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Influence of compressibility on the Lagrangian statistics of vorticity–strain-rate interactions
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The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity
and strain-rate interactions. The Lagrangian statistics are extracted from “almost” time-continuous data sets of
direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based
Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in
terms of compressibility parameters—turbulent Mach number, normalized dilatation-rate, and flow topology.
In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field
weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian
statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment
observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible
dilatation-rate and are associated with stable-focus-stretching topology.
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I. INTRODUCTION

Concurrence of several linear and nonlinear processes
(production, cascade, mixing, material element deformation,
intermittency, etc.) combined with the presence of a wide
spectrum of time and length scales makes turbulence a chal-
lenging problem to analyze and comprehend. A key quantity
whose dynamics encodes many of turbulence processes is
the small-scale velocity gradient tensor [1]. In the past three
decades, several studies have been performed to enhance our
understanding of the dynamics of velocity gradient and its
evolution in homogeneous turbulence [2–10].

Broadly, the dynamics of the velocity gradient tensor can be
studied either within an Eulerian or a Lagrangian framework.
The former approach is more popular because of the simplicity
in measuring as well computing an Eulerian flow field.
However, the latter approach offers a useful complementary
point of view to develop deeper insights into the historical
evolution of various turbulence processes in a flow field
following a fluid particle [11–13]. Specifically, a Lagrangian
perspective is highly desirable to develop improved closure
models for the Lagrangian stochastic methods of turbulence
computations [14,15]. For example, the restricted Euler equa-
tion [16–22] and the homogenized Euler equation [23–25]
are two available closure models that attempt to capture the
Lagrangian evolution of velocity gradients in a turbulent flow
field. Thus, an improved understanding of the dynamics of
turbulent velocity gradients, employing either experimental or
numerical measurements in a Lagrangian framework, has the
potential to directly contribute toward further improvement of
such closure models [1].

An extensive study on the Lagrangian statistics of ve-
locity, acceleration, dissipation, etc. is presented by Yeung
and Pope [26]. The Lagrangian data were obtained from
direct numerical simulation (DNS) of incompressible forced
isotropic turbulence at Taylor-microscale Reynolds number
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(Reλ) in the range 38 ∼ 92. The authors [26] observed a strong
dependence of Reynolds number on the Lagrangian statistics
as compared to their Eulerian counterparts. Later, these
findings were confirmed by Yeung [27] at relatively higher
Reynolds number as well (Reλ ∼ 234). Yu and Meneveau [28]
presented Lagrangian time-correlation functions for velocity
gradient, strain-rate, and rotation-rate tensors. The authors [28]
demonstrated that the correlation function of strain-rate decays
very quickly, whereas the correlation function of rotation-rate
tensor decorrelates relatively slowly. On the other hand, the
correlation function of velocity gradient tensor lies between the
correlation functions of strain-rate and rotation-rate tensors. A
slow decorrelation of rotation-rate tensor is attributed to its
association with vorticity, which is known for its long-lived
structure [29]. Note that all these studies were performed for
incompressible turbulence.

Experimental measurement of Lagrangian statistics has
proven to be more challenging than the numerical approach.
This is primarily because of the intermittent nature of particle
acceleration [30], which results in particles to experience
huge acceleration or deceleration over a very short span of
time. However, recently, some important progress has been
in this direction. For example, Ott and Mann [31] presented
a study on turbulent diffusion for a pair of particles. La
Porta et al. [30] presented probability distribution function
(pdf) of acceleration variance at Reλ = 200, 690, and 970.
The autocorrelation functions of acceleration from similar
experiments were reported by Voth et al. [32]. The authors [32]
found the Kolmogorov scaling for acceleration autocorrela-
tion. Lüthi et al. [8] measured the full set of velocity gradient
tensor using three-dimensional particle-tracking velocimetry.
Many known results of DNS, such as positive skewness
of intermediate eigenvalue of strain-rate and predominance
of vortex stretching, were successfully reproduced. More
recently, Xu et al. [33] have shed new light on the alignment
tendency of vorticity with the strain-rate eigenvector. The
authors [33] showed that the vorticity has a strong tendency to
orient itself along the initially largest eigenvector of strain-rate.
However, this process is not instantaneous but happens over
a time delay of the order of the Kolmogorov timescale. The
authors [33] call the tendency of the vorticity vector to align
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with the largest strain-rate eigenvector as pirouette effect of
turbulence. Thus, along with numerical results, the parallel
progress in Lagrangian experiments has laid a wide scope for
a better understanding of turbulence.

Recently, some Lagrangian studies [34–37] of compressible
turbulence have also been presented. These studies have
provided useful information regarding the particle distribution,
structure functions, acceleration statistics, etc. We extend the
study of Lagrangian study of compressible turbulence in terms
of the velocity gradient tensor. However, unlike incompressible
turbulence, the statistics of compressible turbulence needs to
be parametrized on appropriate compressibility parameters.
These compressibility parameters could be global or local.
The turbulent Mach number and the ratio of dilatational to
solenoidal kinetic energy are examples of global parameters,
whereas dilatation-rate, growth-rate of dilatation, flow topol-
ogy are examples of local compressibility parameters.

A global compressibility parameter may be useful to
parametrize compressibility, if our interest lies in understand-
ing the behavior of globally averaged velocity and pressure
fields. If we intend to understand dynamics following a given
particle, the global compressibility parameter like turbulent
Mach number may not be the ideal way to parametrize
compressibility. Several recent studies even on single-time
statistics of compressible turbulence have reached to similar
conclusion [9,10,24,38]—while the unconditioned globally
averaged statistics may not show direct influence of a global
compressibility parameter like turbulent Mach number, con-
ditionally averaged statistics of pressure Hessian and velocity
gradient tensor show profound effect of local compressibility
parameters like normalized dilatation and rate of change of
dilatation. It is these perceivable effects that gives us an oppor-
tunity to understand the mechanisms by which compressibility
affects turbulence in a fundamental manner—not clouded
by indiscriminate global averaging. Thus, for improving our
understanding of compressibility on fluid dynamics in general
and turbulence in particular, investigations conditioned upon
local compressibility parameter seems essential.

The overarching goal of the present work is to identify
and investigate the influence of compressibility on Lagrangian
statistics of velocity gradients in compressible turbulence.
Toward this goal, we employ direct numerical simulation
results of compressible decaying isotropic turbulence over
a range of turbulent Mach number. Relevant Lagrangian
statistics is extracted from Eulerian databases employing a
spline-based Lagrangian particle tracker (LPT) algorithm. In
the present work, compressibility is parameterized in terms
of turbulent Mach number, normalized dilatation-rate, and
flow topology. We specifically focus on the influence of
compressibility parameters on the so-called pirouette effect
of turbulence. To clearly bring out the differences between
compressible and incompressible turbulence, we contrast the
results from compressible decaying turbulence with that in
incompressible decaying turbulence.

The paper is organized in eight sections. In Sec. II, we
present an overview of governing equations of the velocity
gradient and pressure Hessian tensors in compressible tur-
bulence. Here, we also present the quantities of interest and
identify various compressibility parameters. In Sec. III, we
present a description of the DNS employed for the present

study. A brief review of LPT algorithm and its validation are
presented in Sec. IV. In Sec. V, we investigate the influence of
turbulent Mach number on the pirouette effect of turbulence.
Subsequently, in Sec. VI, the pirouette effects conditioned on
topology and normalized dilatation rate are presented. The
implications of the present work on Lagrangian models of
velocity gradient are presented in Sec. VII. Finally, Sec. VIII
ends the paper with a brief summary.

II. DYNAMICS OF VELOCITY GRADIENTS

We start with conservation of mass, Newton’s second law
of motion, and conservation of energy equations for a perfect
gas:
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where Vi, ρ, p, T , R, σik, qk, n denote velocity, density,
pressure, temperature, gas constant, stress tensor, heat flux,
and ratio of specific heat values, respectively. The three
thermodynamic variables ρ, T , and p are related through the
state equation

p = ρRT . (4)

The viscous stress tensor (σij ) and the heat flux vector (qk)
obey the following constitutive relationships:

σij ≡ μ

(
∂Vi

∂Xj

+ ∂Vj

∂Xi

)
+ δijλ

∂Vk

∂Xk

, and (5)

qk ≡ −K
∂T

∂Xk

, (6)

where δij is Kronecker δ, μ and λ denote the first and
second coefficients of viscosity, and K represents the thermal
conductivity. Note that λ is taken as − 2μ

3 .
Evolution equation of the velocity gradient tensor (Aij =

∂Vi/∂Xj ) is obtained by taking gradient of Eq. (2):
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(7)

where the operator d
dt

(≡ ∂
∂t

+ Vk
∂

∂Xk
) stands for the substantial

derivative, which represents the rate of change following a fluid
element.

The first term on the right-hand side of Eq. (7) is the self-
deformation term, and it depends on the local state of the
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velocity gradient tensor itself. On the other hand, the third term
(ϒij ) on right-hand side of Eq. (7) represents viscous action
on the evolution of Aij . The middle term of Eq. (7) is the
pressure Hessian tensor (Pij ). In incompressible turbulence,
the evolution of Pij is entirely dictated by velocity gradient and
its higher derivatives. On the other hand, evolution of pressure
Hessian in compressible flow fields depends on continuity as
well as energy equations.

Suman and Girimaji [24] derived the exact evolution
equation for Pij in compressible flow as

dPij

dt
= −AkjPik − AkiPkj − (n − 1)AkkPij︸ ︷︷ ︸
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In Eq. (8), the first term on its right-hand side represents the
local interactions of velocity gradient and pressure Hessian.
Terms II, III, IV, and V represent the interactions of pressure
and inertial effects, and terms VI and VII represent conduction
and viscous heating effects, respectively. Note that terms
II–VII are nonlocal in nature, because they involve gradients
or higher gradients of Aij and Pij . Further details on the
significance of these terms can be found in Danish et al. [25].

A. Quantities of interest

The evolution equation of Aij , Eq. (7), can be decomposed
into its symmetric and antisymmetric parts. The symmetric
part gives the evolution equation of strain-rate tensor (Sij ),
while the antisymmetric part gives the evolution equation for
rotation-rate tensor (Wij ):

dSij

dt
= −SikSkj −WikWkj −0.5(Pij +Pji) + 0.5(ϒij +ϒji),

(9)

dWij

dt
= −SikWkj −WikSkj −0.5(Pij −Pji) + 0.5(ϒij −ϒji),

(10)

where

Sij = 1
2 (Aij + Aji), Wij = 1

2 (Aij − Aji). (11)

Using Eq. (10), we can write the equation for the magnitude of
vorticity vector (ωi = −εijkWjk , where εijk is the Levi-Civita

tensor) as [39]

d

dt
(ωiωi) = Sikωkωi − 2εijkP̃jkωi + 2εijkϒ̃jkωi, (12)

where

P̃ij = 1
2 (Pij − Pji), ϒ̃ij = 1

2 (ϒij − ϒji). (13)

The first term on the right-hand side of Eq. (12) represents
vortex-stretching mechanism [40]. The influence of strain-rate
on vortex-stretching can be better explained with reference
to the principal coordinate system of the local strain-rate
tensor [41]:

Sikωkωi = ωkωkλicos2(êω,êi), (14)

where λi and êi are eigenvalues and eigenvectors of strain-rate
tensor, respectively, and êω is the unit vorticity vector. In
this work, we refer to λ1, λ2, and λ3 as α, β, and γ ,
respectively, where α > β > γ . Accordingly, the eigenvectors
corresponding to these eigenvalues are represented by êα , êβ ,
and êγ .

It is plausible to expect that a fluid particle, which is
under an intense vortex-stretching process, will tend to become
thinner in the α direction. Consequently, the moment of inertia
of the fluid particle would decrease along this direction.
Assuming angular momentum of the chosen particle to be
conserved, the reduction in moment of inertia would lead
to an enhanced vorticity alignment along the α eigenvector
(êα). However, on the contrary, Ashurst et al. [2] demonstrated
that, in incompressible turbulence, the instantaneous vorticity
shows a strong tendency to align along the intermediate
eigenvector (êβ) of strain rate but not along êα . The explanation
of the observed disparity seen in single-time Eulerian statistics
of the alignment between êω and êα and the expected behavior
of êω to align with êα has been provided recently by Xu
et al. [33]. These authors used Lagrangian-based experiments
rather than focusing solely on single-time Eulerian statistics
and examined the Lagrangian statistics of the cosine of
the angle between the instantaneous vorticity vector of a
fluid element with the direction of the α eigenvector of the
same particle, which was labeled at some reference time tref.
Subsequently, the average of the cosines for many such labeled
fluid particles are obtained:

〈[êi(tref) · êω(tref + t)]2〉, (15)

where 〈·〉 implies average over all the labeled fluid particles.
Using the experimental data of incompressible turbulence,

Xu et al. [33] made the observation that 〈[êα(tref) · êω(tref +
t)]2〉 starts with a value of 1/3 at tref. This indicates no
preferential alignment of vorticity with the largest eigenvector
(êα). However with time, the correlation 〈[êα(tref) · êω(tref +
t)]2〉 increases and reaches its peak, which clearly indicates the
enhanced tendency of instantaneous vorticity [êω(tref + t)] to
align with the êα of reference time. Similar observations from
DNS-based Lagrangian statistics of incompressible stationary
isotropic turbulence have been reported by Chevillard and
Meneveau [42] as well. The distinct behavior of vorticity
to align with the êα(tref) is called the pirouette effect of
turbulence [33].

It should be noted that the role of compressibility on
Lagrangian statistics of vorticity vector alignment (how the
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instantaneous vorticity vector responds to the reference prin-
cipal coordinate system of strain-rate tensor) has not been
explored before. In compressible flows, nonzero dilatation
leads to decoupling of the three instantaneous principal strain-
rate eigenvalues, which, in turn, leads to an additional degree
of freedom. While for a volume-preserving fluid element,
contraction in two principal directions guarantees expansion
in the third direction, for an expanding or a contracting fluid
element deformation in the third direction is not necessarily
constrained by the deformation pattern in the first two
principal directions. Therefore, it is of fundamental interest to
investigate how this “new” degree of freedom in compressible
turbulence affects the inertia tensor and in turn the dynamics
of the vorticity vector itself.

Thus, in this paper, our interest is to examine and understand
how compressibility modifies the Lagrangian statistics of the
alignment between vorticity and the largest eigenvector of
the strain-rate tensor. To facilitate this study, we first identify
relevant compressibility parameters, which we shall use in
Secs. V and VI, to isolate and understand the influence of
compressibility on the pirouette effect of turbulence.

B. Compressibility parameters

Isolating and understanding different aspects of compress-
ible turbulence may need different compressibility parameters.
Lee et al. [9], Suman and Girimaji [24,38], and Vaghefi
and Madnia [43] have used aii (normalized dilatation) as
a parameter to study the influence of compressibility on
velocity gradients. Similarly, δ (growth rate of dilatation)
has been employed by Suman and Girimaji [10] to study
the influence of compressibility on the pressure Hessian
tensor. The flow-field topology has been recently used as a
compressibility parameter by Danish et al. [44] in the study
of compressible mixing. In the present work, we employ
turbulent Mach number (Mt ), normalized dilatation (aii), and
topology (�) as compressibility parameters to study the effects
of compressibility on the pirouette effect in compressible
turbulence. These compressibility parameters are defined as
follows.

The turbulent Mach number (Mt ) is defined as

Mt =
√

2K

nRT
, (16)

where K , n, R, and T represent turbulent kinetic energy,
specific-heat ratio, gas constant, and volume-averaged temper-
ature, respectively. The turbulent Mach number is a statistical
measure of acoustic to inertial timescale in the flow field.

The normalized dilatation (aii) is defined as the trace of the
normalized velocity gradient tensor (aij ), where

aij = Aij√
AmnAmn

. (17)

The normalization of velocity gradient tensor ensures that its
each component remains bounded within the interval [−1,1],
and the trace of aij (normalized dilatation) is mathematically
bounded between −√

3 and
√

3 [38]. Locally normalized
dilatation is a measure of rate of change in density of a local
fluid element. Our third compressibility parameter is local flow

topology (�). A detailed description of flow topology can be
found in Suman and Girimaji [38] and Chong et al. [45]. Here,
we provide just a brief summary.

1. Flow-field topology

Flow-field topology represents local instantaneous stream-
line patterns around an infinitesimal fluid particle observed
with respect to a nonrotating reference frame translating with
the fluid element. The patterns of streamline with respect to
such a reference frame depend essentially on the nature of
eigenvalues (real and complex) of velocity gradient tensor.

Chong et al. [45] showed that various possible topologies
in a flow field can be easily presented on p-q-r space, where
p, q, and r are first, second, and third invariants of aij :

p = −aii , q = 1
2 (p2 − aij aji), and

r = 1
3 (−p3 + 3pq − aij ajkaki). (18)

On the p-q-r space, the regions of real and complex eigenval-
ues of aij are separated by a surface S:

S ≡ 27r2 + (4p3 − 18pq)r + (4q3 − p2q2) = 0. (19)

The surface S is further split into two surfaces, S1a and S1b,
which osculate each other at the origin:

S1a ≡ 1
3p

(
q − 2

9p2
) − 2

27 (−3q + p2)3/2 − r = 0, (20)

S1b ≡ 1
3p

(
q − 2

9p2
) + 2

27 (−3q + p2)3/2 − r = 0. (21)

The region of complex eigenvalues has another partitioning
surface S2. The surface S2, which contains only imaginary
eigenvalues, is given by

S2 ≡ pq − r = 0. (22)

Based on the values of p, q, r , and the surface S2, various flow
topologies can be identified. A list of all possible topologies is
presented in Table I.

TABLE I. Zones of various topologies on p-q-r space,
where acronyms are: stable-focus-stretching (SFS), unstable-
focus-compressing (UFC), unstable-node/saddle/saddle (UNSS),
stable-node/saddle/saddle (SNSS), unstable-focus-stretching (UFS),
unstable-node/unstable-node/unstable-node (UN/UN/UN), stable-
focus-compressing (SFC), stable-node/stable-node/stable-node
(SN/SN/SN).

Acronyms p = 0 p < 0 p > 0

SFS r < 0 r < 0 and S2 > 0 r < 0
UFC r > 0 r > 0 r > 0 and S2 < 0
UNSS r > 0 and q < 0 r > 0 r > 0 and q < 0
SNSS r < 0 and q < 0 r < 0 and q < 0 r < 0
UFS r < 0 and S2 < 0
UN/UN/UN r < 0 and q > 0
SFC r > 0 and S2 > 0
SN/SN/SN q > 0 and r > 0
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III. DESCRIPTION OF DIRECT NUMERICAL
SIMULATIONS

We employ direct numerical simulations of compressible
decaying isotropic turbulence for this study. These simulations
are performed using a solver based on the gas kinetic method
(GKM). The GKM has emerged as a viable tool for performing
DNS simulations of compressible turbulence. The method
was originally proposed by Xu and Prendergast [46], who
demonstrated its capability in simulating laminar compressible
flows. The GKM scheme has been shown to demonstrate
numerical stability and a superior shock capturing ability.
Unlike Riemann solvers [47,48], the gas kinetic method uses
Boltzmann equation to construct fluxes of macroscopic gov-
erning equations. Over the past few years, several studies have
been reported wherein the credibility of GKM-based solvers
has been very well demonstrated in simulating compressible
turbulent flows as well [49–51].

Our DNS simulations are performed over a cubic domain
of size 2π with 2563 uniformly spaced grid points. Periodic
boundary conditions are imposed on the opposite sides of the
cube. The gas is assumed to be calorically perfect. The initial
velocity field is generated in physical space using a uniform
random number generator. After transforming the velocity
field in Fourier space, the condition of incompressibility
is imposed. Subsequently, we impose the desired energy
spectrum [52]:

E(κ) = A0κ
4exp

(−2κ2/κ2
0

)
, (23)

where κ is wave number and the values for spectrum constants
A0 and κ0 are taken 0.011 and 4, respectively [52]. Finally, we
transform back the velocity field in the physical space.

In this work, we use two sets of compressible simulations
that have the same initial conditions except turbulent Mach
number (simulations A and B in Table II). For simulation A
the value of Mt is 0.488 and for simulation B its value is taken
as 0.3.

Note that we have taken care to ensure that all our numerical
simulations are well resolved temporally as well as spatially.
In Fig. 1(a), we present the evolution of velocity derivative
skewness for A11, A22, and A33 obtained from simulation A.
After an initial dip, the skewness of velocity derivatives are
observed to attain a value in the range [−0.5,−0.4]. As Lee
et al. [53] demonstrated that the velocity derivative skewness
attains a value in the range [−0.5,−0.4] in a physically realistic
turbulent flow field. Thus, the result shown in Fig. 1(a) clearly
indicates that the simulation cases presented in this work have
reached a state of realistic turbulence for t/τλ0 > 1, where

TABLE II. Initial parameters for DNS simulations. Reλ =√
20

3εν
K represents Reynolds number, where K , ε, and ν are

turbulent kinetic energy, its dissipation rate, and kinematic viscosity,
respectively.

Simulation Reλ Mt Grid size A0 κ0

A 175 0.488 2563 0.011 4
B 175 0.3 2563 0.011 4
C 175 Incompressible 2563 0.011 4

τλ0 represents eddy turnover time based on initial root-mean
square velocity (u′

0) and Taylor microscale (λ0),

τλ0 = λ0

u′
0

. (24)

To assess the reliability of the present solver, we have com-
pared our results with the DNS results of Samtaney et al. [52].
In their work, the authors [52] used a 10th order accurate Padè
method to perform DNS of compressible decaying turbulence.
Owing to the high order used by Samtaney et al. [52], their
DNS results can be considered as a validation reference for
other compressible turbulence solver over similar range of Mt

and Reλ [54].
In Figs. 1(b)–1(d), we present the evolutions of normalized

dissipation-rate (ε/ε0), Mt , and Reλ from simulation A (solid
lines) and from case D9 of Samtaney et al. [52] (symbol ◦).
Note that the initial conditions for simulation A have been
carefully matched with those of D9. From Figs. 1(b)–1(d)
we see that the agreement between simulation A and D9 of
Samtaney et al. [52] are excellent. We have also validated our
GKM-based DNS solver with cases D4 and D6 of Samtaney
et al. [52]. Again the agreement was found to be excellent
(figures not shown). Based on these observations we conclude
that our GKM-based solver is capable of reliably simulating
compressible decaying turbulence over the range of Mach
number and Reynolds number considered in this work.

To contrast the effect of compressibility on Lagrangian
statistics, if any, we also present results from incompressible
turbulence. Our DNS solver for incompressible decaying
turbulence employs 6th order compact finite difference method.
The incompressible code has been extensively validated by
Manu [55]. Like compressible simulations (A and B), we use
the same initial spectrum, spectrum constants, and Reλ for
simulation C as well (Table II).

IV. LAGRANGIAN PARTICLE TRACKER

The GKM solver finds numerical solution of partial differ-
ential equations that govern velocity and other thermodynamic
variables in the Eulerian framework, wherein the spatial
variable X and time t are independent variables. However,
to study the Lagrangian dynamics of flow field, one needs to
find the evolution history of various flow quantities following
a fluid particle. Thus, extraction of Lagrangian statistics
necessitates the development of a post-processing algorithm
(a Lagrangian particle tracker), which takes the Eulerian
field data at successive time instants as input and tracks the
trajectory of a chosen fluid particle. Subsequent to tracking,
such an algorithm must also accurately interpolate the flow
quantities of interest associated with the chosen fluid particle
at all later time instants.

The trajectory of a fluid particle (X+(y,t)) can be tracked
by integrating its equation of motion [56]:

∂X+(y,t)

∂t
= V(X+(y,t),t), (25)

where superscript “+” represents a Lagrangian flow variable,
and y indicates the label or identifier assigned to the fluid
particle. Following Yeung and Pope [56], we use initial
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FIG. 1. Time evolution of (a) velocity-derivative skewness, (b) dissipation rate, (c) Mach number, and (d) Reynolds number with initial
Mt = 0.488, Reλ = 175 (simulation A). The symbols λ0 and u′

0 represent Taylor microscale and root-mean-square velocity based on initial
conditions.

positions of fluid particles as their labels:

y = X(t = 0). (26)

In conjunction with the Eulerian DNS dataset, the equation of
motion, Eq. (25), can be numerically integrated to compute
the location of labeled particles at subsequent time instants.
Since the Eulerian fields of velocity and other flow variables
are already spatially discretized and the same is available
only at discretized time instants, in general, the location
of a chosen fluid particle at the next time instant may not
coincide with the grid points of the computational domain.
Therefore, an accurate interpolation method is required by any
Lagrangian particle tracker. Yeung and Pope [56] examined
various interpolation methods for their study of incompressible
turbulence and found the performance of the interpolation
method based on cubic splines to be the most satisfactory. In
this work, too, we employ a cubic-splines-based interpolator.
For performing the numerical integration of Eq. (25) we
employ the second-order Runge-Kutta method.

Employing an LPT for a compressible turbulent flow field
poses additional challenge as compared to incompressible
turbulence. This is because of the presence of shocklets, which
induce steep gradients in all flow variables. Our LPT has
been particularly validated to ensure that it performs with a
satisfactory level of accuracy even in compressible turbulence.

In Fig. 2 we present the pdf of local Mach number obtained
from simulation A at time t = 1.56τ , where τ = 0.667 [52].
The local Mach number (Mloc) is defined as

Mloc = (ViVi/c
2)1/2, (27)

where c is local sonic speed. In Fig. 2, the dashed line
shows the pdf of Mloc obtained using 2563 data points of
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FIG. 2. Pdf of local Mach number (Mloc) from simulation A at
time t/τ = 1.56, where τ = 0.667 [52].
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Eulerian single-time statistics. On the other hand, the dotted
lines represent the pdf obtained from a sample of 10 000
fluid particles that have been identified initially and tracked
subsequently using the LPT from time t = 0 to t = 1.56τ .
This can be called Lagrangian single-time statistics. Clearly,
the agreement between Eulerian single-time statistics and
Lagrangian single-time statistics is excellent, indicating the
tracking and interpolation related calculations employed by
LPT are accurate enough. On this figure we have also
presented results from Samtaney et al. [52] (symbol ◦). Clearly,
our results show excellent agreement with that reported by
Samtaney et al. [52]. Based on the validations presented in
Figs. 1 and 2, we conclude that our Eulerian DNS database
and Lagrangian particle tracker are reliable enough to be
used to isolate and study the role of compressibility on
the Lagrangian statistics of vorticity–strain-rate alignment
dynamics, Eq. (15). The results of this study are presented in
Secs. V and VI. Our convergence study (results not presented)
shows that a sample size of 10 000 particles is adequate
for computing unconditional Lagrangian statistics, whereas
a sample size of 30 000 particles is found to be adequate for
accurately computing the Lagrangian statistics conditioned on
normalized dilatation and topology.

V. INFLUENCE OF MACH NUMBER

In Fig. 3, we present the alignment correlations of vorticity
vector with the α-eigenvector of strain-rate tensor from
simulations A, B, and C (Table II). Note that the quantity
〈[êα(tref) · êω(tref + t)]2〉 assuming a value: (i) 1/3 implies
no preferential alignment tendency between the two vectors,
(ii) lower than 1/3 implies the tendency of the two vectors to
align perpendicular to each other, and (iii) more than 1/3 is
indicative of the tendency of the two vectors to align parallel
to each other [33].

We start our discussion with Fig. 3(a), wherein we show
the evolution of 〈[êα(tref) · êω(tref + t)]2〉 with tref = 1.4τλ0 . In
all these simulation cases the evolution starts with somewhat
different values, however, all these values are below 1/3,
indicating the presence of some fluid elements which have the
two vectors possibly aligned perpendicular to each other. The
evolution of 〈[êα(tref) · êω(tref + t)]2〉 in all three simulations
first follows a monotonic increase and thereafter decays slowly
and appears to be settling down to a value of 1/3. The initial
monotonic increase lasts for about 0.2τλ0 and in the later phase
the correlation attains a value close to 1/3 over a time period of
about one τλ0 . This common trend seen in the three simulation
cases clearly demonstrates that just like the behavior seen
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·ê

ω
(t

+
t r

ef
)]

2

Incompressible
Mt = 0.3
Mt = 0.488

(d)

FIG. 3. Alignment of vorticity with α− eigenvector of strain-rate at reference times (a) 1.4τλ0 , (b) 2.1τλ0 , (c) 2.8τλ0 and (d) 5.0τλ0 from
simulations A, B, and C (Table II).
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in incompressible turbulence (simulation C and observations
made by Xu et al. [33] and Chevillard and Meneveau [42]),
in compressible turbulence too the vorticity vector shows a
distinct tendency to align with the initial direction of the
largest strain rate eigenvector (êα) over a time interval of about
0.2τλ0 . The subsequent decay to a value of 1/3 indicates that
in the second stage of evolution the orientation preferences
are gradually weakened and eventually lost by the end of
one τλ0 . Despite these similarities, however, the peak values
in compressible cases (A and B) are smaller than that in
incompressible turbulence. Thus, we infer that compressibility
seems to weaken the tendency of the two vectors to align
with each other. In Figs. 3(b)–3(d), we plot the evolution of
〈[êα(tref) · êω(tref + t)]2〉 from the same three simulations (A,
B, and C) but with different tref. In each figure all three simu-
lations show the same two stage evolution—sharp increase in
the first stage of evolution and subsequently a decay to a value
of 1/3. However, we observe that the differences between the
evolutions in compressible and incompressible cases seem to
reduce as the chosen reference time increases. In Fig. 3(d),
wherein tref has been chosen to have a very high value of 5τλ0 ,
the compressible and incompressible evolutions are almost
identical, indicating the negligible influence of compressibility
on the tendency of vorticity to align with the largest initial
strain-rate eigenvector. To further understand and explain the
behavior seen in Figs. 3(a)–3(d), in the next section we focus on
one of these compressible simulation cases (case A) and further
examine the vorticity alignment statistics as functions of (i) lo-
cal normalized dilatation (aii) and (ii) local flow topology (�).

VI. INFLUENCE OF TOPOLOGY AND NORMALIZED
DILATATION

In this section we first consider Lagrangian statistics
conditioned on topology in incompressible turbulence itself. In
light of this discussion, subsequently in Sec. VI B, we examine
how topology as well as dilatation influence the Lagrangian
statistics of 〈[êα(tref) · êω(tref + t)]2〉 in compressible turbu-
lence.

A. Influence of topology in incompressible turbulence

Figure 4 shows the evolution of 〈[êα(tref) · êω(tref + t)]2〉
conditioned upon initial (t − tref = 0) local topology (� =
UNSS, SNSS, SFS, and UFC) with tref = 2.1τλ0 . All results
are from simulation C (incompressible turbulence). Note
that previous studies, investigating one-time unconditioned
statistics of vorticity alignment, do not show any significant
preference of vorticity to align with the α eigenvector (for
example, Fig. 6 in Ashurst et al. [2]). This behavior can
be traced in Fig. 3(b), where the curve representing the
unconditioned statistics in incompressible turbulence (solid
line) shows a value close to 0.33 at t − tref = 0. However,
when the incompressible behavior is separately conditioned
on topology (�), significant influence of topology can be
seen on the value of 〈[êα(tref) · êω(tref + t)]2|�〉 at t − tref = 0
itself (Fig. 4). The SFS topology shows a higher value of
〈[êα(tref) · êω(tref + t)]2|�〉 at t − tref = 0, indicating that even
initially (t − tref = 0), the fluid elements with SFS topology
already have vorticity better aligned with the α eigenvector
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FIG. 4. Alignment of instantaneous vorticity and êα with tref =
2.1τλ0 conditioned on topology (�) from incompressible simulation
(case C).

than the fluid elements associated with other topologies. While
initial values of UNSS and SNSS do not show any preferential
alignment at t − tref = 0, UFC shows a distinct tendency of
vorticity and α eigenvector to be mutually perpendicular to
each other.

In Table III, we show the percentage population of each
of the four topologies in simulation C at t − tref = 0 (similar
results reported earlier by Suman and Girimaji [38]). From
Table III, we observe that at t − tref = 0, topology SFS has
the highest population, which is closely followed by UNSS
and UFC, whereas SNSS forms just about 9% of the total
population. We further observe that the population of SFS,
UNSS, and SNSS add up to approximately 75%, whereas
UFC is almost 25%. Thus the population-weighted average of
〈[êα(tref) · êω(tref + t)]2〉 can be expected to be close to 0.33—
which explains why the unconditional alignment of vorticity
and α eigenvector at t − tref = 0 does not show any preferential
alignment tendency, whatsoever.

Next we examine the evolution of 〈[êα(tref) · êω(tref +
t)]2|�〉 over a time interval of one τλ0 (Fig. 4). All four curves
show strong tendency to increase over a time interval of about
0.2τλ0 . UNSS, SNSS, and SFS topologies show a distinct
tendency of the vorticity vector to align with the initial α

eigenvector, with the highest tendency seen in SNSS topology
followed by SFS and UNSS. During the same time, however,
in UFC topology, pirouette effect completely nullifies the
initial orthogonal orientation of the vorticity vector with the
initial α eigenvector. Even though SNSS seems to be the most
conducive to allowing vorticity to align with the α eigenvector,
its contribution toward the overall unconditional statistics is
rendered limited by its smaller population in the flow field.

TABLE III. Percentage population of various topologies in
incompressible turbulence.

Flow field UNSS SNSS SFS UFC

Incompressible (case C) 30.77 8.94 35.61 24.67
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On the other hand, SFS and UNSS with its considerably
high alignment tendency combined with its high population is
clearly the main contributor toward shaping the unconditioned
behavior of 〈[êα(tref) · êω(tref + t)]2〉 as seen in previous studies
of incompressible turbulence [33,42].

Thus the major conclusions that we draw from this study
are: (i) even though at a given time, unconditional statistics of
alignment between the vorticity vector and the α eigenvector
has been previously found to be random, our study reveals
that the conditional tendency of 〈[êα(tref) · êω(tref + t)]2|�〉 is
considerably high in SFS, and in contrast considerably low in
UFC; (ii) at later times the tendency of the SNSS topology
to align the vorticity vector with the initial α eigenvector
is the highest among all topologies, followed by that of
SFS and UNSS. However, owing to their significantly higher
population, SFS and UNSS topology seem to be responsible for
shaping the previously observed [33,42] overall unconditional
tendency of the vorticity vector to align with the initial α

eigenvector in incompressible turbulence.

B. Influence of topology and dilatation
in compressible turbulence

In this section we examine the role of dilatation (aii)
and topology (�) in shaping the Lagrangian dynamics of
the vorticity–strain-rate alignment in compressible turbulence.
Results from simulation A (Table II) with tref = 2.1τλ0 are
employed for this examination. In Figs. 5(a)–5(e), the align-
ment correlations conditioned jointly on initial topology and
dilatation with tref = 2.1τλ0 are presented separately for each
topology. In each subfigure, the Lagrangian evolution is shown
separately for initially positive (aii > 0), negative (aii < 0),
and negligibly-small (|aii | ≈ 0) dilatation values. Note that
UFS exists only at aii > 0 and SFC exists only at aii < 0.
Plots for these two topologies (SFC and UFS) are shown in
Fig. 5(c).

We start our discussion with UNSS topology [Fig. 5(a)]. All
evolutions (aii > 0, aii < 0, and aii ≈ 0) start with an initial
value of 1/3—implying no preferential alignment tendency at
t − tref = 0. However, they all show enhanced alignment over
0.2τλ0 and subsequently decorrelate. Notably, no significant
influence of dilatation is observed. Similarly, in Fig. 5(b),
which shows statistics conditioned upon UFC topology, no
significant influence of dilatation is seen. Furthermore, the
behavior at aii > 0, aii < 0, and aii ≈ 0 for both UNSS and
UFC are almost the same as what is seen in incompressible
turbulence (simulation C, Fig. 4).

In Fig. 5(c) we present conditional statistics of UFS and
SFC topologies. UFS and SFC are two “new” topologies
that exist only in compressible flow field. UFS exists only
at positive dilatations, whereas SFC exists only at negative
dilatations. Both these topologies start with an initial tendency
of vorticity vector to be aligned perpendicular to the α

eigenvector. However, subsequently this tendency is weakened
leading to a statistically random state.

In contrast to UNSS and UFC [Figs. 5(a) and 5(b)], SNSS
and SFS [Figs. 5(d) and 5(e)] topologies seem to show
significant influence of initial normalized dilatation. While the
initially expanding (aii > 0) and contracting (aii < 0) fluid
particles with SFS topology show almost the same behavior as

seen in incompressible turbulence (simulation C, Fig. 4), the
fluid elements with initially negligible aii exhibit considerably
different evolution than what is seen in incompressible
turbulence. A similar trend is observed for SNSS topology
except for its contracting particles, which seem to lie between
expanding and zero dilatation particles. However, for both
of these topologies (SNSS and SFS), the fluid elements with
initially negligible normalized dilatation show a considerably
reduced tendency of the vorticity vector to align with the initial
direction of the α eigenvector. Based on this observation, we
now attempt to explain the overall unconditional statistics of
vorticity and α-eigenvector alignment tendency seen earlier in
Fig. 3.

Since UNSS and UFC do not show any departure from
their behavior seen in incompressible turbulence [Figs. 4, 5(a),
and 5(b)], it is plausible to conclude that these topologies do
not have any role in modifying the unconditioned behavior of
〈[êα(tref) · êω(tref + t)]2〉 in compressible turbulence (Fig. 3).
The new topologies UFS and SFC, on the other hand,
do not show any distinct enhanced tendency to align the
vorticity with initial direction of α eigenvector, and since
they are nonexistent in the incompressible case (simulation
C) their presence can potentially weaken the alignment
tendency of vorticity vector and α eigenvector in compressible
turbulence. However, their population percentage is small
(approximately 7%, see Table IV), and thus their influence
on the unconditional statistics of Fig. 3 is expected to
be limited. The major topologies responsible for reducing
the pirouette effect in compressible turbulence seem to be
SFS and SNSS associated with those fluid elements having
initially negligible dilatation (aii ≈ 0). This is because the
values of 〈[êα(tref) · êω(tref + t)]2|aii≈0,�=SNSS〉 [solid line in
Fig. 5(d)] and 〈[êα(tref) · êω(tref + t)]2|aii≈0,�=SFS〉 [solid line
in Fig. 5(e)] are significantly less than their corresponding
values in incompressible turbulence. Note that among SFS and
SNSS topologies, the percentage population at zero dilatation
(Table IV) for SFS is quite significant (approximately 40%),
whereas the population of SNSS is very small (approximately
8%).

In Table V, we also show the percentage population of fluid
particles which have positive, negative, and zero dilatations
from simulation A at t − tref = 0. We observe that the fluid
particles having zero dilatation at tref constitute almost one-
third of the total population. Thus, based on our analysis
and discussion, we conclude that the moderating influence
of compressibility on the pirouette effect in compressible
turbulence is due to the substantial reduction of 〈[êα(tref) ·
êω(tref + t)]2〉 of those fluid elements that have aii ≈ 0 and
SFS topology at t = tref.

VII. MODELING IMPLICATIONS

As discussed in Sec. II, the velocity gradient evolves under
the influence of three different mechanisms: self-deformation
of velocity gradient, pressure Hessian, and viscous action.
From the Lagrangian point of view, the pressure Hessian
and viscous terms are unclosed, and thus they need to be
modeled. In the past, several studies have been performed
wherein the central focus was to develop Lagrangian models
for velocity-gradient evolution equation [16,18,20–25]. For
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FIG. 5. Alignment correlations conditioned on dilatation and topology obtained from simulation A using tref = 2.1τλ0 . (a) UNSS, (b) UFC,
(c) UFS/SFC, (d) SNSS, and (e) SFS.

incompressible turbulence, the state-of-the-art model is due
to Chevillard et al. [22]; which is commonly known as
recent-fluid-deformation-closure (RFD) model.

In compressible turbulence, the modeling task is more
complicated as compared to incompressible turbulence be-
cause of the following two reasons: (a) the pressure Hessian
behaves as an autonomous quantity that is governed by its

own evolution equation, and (b) in the limit of low Mach
number (incompressible limit) the model should relax to the
strictly incompressible case. The first model for compressible
turbulence was proposed by Suman and Girimaji [23,24],
which was further improved by Danish et al. [25].

In the past, typically, the credibility of such La-
grangian models—for both incompressible and compressible
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TABLE IV. Percentage population of various topologies available
at zero, positive, and negative dilatations from simulation A at tref =
2.1τλ0 .

Dilatation-sign UNSS SNSS SFS UFC UFS SFC

Zero (|aii | < 0.05) 28.85 7.71 39.88 23.56
Positive (aii � 0.05) 34.45 6.21 29.92 21.89 7.50
Negative (aii � −0.05) 23.18 15.59 31.42 22.91 6.88

turbulence—are established by comparing their performance
with DNS (Eulerian) results, like alignment of vorticity with
instantaneous strain-rate and pressure Hessian eigenvectors,
symmetric and nonsymmetric pressure Hessian, etc. [1,25].
Since the nature of these models is inherently Lagrangian,
a legitimate test of their performance would be to compare
model results directly with the Lagrangian results. The recent
finding of the pirouette effect has provided an excellent test
bed to assess the potential of such a model with reference to the
Lagrangian statistics. Chevillard and Meneveau [42] showed
that the model based on the RFD approach very well recovers
the pirouette effect of turbulence; however, the model lacks
in capturing the alignment tendency of vorticity vector with
the eigenvectors of pressure Hessian tensor. Thus, the model
based on RFD has a scope of improvement in terms of pressure
Hessian tensor. Similarly, the results of the present work can
also be leveraged to asses and improve the existing Lagrangian
models of velocity-gradient tensor for incompressible as well
as compressible turbulence.

Unlike incompressible turbulence, the antisymmetric por-
tion of the pressure Hessian tensor in a compressible flow
field is nonzero, which in turn influences the dynamics of
vorticity Eq. (12). Our results from this study show that
the conditional statistics of vorticity dynamics are influenced
directly by local topology and normalized dilatation. Thus,
it is plausible to infer that prospective modeling conjectures
for the topology- and dilatation-conditioned pressure Hessian
behavior may prove to be more successful than the usual
approach of modeling the unconditional form of the tensor
directly as done in previous works [24]. Relevant examples
of such a “conditional” modeling strategy are the works done
by Wilczek and Meneveau [39] and by the authors [44] in
modeling unclosed scalar-gradient–velocity-gradient interac-
tions in compressible turbulence. However, details regarding
similar modeling proposals for the pressure Hessian tensor in
compressible turbulence require further research and are not
the focus of this paper.

TABLE V. Percentage population of fluid particles which have
zero, positive, and negative dilatations from simulation A at tref =
2.1τλ0 .

Percentage
aii population

Zero (|aii | < 0.05) 37.57
Positive (aii � 0.05) 32.28
Negative (aii � −0.05) 30.14

VIII. CONCLUSIONS

With the motivation to understand the influence of com-
pressibility on vorticity dynamics and its interactions with the
strain-rate tensor, in this work, we specifically investigate the
so-called pirouette effect of turbulence (Lagrangian evolution
of the alignment between instantaneous vorticity vector and
the initial direction of the largest strain-rate eigenvector). We
perform the study by using direct numerical simulation results
of compressible decaying isotropic turbulence. To extract the
relevant Lagrangian statistics, we employ a cubic-spline-based
Lagrangian particle tracker in conjunction with “almost” time-
continuous DNS datasets. Lagrangian statistics of vorticity
alignment with the initially largest strain-rate eigenvector
obtained from two different compressible simulations are
presented. These two compressible simulations differ only
in terms of initial turbulent Mach number. Results from
incompressible turbulence are also included to contrast and
clearly identify the differences between incompressible and
compressible turbulent flow fields.

We find that, like in incompressible turbulence, the vorticity
shows a distinct tendency to align with the initial direction
of the largest strain-rate eigenvector. However, the extent of
this alignment tendency seems to be weaker in compressible
turbulence as compared to incompressible flow. To further
understand the reasons behind this moderating effect of
compressibility, we examine the Lagrangian statistics of the
alignment between the instantaneous vorticity vector and the
initial strain-rate eigenvector conditioned upon local flow field
topology and normalized dilatation. Toward this goal, we first
examine the influence of topology on alignment statistics
in incompressible turbulence itself, and thereafter leverage
this understanding to develop better insight into compressible
turbulence.

For incompressible turbulence, the conditional alignment
statistics exhibit a strong influence of topology. Among
the possible topologies (UNSS, SNSS, SFS, and UFC) in
incompressible turbulence, the topology SNSS is observed
to be associated with the strongest tendency of the vor-
ticity vector to align with the initially largest strain-rate
eigenvector followed by SFS and UNSS topologies. On
the other hand, the topology UFC shows a distinctly dif-
ferent alignment tendency, where the vorticity is found to
be oriented perpendicular to the initially largest strain-rate
eigenvector.

Upon performing a similar analysis on alignment tendency
of compressible turbulence, we find that the alignment ten-
dency is not only affected by topology but also by normalized
dilatation. Fluid elements when categorized based on the
initial state of dilatation, aii > 0, aii < 0, aii ≈ 0, demonstrate
that while the initially expanding (aii > 0) and contracting
(aii < 0) fluid elements for a given topology have almost iden-
tical alignment tendency as seen in incompressible turbulence,
the fluid elements with initially small dilatation (aii ≈ 0) show
significant differences. These differences are most pronounced
in SFS and SNSS topologies. In fluid elements with initial
aii ≈ 0, both these topologies show a substantially weaker
tendency for vorticity to align with the largest eigenvector.
However, the percentage populations of SFS and SNSS at zero
dilatation indicate that the contribution from SNSS would be
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very small as compared to SFS. Thus, based on our study, we
conclude that the presence of fluid elements with initial aii ≈ 0
and SFS topology are responsible for the overall moderation of
the alignment tendency of the vorticity vector in compressible
turbulence.
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