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Many approaches of coarse graining have been developed under the names of Cosserat theory or polar-fluid
theory for those materials in which some component elements undergo nonaffine deformations, such as elastic
materials with inclusions or granular matters. For the complex elements such as living cells, however, the
microscopic variables and their dynamics are often unknown, and there has been no systematic theory of
coarse graining from the microscales nor the formulas like the Irving-Kirkwood formula that constitutes the
macroscopic stress or couple stress in terms of some microscale quantities. We show that, for the quasi-steady
states, the coarse-graining procedure must generally provide us with the Cosserat-type balance equations as long
as the procedure keeps track of the conservation of linear and angular momenta, and that the fluxes of these
conserved quantities should generally be expressed in the Irving-Kirkwood-type formulas, where the interparticle
distance or forces and torques should be replaced by those associated to the pair of neighboring coarse-graining
volumes. This framework, which refers to no particular microvariables or dynamics, is valid for active complex
matters out of equilibrium and with any multibody interactions.
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I. INTRODUCTION

The Cosserat media [1], or the micropolar fluid [2], is a
continuum description of fluid beyond the standard theories of
elasticity or hydrodynamics [3,4] in the sense that the former
description contains a characteristic scale that reflects the
mesoscopic nonaffine deformation of the constituent materials.
The nonaffine nature at small scales is reflected by explicit
inclusion of angular momentum flux and also the accompanied
antisymmetric part of the momentum flux. When we focus on
the macroscopically quasistatic processes, the Cosserat theory

represents the local balance of forces and torques by ∇ · ↔
G =

�0 and ∇ · ↔
C = −e :

↔
G, where

↔
G and

↔
C are, respectively,

the macroscopic momentum flux and macroscopic angular
momentum flux. e is the Levi-Civita pseudo-tensor, and the

product “:” is such that (e :
↔
A)α = ∑

β

∑
γ eαβγ Aβγ in the

cartesian component representation.
Historically, one of the most known microscopic expres-

sions for the macroscopic momentum flux, or for the stress
tensor, is called the Irving-Kirkwood (IK) formula, also called
the virial stress formula [5,6]. Their formalism dealt with
the molecules in liquid phase interacting through binary

interaction potential. The IK formula reads
↔
G = (ρz/2)〈�ri,j ⊗

�fi,j 〉, where the interparticle distance �ri,j and the interparticle
potential force, �fi,j , constitute a tensor multiplied by the
number density of the particle pairs, ρz/2, and 〈·〉 denotes
the average over the coarse-graining scale. ( �X ⊗ �Y denotes
the tensor whose αβ component is XαYβ .) There have been
many extensions done of this formula, for example, to inelastic
grains [7] and to polyatomic constituent molecules [8]. For the

angular momentum flux
↔
C a similar formula has been derived
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from the equations of motion, where the interparticle force
�fi,j is replaced by the interparticle torque �mi,j . For example, in

Ref. [8] CV in the second last equation in Sec. II B corresponds

to
↔
C.

The recent interests in the systems of densely packed
active elements such as amoeba cells motivate the extension
of the theoretical frameworks connecting the microscopic to
macroscopic scales. In those complex systems the cells contact
among them through extended and dynamic interfaces and
the interactions among them naturally contain the more than
two-body interactions, where the “body” means the individual
cell. For such systems we often don’t know well-defined
microscopic dynamical variables or the microscopic model
behind the nonequilibrium force generation and responses.
Even if we knew them, they could be very complicated. Under
these circumstances, we would have difficulties in deriving
the macroscopic dynamics directly from very microscopic
models. It would, therefore, be desirable to have a systematic
approach that tells (1) what is the canonical form of the
flux balance equations at the macroscopic level, and (2) what
quantities at the mesoscopic scale (i.e., the cell scale) should
be given to calculate those macroscopic fluxes. In short, a new
toolbox is needed. Once such a basic toolbox is established, the
remaining task is to give a suitable model for those mesoscopic
quantities, using either those general constraints imposed by
spatiotemporal symmetry and causality [1,9] or some simple
models as was done for the granular materials [10].

In the present paper, we show a toolbox that will meet
the above scenario. We show the two things: First, whenever
the conservation laws of linear and angular momenta are
correctly observed, the Cosserat-type equations are the unique
relations connecting the macroscopic linear momentum flux
↔
G and angular momentum flux

↔
C up to the lowest order

of the small ratio between the coarse-graining scale and
the characteristic scale over which the macroscopic fluxes
vary. Second, with whatsoever microscopic entities and their
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dynamics, the macroscopic fluxes
↔
G and

↔
C are expressed by

the IK-type formula, which acts as general mapping rules from
the mesoscopic flow rates of momentum �F and of angular

momentum �M to the above fluxes,
↔
G and

↔
C, respectively.

More concretely, the momentum flux
↔
G takes the form

↔
G =

(ρZ/2)〈�εi,j ⊗ �Fi,j 〉, where �εi,j and �Fi,j are, respectively, the
center-to-center distance and the momentum flow rate between
the pair of neighboring volumes of coarse graining, or “cells,”
and ρZ/2 is the density of such pairs in the unit volume.

Likewise the flux
↔
C takes the form

↔
C = (ρZ/2)〈�εi,j ⊗ �Mi,j 〉,

where �Mi,j is the angular momentum flow rate between
the neighboring coarse-graining “cells.” Although the above
formulas look like nothing but the original IK formula, it is not
the case: The “cells” with respect to which we measure �εi,j ,
�Fi,j , and �Mi,j are the hypothetical spatial domains adapted

to our purpose of coarse graining, while the conventional IK
formula refers to the specific particles. Our formalism applies
to both the discrete particle systems and the continuum ones
which are either passive or active. The implication of these
differences is explained in the final section in the context
of the living cellular aggregates. Throughout this paper we
discuss only the quasi-static case where the inertia effects are
negligible.

The organization of the paper is as follows. In the next
section (Sec. II) we introduce the coarse-graining “cells”
and the microscopic balances of momentum flux, then we
derive the balance equations of linear and angular momentum
flows at the “cell” level. In Sec. III we introduce what
we call the neighbor distribution function, ρ̂2FM [Eq. (12)],
which characterizes the mesoscopic geometry and momentum
flows on the packing of coarse-graining “cells.” In Sec. IV
we first justify the replacement of the empirical distribution
function, ρ̂2FM, by its statistical average at each spatial
position. Then we derive our main results, or the new toolbox
mentioned above. The Cosserat-type balance equations for the

macroscopic momentum and angular momentum fluxes,
↔
G and

↔
C, will be derived under the IK-type definition of these fluxes.
In the concluding section, Sec. V, after summarizing our work,
we mention very briefly an application of our framework to
the aggregate of living cells Dictyostelium discoideum without
going into details of the modeling of ρ̂2FM. The appendices
provide details of the calculations in the main text.

A remark is in order to avoid confusions about the termi-
nology. We use in this paper the word mesoscopic to mention
those quantities that characterize the “cell” interfaces such as
the flow rates, �Fi,j , �Mi,j , as well as the “cell-cell” distance, �εi,j ,
while in the original IK formula the corresponding quantities,
�fi,j and �ri,j , are microscopic, whose (Newtonian) dynamics is

explicitly specified. This usage of the word mesoscopic would
be a common one in the community of soft materials, which
deals with the scales around μm as mesoscopic ones. On the
other hand, the community of kinetic theory might reserve
this word for those quantities associated to the statistically
self-averaging volume (the � discussed in Sec. IV A), such
as ρ, Z, or the two-body distribution functions. In the
latter context the above-mentioned flow rates could be called
submesoscopic quantities.

II. BALANCE LAWS AT MICROSCOPIC LEVEL AND AT
MESOSCOPIC, “CELL,” LEVEL

A. Medium and “cell”

Our framework does not start with microscopic dynamical
models but with the introduction of the mesoscopic scale
over which we integrate the momentum flux. As for the
microscopic scale we assume only the presence of the quasi-
static microscopic momentum flux, which will be introduced
later (Sec. II B). We regard the medium of our interest
as a hypothetical three-dimensional packing of the closed
compartments, which we shall call “cells.” The packing
can be disordered and slightly inhomogeneous in size. The
typical scale of the “cells” should be chosen according to the
modeling facility; if the material is an aggregate of amoeba,
its constituent (true) cell could be chosen as “cell.” Or if a
group of molecules or grains maintains an identity of cluster,
the “cell” could be this cluster. The only condition on the
“cell” is that its typical size is well below the characteristic
spatial scale at which the macroscopic state varies (Sec. IV).
Through Sec. III, however, all the descriptions below are
general, and the size of the “cells” is arbitrary. Hereafter, we
will write simply cell instead of “cell” unless there is a risk of
confusion.

We distinguish each cell by an index, i. We assume that
there is no interior free surfaces of these cells, unlike packed
granular media. We denote by �ri the center of volume of the
ith cell. We also denote by �i the space occupied by the ith
cell. The border of this volume, ∂�i, does not need to be of
polyhedral shapes, and the number of the immediate neighbor
cells for each cell does not need to be the same for all the cells.

To any spatial domain �, either large or small, we can
associate its “closure” domain, which we denote by �̃, as
the union of �i of those cells whose center belong to �. In
equation form, it reads

�̃ ≡
⋃
�ri∈�

�i,

or schematically it looks like Fig. 1.

FIG. 1. Schematic definition of �̃ (bounded by thick lines) for a
given domain � (bounded by dashed curve). Cells are represented by
2D polygons, and their centers inside � are marked by the thick dots.
Thin lines are the “internal” cell-cell interfaces which do not belong
to the border of �̃. In reality the cells are three-dimensional, and the
cell-cell interfaces may not be flat.
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B. Microscopic description of the momentum balances

We denote by
↔
G the microscopic momentum flux tensor. It is

defined such that
↔
G · d �A(�r) gives the flow rate of momentum

across the oriented infinitesimal surface element, d �A(�r), at
the position �r . We ignore completely the convective parts the
linear or angular momenta which are carried by the inertia
or moment of inertia, respectively. (We assume the existence
of such microscopic description with microscopic but finite
spatiotemporal resolutions.) Our basic starting point is the
conservation laws of momentum and angular momentum,

∇ · ↔
G t = 0, 0 = e :

↔
G t , (1)

where t means to take the transposition. The second equation

is nothing but the symmetry,
↔
G = ↔

G t , but we wrote the above
in a form similar to the final Cosserat form summarized in the
final section. In either form, it means that the description by
↔
G is detailed enough that the balance of angular momentum
can be expressed by the linear momentum flux alone [3]; that
is, the torque on each surface element d �A(�r) is ignorable.
In the setup thus defined, the quasistatic conservation of the
momentum and angular momentum over the ith cell reads

∫
�r∈∂�i

↔
G · d �A(�r) = 0, (2)

∫
�r∈∂�i

�r ∧ ↔
G · d �A(�r) = 0, (3)

where the integral is done over the whole boundary ∂�i of the
ith cell occupying the volume �i, and d �A(�r) is the outward
area element at the position �r(∈ ∂�i). We used the Gauss
theorem of integration to derive (2) and (3) from (1).

C. Coarse graining of momentum flux: “Cell”-level description
of momentum balances

We rewrite the above conservation laws (2) and (3) into a
reduced form to the packing of the cells. In other words we
move from the space of �r to the space of the indices of the
cells, {i}.

Definition of intercellular force Fi,j and intercellular torque
�Mi,j across the cell boundary: When the ith and j th cells share

an interface, ∂�i ∩ ∂�j ( �= ∅), then the force and torque that
the ith cell applies to the j th cell through this interface, which
we denote by �Fi,j and �Mi,j , respectively, are given by

�Fi,j ≡
∫

�r∈∂�i∩∂�j

↔
G · d �Ai→j (�r), (4)

�Mi,j ≡
∫

�r∈∂�i∩∂�j

[�r − (�ri + �ai,j )] ∧ ↔
G · d �Ai→j (�r), (5)

�ai,j =
∫
∂�i∩∂�j

(�r − �ri)dAi→j (�r)∫
∂�i∩∂�j

dAi→j (�r)
, (6)

where the surface integral is done over the interface, ∂�i ∩
∂�j , with d �Ai→j (�r) being the area element at �r, oriented from
the ith cell toward the j th cell. The vector �ai,j is the relative
position from �ri to the areal center of the interface, ∂�i ∩ ∂�j ;
see Fig. 2. In this figure the center-to-center vector �εi,j is also

εijaij

aji

Sij

i

j

FIG. 2. Definition of �ai,j and �εi,j . The common interface ∂�i ∩
∂�j is denoted by �Sij . The center of Sij is written as �ri + �ai,j and as
�rj + �aj,i , where �ri and �rj are the center positions of the cell i and cell
j , respectively.

introduced as

�εi,j = �rj − �ri, (7)

which satisfies the geometrical relation, �ai,j − �aj,i = �εi,j and
will eventually take place of �ai,j and �aj,i in the final results.

We can see that the torque �Mi,j in (5) is measured with
respect to �ri + �ai,j , i.e., the center of the interface, ∂�i ∩ ∂�j .

While the apparent �ri in (5) and that in (6) cancel with each
other, we retain them since the physical meaning of the torque
�Mi,j is clearer in this form. The integrals over each interface

in (4) and (5) realize the first step of the coarse graining of

momentum by masking all the detailed information in
↔
G except

for its zeroth ( �F ) and first ( �M) moments while keeping track
of the conserved nature of the linear and angular momentum.

Reciprocity relations for �Fi,j and �Mi,j : The defini-
tions (4) and (5) together with the trivial geometrical identity,
d �Ai→j (�r) + d �Aj→i(�r) = �0, lead to the following reciprocity
relations about the interface between the neighboring cell pair,
i and j :

�Fi,j + �Fj,i = �0, �Mi,j + �Mj,i = �0. (8)

These express the conserved nature of momentum flux,
or Newton’s third law, across the mesoscopic cell-cell
interface.

Kirchhoff-type laws for �Fi,j and �Mi,j : The conserved
nature of momentum flux can also be expressed for each
coarse-graining cell. The definitions (4) and (5) with the
simple identity, ∂�i = ∪j (∂�i ∩ ∂�j ), allows us to rewrite
the balance laws, (2) and (3), into the following Kirchhoff-type
laws:

(i)∑
j

�Fi,j = �0, (9)

(i)∑
j

( �Mi,j + �ai,j ∧ �Fi,j ) = �0, (10)

where the sum
∑(i)

j runs over all the cells indexed by j for
which the ith cell is an immediate neighbor. Notice that the
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flows �Fi,j or �Mi,j in (8) or (9) and (10) do not imply exclusively
the two-body interactions between the cell pairs.

Identities for an arbitrary domain �: Using each coarse-
graining cell as a building block, the Kirchhoff-type law for
a single cell can be extended to any closure domain, �̃, that
is [11],

∫
�r∈∂�̃

↔
G · d �A(�r) =

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

�Fi,j

⎫⎬
⎭,

∫
�r∈∂�̃

�r ∧ ↔
G · d �A(�r) =

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

( �Mi,j + �ai,j ∧ �Fi,j )

⎫⎬
⎭,

(11)

where the integrals over the cell-cell interface inside of �̃ on
the left-hand side cancel among them. On the right-hand side
such cancellation is implied by the reciprocity properties given
by (8).

III. EMPIRICAL “NEIGHBOR DISTRIBUTION
FUNCTION”

The next and crucial step is to rewrite (9) and (10)
for a cell �i in the forms which are more adapted to the
continuous field representation. The sums in (9) and (10)
contain delicate cancellations which are closely associated to
the reciprocity, (8). In order to get rid of such cancellations, our
idea is to use a local “neighbor distribution function,” ρ̂2FM .

Definition of neighbor distribution function, ρ̂2FM : This
is an empirical and simultaneous distribution function of the
center distance �ε, the cell-to-cell force �F , and cell-to-cell
torque �M associated to a cell at the position �r and its immediate
neighbor:

ρ̂2FM (�ε, �F, �M,�r) ≡
∑

i

(i)∑
j

δ(�ε − �εi,j )

× δ( �F − �Fi,j )δ( �M − �Mi,j )δ(�r − �ri).

(12)

(The word “empirical” is used in the sense of the particular
sample of statistical ensemble, and throughout this paper, we
will use the “hat” symbol like Â to denote those empirical
quantities which are before the statistical averaging.)

For the simplicity of notation, we will also use the
“peripheral” or partially integrated neighbor distribution
functions, such as ρ̂2F (�ε, �F,�r) ≡ ∑

i

∑(i)
j δ( �F − �Fi,j )

δ(�ri − �r)δ(�rj − �ri − �ε), and ρ̂2M (�ε, �M,�r) ≡ ∑
i

∑(i)
j δ( �M −

�Mi,j )δ(�ri − �r)δ(�rj − �ri − �ε). Also we will use the
purely geometrical neighbor distribution, ρ̂2(�ε,�r) ≡∑

i

∑(i)
j δ(�ri − �r)δ(�rj − �ri − �ε). The further integration

of ρ̂2(�ε,�r) over �ε yields
∫

ρ̂2(�ε,�r)d3�ε = (
∑(i)

j 1)
∑

i δ(�ri − �r),

where the multiplicative factor,
∑(i)

j 1, is the number of
neighbors of the ith cell, and the remainder defines the
empirical single-cell density function, ρ̂1 :

ρ̂1(�r) ≡
∑

i

δ(�ri − �r). (13)

The neighbor density distribution, ρ̂2FM, contains the detailed
information about �εi,j = �rj − �ri , �Fi,j and �Mi,j . This function
should be well distinguished from any weighting function that
is introduced for the purpose of smoothing. The right-hand
sides of (11) can be rewritten as moment integrals of ρ̂2FM .
Leaving the derivation to Appendix A, the result reads
∫

�r∈∂�̃

↔
G · d �A(�r) =

∫
�r∈�

[∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε

]
d3�r,

(14)
∫

�r∈∂�̃

�r ∧ ↔
G · d �A(�r)=

∫
�r∈�

[∫ ∫ ∫ (
�M + 1

2
�ε ∧ �F

)

× ρ̂2FM (�ε, �F, �M,�r) d3�ε d3 �M d3 �F
]
d3�r.

(15)

Redundancy of ρ̂2FM (�ε, �F, �M,�r): By looking at the pair of
neighboring cells at �r and at �r + �ε in two ways, the reciprocity
relations (8) are expressed as a redundancy property of the
neighbor distribution function:

ρ̂2FM (�ε, �F, �M,�r) = ρ̂2FM (−�ε, − �F, − �M,�r + �ε). (16)

The derivation is given in Appendix B, but the contents
may be intuitively understandable. The associated peripheral
distributions inherit the similar relations:

ρ̂2F (�ε, �F,�r) = ρ̂2F (−�ε, − �F,�r + �ε), (17)

ρ̂2M (�ε, �M,�r) = ρ̂2M (−�ε, − �M,�r + �ε). (18)

The redundancy relation implies the following identities,
whose derivations are given in Appendix C:

∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε

= 1

2

∫ ∫
�F [ρ̂2F (�ε, �F,�r) − ρ̂2F (�ε, �F,�r − �ε)] d3 �F d3�ε,

(19)
∫ ∫

�ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r) d3 �F d3�ε

+
∫ ∫

�ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r − �ε) d3 �F d3�ε = 0. (20)

These identities will be used below (Sec. IV) to get rid of the
delicate cancellations in the Kirchhoff-type laws, (9) and (10).

IV. MACROSCOPIC FLUXES OF MOMENTUM AND
ANGULAR MOMENTUM

A. Statistically averaged neighbor distributions

As long as the size of the coarse-graining cells is properly
chosen (see Sec. II A), the statistical properties of the neighbor
distribution function ρ̂2FM should be mostly homogeneous
over the spatial domain � whose diameter is well above the
former size but, at the same time, well below the characteristic
spatial scale at which the macroscopic state varies. When a
function including ρ̂2FM as a factor is integrated over the whole
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�ε, �F , and �M domains but limited over the �r domain �, we can
replace ρ̂2FM by its statistical average as a good approximation
because of the law of large numbers. We will denote by ρ2FM

without “ ˆ ” the statistical average of ρ̂2FM. We will use this
averaged distribution function with the understanding that
all the macroscopic properties can be calculated through the
integral over the above mentioned semimacroscopic domain
� (or its closure �̃); see, for example, (14) and (15). The
statistically averaged versions of the peripheral distribution
functions, ρ2F (�ε, �F,�r), ρ2M (�ε, �M,�r), ρ2(�ε,�r), and ρ1(�r), are
also introduced. Under the same premise, the empirical number
of cell neighbors, Ẑ, is replaced by its statistical average, Z(�r),
which is defined through

Z(�r)ρ1(�r) ≡
∫

ρ2(�ε,�r)d3�ε. (21)

The statistically averaged neighbor distribution function,
ρ2FM, and its peripheral distributions should be slowly varying
functions in space, �r . They, therefore, allow the gradient
expansion in �ε; that is, the spatial derivative operation with
respect to �r , which we denote by ∇, satisfies the property,
‖�ε · ∇‖ � 1, where ‖�ε‖ is the typical center-to-center distance
of neighboring cell pairs. We will use this expansion below.

B. Expression for the macroscopic fluxes

In the integral conservation relations, (14) and (15), we
apply the redundancy relations (17) and (18), in the way
shown in (19) or its homologous form with �F and �M being
exchanged. Then we replace the empirical distributions by
the statistical averaged ones to apply the gradient expansion
mentioned above. The higher order terms in the expansion
are much smaller than the first order, which we can verify
using the identity (20). Leaving the details of derivation in
Appendices D and E, the results read as follows.

For the macroscopic momentum flux
↔
G, it satisfies the local

momentum conservation,

∇ · ↔
G = �0, (22)

under the definition

↔
G(�r) ≡ Z(�r)ρ1(�r)

2
〈�ε ⊗ �F 〉2(�r), (23)

where 〈ψ〉2(�r) stands for the average of ψ with the statistically
averaged neighbor distribution function ρ2FM :

〈ψ〉2(�r) ≡
∫ ∫ ∫

ψ ρ2FM (�ε, �F, �M,�r) d3 �M d3 �F d3�ε∫ ∫ ∫
ρ2FM (�ε, �F,�r) d3 �M d3 �F d3�ε

=
∫ ∫ ∫

ψ ρ2FM (�ε, �F, �M,�r) d3 �M d3 �F d3�ε
Z(�r)ρ1(�r)

. (24)

For the macroscopic angular momentum flux
↔
C, it satisfies

∇ · ↔
C = −e :

↔
G, (25)

under the definition

↔
C(�r) ≡ Z(�r)ρ1(�r)

2
〈�ε ⊗ �M〉2(�r). (26)

While Eqs. (23) and (26) used the factorization of Z(�r) and
ρ1(�r) to conform with the original IK formula, what we are to
calculate is the moments of ρ2FM (�ε, �F, �M,�r), such as

∫ ∫ �ε ⊗
�F ρ2F (�ε, �F,�r) d3 �F d3�ε in Eq. (D2). Under a quasi-uniformly

packed compartments, {�i}, the factors Z(�r) and ρ1(�r) are
mostly uniform and constant. The relevant macrovariables are
rather the flows of mass, momentum and angular momentum,
and some order parameters such as the mean polarity of the
cellular units.

V. SUMMARY AND DISCUSSION

We recognized that, in the media undergoing the quasi-
steady processes, (1) the Cosserat-type equations provide with
the general principle of macroscopic characterization of the
linear and angular momenta, (22) and (25), and that (2) the
Irving-Kirkwood-type or virial-type formulas provide with
the general principle of transformation of these momenta
from mesoscopic to macroscopic level, (23) and (26), where
�F and �M are, respectively, the flow rate of linear and

angular momenta that pass through the hypothetical interface
between a pair of coarse-graining cells with �ε being their
center-to-center distance. The average 〈·〉2(�r) defined by (24)
essentially samples over many pairs of coarse-graining cells
around the given position �r with Z(�r)ρ1(�r)/2 being the spatial
density of such pairs. For those complex and nonequilibrium
systems whose microvariables and dynamics are unknown or
too complicated, it is a matter of choice whether we take a
completely phenomenological approach to correlate directly
the macro-flux variables to the macrostate variables (e.g.,
Refs. [12,13]), or, otherwise, we take an indirect approach
that takes advantage of the statistical mechanics, which is our
choice.

Our results are distinguished from the original Irving-
Kirkwood (IK) formulas: We relate the macroscopic fluxes
to those flows of momentum and angular momentum which
are attributed to each mesoscopic cells, or volume elements,
over which we carry out our first step of coarse graining.
Unlike the conventional scheme the variables such as distance
vectors, forces, or torques among the microscopic model
elements (i.e., the molecules or grains) do not appear there. Our
IK-type formulas consist of, instead of the interparticle force
or torque, the linear and angular momentum flows across the
interface separating the neighboring coarse-graining cells and,
instead of the interparticle distance, there appears the distance
between the centers of these cells. Although our theory is also
a “bottom-up” construction, we coarse grain the mesoscopic
momentum flux instead of any microscopic dynamical model.
The coarse graining without microvariables or dynamics is
possible because we deal with just as many components for
the two conserved vector fields to derive the two vectorial
conservation laws.

Once the correct IK-type formulas for the fluxes are given,
they naturally satisfy the Cosserat-type equations whatever
the microscopic ingredients. This logic is consistent with the
“microscopic” Cosserat equations in Ref. [2] [the Eqs. (1.4.12)
and (1.4.13) in Part I], where the authors obtained as an equiv-
alent form of the balance equations of momentum and angular
momentum without coarse graining but with a continuum
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field theory of polar fluid containing the microscopic angular
momentum density (“spin”).

Our work thus reveals the universality of Cosserat-type
equations and Irving-Kirkwood-type formulas through an
abstract procedure of the coarse graining. Although being
much in a narrower sense than the Newton’s laws or the laws
of thermodynamics as general principles, we assert that the
Cosserat-type equations and Irving-Kirkwood-type formulas
are still principles that apply to a wider class of phenomena
than have been considered previously. In these principles, the
size of the coarse-graining cell could be different from that
of the constituent individual elements of the system when, for
example, those elements form local clusters.

An important outcome of our finding is its applicability to
the systems of densely packed active elements such as amoeba
cells. In fact, it was such system that first motivated us to
develop the present framework. As mentioned in Sec. I, the
interaction and dynamics of such a system is usually very
complicated. Even under such circumstances our theory can
still tell that (1) the Cosserat-type equations in terms of the

fluxes,
↔
G and

↔
C, are the canonical representation of the flux

balance at the macroscopic level and that (2) it is the flows
�F and �M associated to the coarse-graining cell interfaces

that should be found in order to calculate
↔
G and

↔
C. Our

framework thus provides a useful toolbox for those domains of
research which have not been exploited by the kinetic theories
of gases and granular matters or the theory of continuum with
inclusions.

In order to apply to specific setup, we need to supplement
with proper boundary conditions adapted to the characteristic
of the system. Unlike the conventional hydrodynamics of
viscous fluids, the no-slip boundary condition is not a priori
assured, and we should carefully choose the appropriate ones
case by case.

Although the case studies are not our purpose in the present
paper, we briefly introduce a comparison between the theory
using the present framework [16] and the experiments done
about the force generation by the aggregate of Dictyostelium
discoideum [17]. The experiments have measured the stall
force of the aggregate when its collective movement is impeded
by an adjustable external force. The stall force was found
to depend approximatively linearly on the volume of the
aggregates [14,15]; see Fig. 3(a). This result was intriguing
because, if the locomotive cells were simply packed with
an aligned polarity, only those cells at the surface of the
aggregate could contribute to the locomotive force, implying
the proportionality of the stall force to the contact area with
the substrate surface. In the theory [16] the effect of the
local deviations of the polarity of cells in the presence of the
substrate is taken into account. The resultant linear and angular
momentum flows among the cells are modeled for �Fi,j and
�Mi,j through the (pair) neighbor distribution function, ρ2FM,

with a due consideration of the boundary conditions. In order
to evaluate ρ2FM the theory [16] not only uses the known
behavioral facts about the “crawling” of individual cells in
a dense environment but also introduces the three-neighbor
distribution function. Since the microscopic dynamics for the
“cells” is not available, the three-neighbor distribution function
is not related through a BBGKY-like hierarchy to ρ2FM.

0 1 2 3 4
(a)

(b)

5 6 Volume (10−5cm3)0

1

2

3

4
Force (10−3N)

Centrifugal

Non centrifugal

0.1 0.2 0.3 0.4
Volume (10−5cm3)

0.5

1.0

1.5

Force (10−3N)

FIG. 3. (a) The experimental stall forces generated by an ag-
gregate of Dictyostelium discoideum when its directed collective
movement in a tube is impeded either by a pressure gradient (blue
dots, “Non centrifugal”) or by a centrifugal force (red, “Centrifugal”).
The data are extracted from Inoue et al. (Ref. [14], Fig. 5, and
Ref. [15], Fig. 5). (b) Model prediction of the stall force using
the present framework for the macroscopic momentum and angular
momentum fluxes. The results are reproduced from Ref. [16], Fig.
9.14. The model is two-dimensional, and the rectangular symbols
represent the shape and dimensions of the aggregates. Those
aggregates with the same length along the tube axis are grouped
by the continuous curves.

Instead, an extensive use has been made of the redundancy
properties of the former function. The neighbor distribution
functions in our new approach, ρ2FM , plays the central role
bridging between the mesoscopic flow rates, �Fi,j and �Mi,j ,
and the macroscopic rheological variables. The analysis of the
model predicted the stall force that increases with the volume
of the aggregates; see Fig. 3(b). In this model those cells
with distorted polarity constitute the boundary layers whose
thickness depends on the stall force due to the nonlinearity of
the system. As a result the stall force should also depends on
the aspect ratio of the aggregate [16]. The theory is free of
adjustable parameters, and the quantitative discrepancy about
a factor ∼5 could be due to the basic parameters taken from
different literatures.

While the main advantage of the present framework
is its applicability to the materials consisting of complex
mesoscopic elements, our formalism may also shed light
on the existing theories on the gas kinetics and polar fluid
dynamics (see, for example, Ref. [18] and the references
cited therein): Many efficient methods of coarse graining
which have been developed so far, such as through the
Chapman-Enskog theory, the moment integrals [2,5,8], or
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the integral over space-time with weighting functions [7]
or test function [2], have sometimes put more priority on
some physical or practical aspects other than the conservation
of linear and angular momenta. For example, if we use
the volume or spatiotemporal integral of the microscopic
forces over a coarse-graining (space-time) volume with some
weighting function, the conserved nature of the microscopic
momentum may not be automatically inherited by the resulting
coarse-grained system. That is, the macroscopic fluxes might
obey the equations which are not exactly of the Cosserat type.
In particular, the source of divergence of angular momentum

flux (−e :
↔
G for the Cosserat type) would be different from the

antisymmetric part of the momentum flux (
↔
G) which appears

in the conservation of the linear momentum (∇ · ↔
G = 0). For

example, in Ref. [8], the structure of the Cosserat equations is
lost because the moment integrals used there do not necessarily
ensure the flux conservation. Logically, such theory can

also be correct about the momentum conservation if the
modifications from the IK-type fluxes are exactly compensated
by the modifications from the Cosserat-type equations. Our
purpose, however, is to provide with a framework that observes
explicitly the momentum balance at the mesoscopic scale so
that we can focus on the modeling of the mesoscopic flows. To
our knowledge only a few papers used the coarse graining
along this line for nonpolar fluids [19]. There the authors
used the surface integral instead of the volume integral of the
momentum flux, although they focused rather on the numerical
improvement than the conservation issue.
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APPENDIX A: DERIVATION OF (14) AND (15)

First we show

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

�Fi,j

⎫⎬
⎭ =

∫
�r∈�

∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε d3�r (A1)

and

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

�Mi,j

⎫⎬
⎭ =

∫
�r∈�

∫ ∫
�M ρ̂2M (�ε, �M,�r) d3 �M d3�ε d3�r (A2)

for arbitrary �. Equation (A1) holds because

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

�Fi,j

⎫⎬
⎭ =

∫
�r∈�

∫ ∑
i

∑
j

�Fi,j δ(�rj − �r)δ(�rj − �ri − �ε) d3�ε d3�r

=
∫

�r∈�

∫ ∫ ∑
i

∑
j

�Fδ( �F − �Fi,j )δ(�rj − �r)δ(�rj − �ri − �ε) d3 �F d3�ε d3�r

=
∫

�r∈�

∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε d3�r.

The equality for the torque (A2) can be shown similarly. Next, combining the above results with (11) we have the identities

∫
�r∈∂�̃

�r ∧ ↔
G · d �A(�r) = −

∫
�r∈�

∫ ∫
�M ρ̂2M (�ε, �M,�r) d3 �M d3�ε d3�r −

∑
�ri∈�

⎧⎨
⎩

(i)∑
j

�ai,j ∧ �Fi,j

⎫⎬
⎭. (A3)

On the r.h.s.,
∑

�ri∈�

∑(i)
j (�ai,j ∧ �Fi,j ) can also be represented as a moment integral: we first notice that this sum is equal

to 1
2

∑
�ri∈�

∑(i)
j (�ai,j − �aj,i) ∧ �Fi,j . Then, by the geometrical identity �ai,j − �ai,j = �εi,j , we have

∑
�ri∈�

∑(i)
j (�ai,j ∧ �Fi,j ) =

1
2

∑
�ri∈�

∑
j �εi,j ∧ �Fi,j , which is written as 1

2

∫
�r∈�

(
∫ ∫ �ε ∧ �F ρ2F (�ε, �M,�r) d3�ε d3 �M)d3�r. Therefore, (A3) reads (15).

APPENDIX B: DERIVATION OF (16)

In the definition of ρ̂2FM [see (12)]

ρ̂2FM (�ε, �F, �M,�r) ≡
∑

i

(i)∑
j

δ(�rj − �ri − �ε)δ( �F − �Fi,j )δ( �M − �Mi,j )δ(�r − �ri)
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we change the argument as follows:

ρ̂2FM (−�ε, − �F, − �M,�r + �ε) =
∑

i

(i)∑
j

δ(�rj − �ri − �ε)δ( �F + �Fi,j )δ( �M + �Mi,j )δ(�r + �ε − �ri)

=
∑

i

(i)∑
j

δ(�rj − �ri − �ε)δ( �F + �Fi,j )δ( �M + �Mi,j )δ(�r − �rj ). (B1)

Using the fact that the counting of all the immediate neighbors through the sum,
∑

i

∑(i)
j , is equivalent to that through

∑
j

∑(j )
i ,

the last line becomes

ρ̂2FM (−�ε, − �F, − �M,�r + �ε) =
∑

j

(j )∑
i

δ(�rj − �ri − �ε)δ( �F + �Fi,j )δ( �M + �Mi,j )δ(�r − �rj ).

Finally, the reciprocity relations, �Fi,j = − �Fj,i and �Mi,j = − �Mj,i gives

ρ̂2FM (−�ε, − �F, − �M,�r + �ε) =
∑

j

(j )∑
i

δ(�rj − �ri − �ε)δ( �F − �Fj,i)δ( �M − �Mj,i)δ(�r − �rj ) = ρ̂2FM (�ε, �F, �M,�r). (B2)

We thus arrived at the basic redundancy relationship (16) claimed above. The associated relations for the peripheral distributions
can be obtained by integrating over either �M or �F .

APPENDIX C: DERIVATION OF (19) and (20)

For (19),∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε = 1

2

[∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε +

∫ ∫
�F ρ̂2F (−�ε, − �F,�r + �ε) d3 �F d3�ε

]

= 1

2

[∫ ∫
�F ρ̂2F (�ε, �F,�r) d3 �F d3�ε +

∫ ∫
(− �F )ρ̂2F (�ε, �F,�r + (−�ε)) d3 �F d3�ε

]

= 1

2

∫ ∫
�F

[
ρ̂2F (�ε, �F,�r) − ρ̂2F (�ε, �F,�r − �ε)

]
d3 �F d3�ε. (C1)

For (20), ∫ ∫
�ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r) d3 �F d3�ε =

∫ ∫
�ε ⊗ �ε ⊗ �F ρ̂2F (−�ε, − �F,�r + �ε) d3 �F d3�ε

= −
∫ ∫

�ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r − �ε) d3 �F d3�ε. (C2)

By adding the l.h.s. and the second line on the r.h.s., we have (20).

APPENDIX D: DERIVATION OF (22) and (23)

We look at (14) and rewrite its right-hand side. Because ψ will not contain �M in this issue, we will use ρ2F to simplify the
notation. According to (19) or, more precisely, to its statistically averaged version:∫ ∫

�Fρ2F (�ε, �F,�r) d3 �F d3�ε = 1

2

∫ ∫
�F [ρ2F (�ε, �F,�r) − ρ2F (�ε, �F,�r − �ε)] d3 �F d3�ε. (D1)

The integral on the r.h.s. can be expanded using its slowly varying nature about �r:

(r.h.s. of (D1)) = 1

2
∇ ·

{∫ ∫
�ε ⊗ �F ρ2F (�ε, �F,�r) d3 �F d3�ε

}
+ 1

2
∇∇ :

{∫ ∫
�ε ⊗ �ε ⊗ �F ρ2F (�ε, �F,�r) d3 �F d3�ε

}

+O(‖�ε · ∇ ‖3). (D2)

Now, the second term on the r.h.s., which is at most O(‖�ε · ∇ ‖2), is in fact only O(‖�ε · ∇ ‖3) because the �ε · ∇ expansion of (20)
shows that

2
∫ ∫

�ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r) d3 �F d3�ε − ∇ ·
∫ ∫

�ε ⊗ �ε ⊗ �ε ⊗ �F ρ̂2F (�ε, �F,�r) d3 �F d3�ε � 0, (D3)
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therefore,

∇∇ :

[∫ ∫
�ε ⊗ �ε ⊗ �F ρ2F (�ε, �F,�r) d3 �F d3�ε

]
� ∇∇ :

[
1

2
∇ ·

{∫ ∫
�ε ⊗ �ε ⊗ �ε ⊗ �F ρ2F (�ε, �F,�r) d3 �F d3�ε

}]

= O(‖�ε · ∇ ‖3). (D4)

Therefore, the first term on the r.h.s. of (D2) is a good approximation with an error of only O(‖�ε · ∇ ‖3). Now rewriting (D2)
using the notation of 〈�ε ⊗ �F 〉2 and the definition (23), Eq. (D1) becomes∫ ∫

�Fρ2F (�ε, �F,�r) d3 �F d3�ε = ∇ · ↔
G + O(‖�ε · ∇ ‖3).

Equation (14) takes the form
∫

�r∈∂�̃

↔
G · d �A(�r) = ∫

�r∈�
∇ · ↔

G d3�r. for arbitrary � up to the errors of O(‖�ε · ∇ ‖3). This justifies to

identify
↔
G as the macroscopic momentum flux. In terms of the suffix, it is rather the transpose,

↔
G

t

, that corresponds to
↔
G due to

our choice of representation of the latter. Finally (3) leads to (22).

APPENDIX E: DERIVATION OF (25) AND (26)

By a completely parallel argument as the derivation of the previous theorem, a part of the integral on the r.h.s. of (15) can be
rewritten as ∫

�r∈�

∫ ∫
�M ρ̂2M (�ε, �M,�r) d3 �M d3�ε d3�r = ∇ · ↔

C + O(‖�ε · ∇ ‖3), (E1)

where we have used the definition (24) and (26). Besides, the remaining part of the integral in (15), i.e.,

− ∫
�r∈�

[
∫ ∫ ∫

1
2 �ε ∧ �F ρ̂2FM (�ε, �F, �M,�r) d3�ε d3 �M d3 �F ]d3�r, can be expressed in terms of

↔
G defined in (23):∫

�r∈�

(∫ ∫
1

2
�ε ∧ �F ρ2F (�ε, �M,�r) d3�ε d3 �M

)
d3�r =

∫
�r∈�

[
1

2
〈�ε ∧ �F 〉2Zρ1

]
d3�r =

∫
�r∈�

e :

[
1

2
〈�ε ⊗ �F 〉2Zρ1

]

=
∫

�r∈�

e :
↔
G d3�r. (E2)

Now, if we ignore the errors of O(‖�ε · ∇ ‖3), (15) then reads∫
�r∈∂�̃

�r ∧ ↔
G · d �A(�r) =

∫
�r∈�

(∇ · ↔
C + e :

↔
G) d3�r

for arbitrary �. This equation together with (3) leads to (25).
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