validity range; however, accounting for the
nonlinear Forchheimer force partially compensates for this.
For the lowest permeability values in the problem under
consideration the values of Rep are of the order 101–102;
therefore it is possible to use both the Darcy law and the
Darcy-Forchheimer extension with sufficient accuracy. Thus,
both approaches should be adequate for the problem under
consideration.

We set the impermeability and tangential stress absence
conditions at the upper nondeformable boundary, and the
impermeability condition at the lower boundary:

z = h : vz = 0,
∂vx

∂z
+ ∂vz

∂x
= 0,

(17)
z = 0 : vpz = 0.

The boundary conditions at the interface contain the
continuity of normal velocity components and pressure in both
layers and the condition for the tangential velocity components
suggested by Beavers and Joseph [19]:

z=h1 : vz = ϕvpz
, p = pp,

∂vx

∂z
= αBJ

K1/2
(vx − ϕvpx),

(18)

where αBJ is the dimensionless coefficient depending on
the parameters of a porous medium and fluid [19]. The
Darcy model leads to the differential equation system of
sixth order unlike the eighth-order system in the Brinkman
model. Therefore, the Darcy model requires a lower number
of boundary conditions, and the conditions by Beavers and
Joseph should be used here [1,7].

An important distinction of the second model is the absence
of the direct boundary conditions for the tangential and
normal stresses at the interface. The conditions by Beavers
and Joseph are empirical [19] but they provide completeness
for the problem. One should use these conditions since
the plane-parallel flow velocities found from the Darcy and
Darcy-Forchheimer laws do not depend on the z coordinate.
It is a result of the structure of filtration equation (15),
which is algebraic with respect to the velocity. Note that the
simplified form of the boundary conditions (18) suggested by
Saffman [1] could be obtained by the strict procedure from the
Navier-Stokes equations at the pore scale [31].

Using the same scales as in the previous subsection, we
obtain the governing equations in the form

∂ �v
∂t

+ Re(�v · �∇)�v = −�∇p + ∇2�v − 1

sin α
�γ , (19)
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�∇ · �v = 0, (20)

∂ �vp

∂t
+ Re(�vp · �∇)�vp

= −�∇pp − q2ϕ�vp − qϕ2cF Re|�vp|�vp − 1

sin α
�γ , (21)

�∇ · �vp = 0, (22)

with boundary conditions

z = 1 : vz = 0,
∂vx

∂z
+ ∂vz

∂x
= 0,

z = 0 : vpz = 0, (23)

z = d : vz = ϕvpz
, p = pp,

∂vx

∂z
= αBJq(vx − ϕvpx).

The dimensionless parameters are the same as in the
Brinkman model.

D. Stationary flow

For both models described above the problem has an
analytical stationary solution. It corresponds to the plane-
parallel flow with a zeroth z component of the velocity.

The equations for stationary plane-parallel flow in the fluid
layer overlying the porous medium are as follows:

−∂p0

∂x
+ ∂2U

∂z2
+ 1 = 0, (24)

−∂p0

∂z
− cot α = 0. (25)

They are the same for the Darcy and Brinkman models.
Projection of the stationary plane-parallel filtration equation

to the x axis in the Brinkman model is as follows:

∂p0

∂x
= ∂2Up

∂z2
− q2ϕUp + 1, (26)

and in the Darcy-Forchheimer equation it is

−∂p0

∂x
− q2ϕUp − qϕ2cF ReU 2

p + 1 = 0. (27)

Finally, the z-axis projection of the filtration equation is the
same for both models and it coincides with (25).

For the problem under consideration the only source of flow
is the gravity force; the x component of the pressure gradient
equals zero and stationary vertical pressure distribution is
unified in the pure fluid and saturated porous layer. Taking
the pressure at the free upper boundary as the reference value,
we obtain

p0(z) = (1 − z) cot α. (28)

The filtration velocity in the Brinkman model is as follows:

ϕUp(z) = 2Aϕ sinh rz − ϕ

r2
(e−rz − 1), (29)

where

A = 1 − d − r−1e−rd − βOTWq−1(e−rd − 1)

2(r cosh rd − βOTWqϕ sinh rd)
,

and the parameter r = qϕ1/2 is introduced to shorten the
notation. The velocity profile in the overlying fluid is

U (z) = (z − d) − z2 − d2

2
+ 2Aϕ sinh rd − ϕ

r2
(e−rd − 1).

(30)

The filtration velocity Up in the Darcy-Forchheimer model
is determined by (27)

Up = 1

2ϕcF qRe

[(
1 + 4cF Re

q3

)1/2

− 1

]
. (31)

Neglecting the Forchheimer force, one reduces Eq. (31) to
the well-known result [1],

UDa
p = 1

q2ϕ
. (32)

The filtration velocity does not depend on the coordinate
in the porous layer due to the structure of Eqs. (26) and (27)
for the velocity. The velocity profile in pure fluid is parabolic
and the Beavers and Joseph boundary condition leads to some
shift of the velocity:

U (z) = (z − d) − z2 − d2

2
+ 1 − d

αBJq
+ ϕUp. (33)

Figure 2 presents the stationary plane-parallel flow profiles
calculated for the porosity ϕ = 0.6 and different values of the
other parameters. One can see that there is a large difference
in the velocity profiles for different models [14]: The velocity
profile has a break at the interface in the Brinkman model,
while the velocity jump exists in the Darcy-Forchheimer
model. This has principal influence on the flow stability.

III. LINEAR STABILITY ANALYSIS

In this section we present the results of linear stability anal-
ysis of plane-parallel stationary flow of fluid over the saturated
porous medium for the Brinkman and Darcy-Forchheimer
model. Discussion of the results, and comparative analysis of
the models, different instability mechanisms, and the influence
of the parameter values on the stability characteristics are
included in Sec. IV.

A. Brinkman model

Let us proceed to the investigation of the stationary flow
stability in different filtration models. We begin from the
Brinkman model. We present the velocity and pressure in
both layers as the sums of stationary solutions and small
perturbations:

�v = �U + �v′, p = p0 + p′, (34)

Substituting (34) into Eqs. (7)–(10) and boundary condi-
tions (11) and (12) and neglecting the terms of second order
of smallness we obtain linearized equations for perturbations
in the form

∂ �v′

∂t
+ Re[( �U · �∇)�v′ + (�v′ · �∇) �U ] = −�∇p′ + ∇2�v′, (35)

�∇ · �v′ = 0, (36)
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FIG. 2. Velocity profiles for stationary flows in two-layer system: (a) for the Brinkman model with boundary conditions by Ochoa-Tapia
and Whitaker at the interface for d = 0.5,βOTW = 0 (solid lines), βOTW = –1 (dotted lines), βOTW = +1 (dashed lines); (b) for the Darcy model
with the boundary conditions by Beavers and Joseph at the interface for d = 0.5,q = 100(Da = 1 × 10−4).

∂ �v′
p

∂t
+ Re[( �Up · �∇)�v′

p + (�v′
p · �∇) �Up]

= −�∇p′
p − q2ϕ�v′

p + ∇2�v′
p, (37)

�∇ · �v′
p = 0. (38)

The boundary conditions (11) and (12) do not change their
form due to their linearity. The primes are omitted further
below.

Applying curly to Eqs. (35) and (37) and using the con-
tinuity equations we exclude the pressure and x components
of the velocities. By introducing normal-mode perturbations
w, 	 ∼ exp(λt + ikx) we obtain the system of equations
where all the variables are functions of the z coordinate only:

λ	 + Re(ikU	 + wU ′′) = 	′′ − k2	, (39)

w′′ − k2w = ik	, (40)

λ	p + Re(ikUp	p + wpU ′′
p) = −q2ϕ	p + 	′′

p − k2	p,

(41)

w′′
p − k2wp = ik	p, (42)

with the boundary conditions

z = 0 : wp = w′
p = 0,

z = 1 : w = w′′ = 0,

z = d : w = ϕwp, w′ = ϕw′
p,

(λ + 2k2)(w′ − w′
p) + ikRe(Uw′ − Upw′

p)

− ikRe(U ′w − U ′
pwp) + ik	′ = q2ϕw′

p + ik	′
p,

ik(	 − 	p) − k2(w − wp) = βOTWqϕw′
p. (43)

where w,wp are the z components of the velocities and 	,	p

are the y components of the vorticities.

The linear stability problem (39)–(43) was solved numer-
ically by a shooting method based on the calculation of the
fundamental system solution with step-by-step orthogonaliza-
tion of the solution vectors [32,33]. After the critical values
of parameters have been obtained, the critical motions are
calculated by the direct integration of the linear stability
equations.

Figure 3 shows the neutral and dispersion curves for
d = 0.35 and different values of q, and Fig. 4—for q = 150
and different values of d. As one can see, the permeability
reduction or q growth increases the instability threshold. The
critical Reynolds number well corresponds to the results from
[4] after variable rescaling. It verifies our approach, because the
authors [4] apply the collocation method with a large number
of solution expansion components. At the same time, the study
in [4] is performed for a narrow permeability value range near
q = 100(Da ∼ 10−4), and there is no detailed study of the
neutral curves transformation with the parameter change.

Figures 5(a) and 5(b) illustrate the structure of critical
perturbations for long-wave and short-wave modes (the real
and imaginary parts of the vertical component of perturbation
velocity for the parameter values close to the long-wave and
short-wave minima of the neutral curve at d = 0.5, q = 170
are plotted).

The critical Reynolds number dependence on the porous
layer thickness is nonmonotonic. For d < 0.6, the global
minimum of the neutral curve decreases with d growth
due to the long-wave minimum lowering. If d > 0.6, the
system becomes more stable due to the long-wave minimum
displacement upward. The short-wave minimum increases and
is smoothing with d growth, such that at large d the neutral
curve is unimodal.

Figure 6 illustrates the influence of the parameter βOTW

on flow stability. We study βOTW in the interval from –1 to
+1. It corresponds to its values obtained in [18] from the
experimental and theoretical data comparison. This parameter
determines the tangential stress jump at the interface. As one
can see, the system is very sensitive to the change of the
interfacial boundary condition. The most significant changes
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FIG. 3. Neutral stability (a) and dispersion (b) curves in the Brinkman model with the tangential stress jump at the interface for d = 0.35
and different values of the parameter q.

occur for the short-wave perturbations which are sharply
destabilized when βOTW grows.

B. Darcy-Forchheimer model

Now we turn to the linear stability of the stationary flow in
the Darcy-Forchheimer model with tangential velocity jump
at the interface. In this case linearized equations for small
perturbations are as follows:

∂ �v
∂t

+ Re[( �U · �∇)�v + (�v · �∇) �U ] = −�∇p + ∇2�v, (44)

�∇ · �v = 0, (45)

∂ �v
∂t

+ Re[( �U · �∇)�vp + (�vp · �∇) �U ]

= −�∇pp − q2ϕ�vp − qϕ2cF Re(Up �vp + Upup�ex), (46)

�∇ · �vp = 0. (47)

The equations for the z component of the velocity in pure
fluid and in a saturated porous medium are

(λ + ikReU )(w′′ − k2w)

= wIV − 2k2w′′ + k4w + ikReU ′′w, (48)

(λ + ikReUp + q2ϕ + qϕ2cF ReUp)(w′′
p − k2wp)

+qϕ2cF ReUpw′′
p = 0. (49)

We can introduce the vorticity as in the Brinkman model
and reduce the order of (48), but the fourth-order equation for
an overlying fluid layer is the well-known Orr-Sommerfeld
equation, and it is necessary to compare our problem with
classical stability problems.

If we assume the Forchheimer force vanishes, the coeffi-
cient at the Laplace operator in (49) equals zero only if the real
part of the increment λ is negative, while its imaginary part
determined by Re and stationary filtration velocity Up do not
equal zero. This means that there are only damped oscillatory
perturbations and the system remains stable. In any other case,
this coefficient does not equal zero and we may rewrite Eq. (49)
as follows:

w′′
p − k2wp = 0. (50)

FIG. 4. Neutral stability (a) and dispersion (b) curves in the Brinkman model with the tangential stress jump at the interface for q =
150(Da = 4 × 10−5) and different values of relative thickness of porous layer d .
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FIG. 5. The profiles of the real (solid) and imaginary (dashed)
parts of velocity critical perturbations for long-wave and short-wave
modes for the parameter values near to the long-wave and short-wave
minima of neutral curve at d = 0.50,q = 170.

Moreover, this means that the inertial terms in the porous
medium equation do not have an influence on the stability
of the system in the Darcy-Forchheimer model. Otherwise, it
requires the most accurate analysis when we take into account
the nonlinear drag. Eqs. (48) and (50) are completed by the
following boundary conditions:

z = 1 : w = 0, w′′ = 0,

z = 0 : wp = 0, (51)

z = d : w = ϕwp, p = pp, w′′ = αBJ q(w′ − ϕw′
p).

The pressure continuity condition is rewritten into the
relation in terms of velocities from Eqs. (44) and (46) directly.

There exists an exact solution for the velocity perturbations
in a porous medium:

wp = 1

k
(sinh kz cos kεz + i cosh kz sin kεz), (52)

where

ε = cF ϕRe2k2

8q7(λ + q2ϕ)
,

and the normalization factor 1/k is determined in such a way as
to simplify further calculations. Generally, it is arbitrary due
to the equation’s linearity. The parameter ε is an imaginary

part of the eigenvalue of (49) simplified at large λ, Re, and
q. Its typical value is less than 10−9, because λq7 is in the
denominator. Therefore, the Forchheimer force’s influence on
flow stability is negligible.

Taking into account the solution (52) we transform the
linear stability problem for the two-layer system to the standard
Orr-Sommerfeld equation [34,35] for the flow in a layer with
a free undeformable upper boundary and unusual conditions
at the lower boundary:

z = d : w = ϕ

k
sinh kd + iϕεd cosh kd, p = pp,

w′′ = αBJ q(w′ − ϕ cosh kd)

− iαBJqεϕ(cosh kd + kd sinh kd). (53)

Here is the full form of these conditions. Actually, one
can exclude the terms with ε because its value is vanishingly
small, and the calculated changes of critical Reynolds numbers
and eigenfrequencies are within the accuracy of the algorithm.
The Forchheimer force effect is determined only by stationary
velocity change. The stability problem was solved numerically
by the shooting method based on calculation of the fundamen-
tal system solution with step-by-step orthogonalization of the
solution vectors [32,33].

The neutral and dispersion curves for the Darcy and
Darcy-Forchheimer models at d = 0.35 and different values
of the porous matrix permeability are presented in Fig. 7. The
results for fixed permeability (q = 700,Da = 2 × 10−6) and
different thicknesses of the porous layer d are shown in Fig. 8.
It is seen that the permeability decrease stabilizes the system
as in the previous model. However, the short-wave minimum
corresponds here to the most dangerous perturbations in the
whole parameter range. The qualitative dependence of the
stability properties on d is the same as in the Brinkman model.
The minima of the neutral curve merge with d growth.

The nonlinear Forchheimer drag force does not change the
neutral stability curves in the plot scale [see Fig. 7(a)]. The
critical frequency difference is less than 2% and perceptible
only for the large wave number [Fig. 7(b)]. The detailed
analysis of Forchheimer drag force influence on the flow
stability in the Brinkman model is presented in Sec. III C.

FIG. 6. Neutral stability curves for the Brinkman model with the tangential stress jump at the interface at q = 150(Da = 4 × 10−5) and
different values of the parameter βOTW in the boundary conditions (a) d = 0.6, (b) d = 0.8; the βOTW is written as β at the figures.
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FIG. 7. Neutral stability (a) and dispersion (b) curves in the Darcy and Darcy-Forchheimer models for d = 0.35, αBJ = 1 and different
values of the parameter q.

Figure 9 shows the structure of the velocity critical
perturbations for long-wave and short-wave modes of the
Darcy model. The profiles obtained for the parameter values
close to the long-wave and short-wave minima of the neutral
curve at d = 0.50,q = 700 are plotted.

The parameter αBJ in the Beavers and Joseph boundary
condition has a very strong influence on the system stability
(Fig. 10). The increase of αBJ reduces the tangential stationary
velocity jump at the interface [see Fig. 2(b)] and the main
destabilizing factor is weakened. The neutral stability curves
prove it. The increase of αBJ leads the long-wave minimum
appearance but this minimum is not dominating in the
parameter range under consideration.

Critical Reynolds numbers in the Darcy model are 100
times lower than in the Brinkman model (Fig. 11) due to the
velocity jump at the interface.

C. Influence of Forchheimer force on flow stability

Introducing the nonlinear drag force in the Darcy equations
does not change the instability threshold, while the critical
frequency increases by less than 2% (see Fig. 7). Thus, the

Darcy and Darcy-Forchheimer models are equivalent in the
considered problem.

In the case of the Brinkman model, we have shown that
accounting for the quadratic drag force can be reduced to the
rescaling of Re and q with keeping the same form of the neutral
stability curves as in Sec. III A.

The extension of Eq. (9) by introducing the Forchheimer
force is [1]
∂ �vp

∂t
+ Re(�vp · �∇)�vp = −�∇pp − q2ϕ�vp − ϕ2cF qRe|�vp|�vp

+∇2�vp − 1

sin α
�γ . (54)

An additional nonlinear term appears also in the boundary
condition for the tangential stresses at the interface (12):

z = d :
∂vx

∂z
− ϕ

∂vpx

∂z
= −βOTWqϕvpx + βF ϕ2Re|vpx |vpx,

(55)

where βF = cF δK−1/2 is the additional dimensionless param-
eter determined by the porous medium properties and the
viscous boundary layer thickness δ near the interface.

FIG. 8. Neutral stability (a) and dispersion (b) curves in the Darcy and Darcy-Forchheimer models for q = 700(Da = 2 × 10−6) and
different values of relative thickness of porous layer d .
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FIG. 9. The profiles of the real parts of velocity critical perturba-
tions for long-wave and short-wave modes for the parameter values
near to the long-wave and short-wave minima of the neutral curve at
d = 0.50, q = 700.

First, we consider the stationary solution of the transformed
Brinkman-Forchheimer system (7), (8), (10), and (54). It
cannot be obtained analytically. Therefore, we analyze it
assuming that the quadratic drag force is small relative to
the other equation terms. Introducing the corrections u and up

to the stationary flow, one can rewrite the stationary equations
in the form

U ′′ + u′′ + 1 = 0, (56)

U ′′
p + u′′

p − q2(Up + up) + 1 = qϕ2cF Re(Up + up)2. (57)

With (24) and (26) the linearized equations and boundary
conditions for the corrections are as follows:

u′′ = 0, (58)

u′′
p − q2ϕ(1 + 2cF q−1ϕReUp)up = cF q−1rReU 2

p, (59)

z = 1 : u′ = 0,

z = 0 : up = 0, (60)

z = d : u = ϕup, u′ − u′
p = −βqϕu + ϕ2βF ReUpup,

where r = qϕ1/2.

FIG. 10. Neutral stability curves in the Darcy model for q =
700(Da = 2 × 10−6),d = 0.35, and different values of αBJ.

FIG. 11. Comparison of the neutral curves in the Brinkman and
Darcy models for q = 140(Da = 5 × 10−5), d = 0.35, αBJ = 1, and
βOTW = 0.

For estimates of the velocity change we can apply the
average value of Up:

〈Up〉 ∼ 2

r2
. (61)

Besides, there is another characteristic velocity is the
average filtration velocity in the boundary layer δ:

〈Up〉 ∼ 1

2r
. (62)

These values bound the true value of average velocity
from below and above. They also give the limiting estimates
for the stationary velocity correction. The lower bound
gives

up > −4cF Re

q5ϕ
(1 − e−rz), u > −4

cF Re

q5ϕ
, (63)

while the corrections at the upper bound are as follows:

up < −cF Re

4q3
(1 − e−rz), u < −ϕ

cF Re

4q3
. (64)

The corrections are negative because the nonlinear drag
force decelerates the main flow. Taking into account the typical
critical values of Re and q, one can see that the corrections are
negligible for q ∼ 102.

The additional terms in the governing equation also change
the stability problem formulation. It needs a particular analysis.
It is possible to show that the problem can be reduced to
the previous system (39)–(42) by rescaling the parameter q.
The equation (41) for the flow vorticity in the porous layer
transforms into the following equation:

λ	p + Re(ikUp	p + wpU ′′
p)

= −q2ϕ	p + 	′′
p − k2	p

−ϕcF qRe(ϕUp	p − U ′
pw′

p), (65)
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and the boundary conditions at the interface may be rewritten
as

(λ + 2k2)(w′ − w′
p) + ikRe[(Uw′ − Upw′

p)

−(U ′w − U ′
pwp)] + ik(	′ − 	′

p)

= (q2ϕ + ϕ2cF qReUp)w′
p, (66)

ik(	 − 	p) − k2(w − wp) = βOTWqϕw′
p − ϕ2βF ReUpw′

p.

(67)

It is possible to estimate the magnitude of terms in (65)–
(67) for large q. Taking typical values ϕ ∼ 0.5,q ∼ 102, and
d ∼ 0.5, we obtain

U ′′
pRe ∼ qRe, |ikReUp| ∼ kq−1Re,

(68)
|cF ϕ2qReU ′

p| ∼ 10−1qRe.

The Forchheimer drag force is smaller than the other
terms. Neglecting cF ϕ2qReU ′

pw′
p in Eq. (65) and rescaling

q, we transform (65) to (41) again. Using the estimate (61)
for average filtration velocity, we get the lower bound for this
value of q:

q̃2 ≈ q2

(
1 + 2cF Re

q3

)
∼ q2(1 + q−3Re), (69)

and average velocity limit (62) provides its upper bound:

q̃2 ≈ q2

(
1 + cF Re

4q2

)
∼ q2(1 + 10−1q−2Re). (70)

The boundary conditions (66) and (67) permit a similar
q scaling. In this case the condition (66) is not changed
while the small corrections of the order of O(q−3Re) or
O(10−1q−2Re) arise in the condition (67) in the first and
second cases, respectively. Such corrections arise in all the
terms including the stationary filtration flow velocity. The
estimates (69) and (70) bound the true value of q̃.

Thus, the equations and boundary conditions are not
changed in the leading order, while the q slightly increases.
This means that all the stability properties and previous
results (Sec. III A) are also not changed. Nonlinear drag
force produces the effective increase of q (or permeability
decrease) and the corresponding change of the critical Re.
The limiting estimates of corrected value of Re are obtained
from the interpolation and extrapolation of the neutral curves
for the Brinkman model (see Fig. 5 ) by q, and are listed in
Table I for some values of the system parameters. One sees

TABLE I. Critical Reynolds number in the Brinkman model
without (B) and with (F ) Forchheimer force for the long-wave (lw)
and short-wave (sw) instability modes.

q 10−4Relw 10−4Resw

B min, F max, F B min, F max, F B min, F max, F

100 102 119 3.82 4.07 6.87
120 122 147 6.74 7.53 11.7 9.66 10.3 18.7
130 133 163 9.06 9.30 14.4 12.8 13.9 24.3
150 153 188 12.2 12.7 18.7 19.4 20.8 33.1
170 173 213 15.5 16.1 22.9 27.0 27.7 41.6

that the nonlinear Forchheimer force stabilizes the flow due
to additional perturbation damping at the interface.

IV. DISCUSSION: PHYSICAL MECHANISMS OF
INSTABILITY

Let us discuss the results of the linear stability study
obtained within the different filtration models.

The common feature of the results is the bimodality of
neutral stability curves. There exist long-wave and short-
wave minima. The dimensionless wave number of long-wave
perturbations in both models varies weakly with the parameter
change (see Figs. 3 and 4). In the Brinkman model this mode
corresponds to the large-scale vortices occupying the whole
system (see Fig. 5, left). It means that these perturbations are
“inviscid” and satisfy the Rayleigh inflection point theorem,
despite the whole velocity profile not being smooth. One can
see the inflection point lies in the porous layer. Therefore,
these “inviscid” critical motions occupy both fluid and porous
layers.

The short-wave critical motions in the Brinkman model are
localized near the layer interface (see Fig. 5, right). Their
critical Re has a strong dependence on wave number that
means high influence of the fluid viscosity on perturbations
development. It can be a result of the drag force gradient
changes in the fluid layer. It is proportional to (dU /dz) and
increases from the top surface to the bottom, and has a
maximum value near the interface [see stationary velocity
profile, Fig. 2(a)].

The main physical mechanism of the instability in
the Darcy-Forchheimer model is the same as for Kelvin-
Helmholtz instability. The tangential velocity jump at the
interface [see Fig. 2(b)] is the leading reason for the instability.
Long-wave perturbations are damped by the gravity force,
while the drag force in the porous layer exerts the short-
wave perturbation damping for k > 10. In classical Kelvin-
Helmholtz instability, the short-wave perturbations are damped
by surface tension [36]. The critical wave number of small-
scale vortices is highly sensitive to the parameter change. It
grows when the permeability decreases due to the drag force
increase (see Fig. 7 ). As in the case of the Brinkman model,
in the system with the Darcy-Forchheimer porous medium the
long-wave critical motions occupy both the fluid layer and
porous layer, and short-wave critical motions are localized
near the layer interface (see Fig. 9).

For the Brinkman model the long-wave instability is domi-
nating at q < 200 while the short-wave instability related to the
small-scales vortices localized near the interface may develop
in a low-permeability porous medium. Contrary to that, for the
Darcy-Forchheimer model the short-wave perturbations are
critical over the entire parameter range under consideration.
This corresponds to the results from [2].

The increase of porous layer thickness destabilizes the
system at d < 0.6 and stabilizes it when d > 0.6 in both
Brinkman and Darcy models. The short-wave minimum is
the most sensitive to d variations. To explain this one should
analyze the perturbations damping in the porous layer. The
structure of the eigenfunctions (see Fig. 5) shows that the
perturbations are localized in the pure fluid layer for small
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d and in the porous layer for large d. In the first case, a
thin boundary layer is formed in the porous medium and the
velocity in the wider, pure fluid layer increases. This leads to a
rapid change of the velocity and a strong effect of the viscosity
in the transition layer near the interface. As the result, the
perturbations damping is significant and the flow is more stable
than in the case of larger d. On the other hand, the growth of
d decreases the absolute value of the velocity in the overlying
fluid, and this stabilizes the system. Thus, the balance of two
stabilization mechanisms may provide the minimum of critical
Reynolds number at some intermediate value of d.

There exists only oscillatory instability. This leads to
the formation of traveling waves. The results of the direct
numerical simulation of the waves at the interface of layers
are presented in [23]. The simulation is performed for full
nonlinear equations. The two-layer system is described by
a one-equation model with nonuniform permeability and
porosity.

The two filtration models which we implemented give
different results. The stationary flow in the Brinkman model
with the boundary conditions by Ochoa-Tapia and Whitaker at
the interface is more stable than that in the Darcy model. The
critical Reynolds number that we obtained using the Brinkman
model is in good agreement with the results obtained in [4]
for the three-layer system of fluid between two porous layers
with the collocation method based on Chebyshev polynomials.
A tangential stress jump leads to the break of the stationary
velocity profile; the transition boundary layer between the
pure fluid and saturated porous medium is thin and poorly
determined [see Fig. 2(a)]. The velocity profile becomes
smoother with q increase; this stabilizes the stationary plane-
parallel flow.

In the Darcy and Darcy-Forchheimer models with the
boundary conditions by Beavers and Joseph the stationary flow
is less stable because of the tangential velocity jump near the
interface [see Fig. 2(b)]. The jump magnitude is determined by
the parameter αBJ. Its growth stabilizes the flow and produces
a strong increase of the short-wave minimum. The critical
Reynolds numbers in the Darcy model are 100 times smaller
than in the Brinkman model.

Finally, the estimation of the nonlinear drag force (Forch-
heimer term) effect on the stationary flow stability shows that it

is insignificant in both Darcy and Brinkman filtration models.
The corrections to the neutral curves in the Brinkman model
permit estimating the interval bounding the critical Reynolds
number. The Forchheimer force stabilizes the flow.

V. CONCLUSIONS

A numerical study of linear stability of plane-parallel flow
of an incompressible viscous fluid flowing down the porous
layer saturated by the same fluid is studied in the framework
of different filtration models. The neutral stability curves,
the values of critical Reynolds numbers, and frequencies of
critical perturbations are calculated. The eigenfunctions of the
problem are obtained.

The common features of the stationary flow instability are
investigated. The possible physical reasons for the dependence
of critical conditions on the parameters and for the qualitative
difference in the results obtained within the Brinkman and
Darcy-Forchheimer models are discussed. Parameters of the
two-layer system are chosen in such a way that the system
can be described equally by both of these models: the porous
medium has high porosity and the pore-scale Reynolds number
is small enough to provide sufficient accuracy for the Darcy
and Darcy-Forchheimer laws.

The influence of the boundary conditions at the interface
and of the stationary flow structure on the perturbations
localization within the layer is discussed. The long-wave
instability minimum is found to be dominating in the Brinkman
model and the short-wave instability minimum in the Darcy
model. The latter is related to the tangential velocity jump
as in the classical Kelvin-Helmholtz instability. The critical
Reynolds numbers in the Darcy model are sufficiently lower
than those in the Brinkman model, which is also related to the
tangential velocity jump for the Darcy model.

Experimental study of the stability of stationary flow is
recommended as an efficient method for the verification of
different theoretical models.
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