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Fundamental conical defects: The d-cone, its e-cone, and its p-cone
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We consider well-known surface disclinations by cutting, joining, and folding pieces of paper card. The
resulting shapes have a discrete, folded vertex whose geometry is described easily by Gauss’s mapping, in
particular, we can relate the degree of angular excess, or deficit, to the size of fold line rotations by the area
enclosed by the vector diagram of these rotations. This is well known for the case of a so-called “d-cone” of zero
angular deficit, and we formulate the same for a general disclination. This method allows us to observe kinematic
properties in a meaningful way without needing to consider equilibrium. Importantly, the simple vector nature of
our analysis shows that some disclinations are primitive; and that other types, such as d-cones, are amalgamations

of them.
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I. INTRODUCTION

Surface disclinations are associated with a rapid change in
the orientation, or rotation, of a surface, usually along a straight
line; a dislocation occurs when there is a jump in positional
order [1]. Disclinations are typically formed by first adding
or subtracting material from within an originally flat surface.
If the surface is very thin, this change in material content is
accommodated by elastic, out-of-plane bending in preference
to in-plane straining according to Gauss’s Theorema Egregium
[2]: and, in structural terms, equilibrium must be satisfied in
this deformed or buckled state while respecting the support
conditions.

Figure 1 shows how this behavior can be achieved using
a disk of ordinary paper card. The disk has been cut radially
toward its center before being splayed into a flat, open wedge
of around 15°. Later, we insert extra card for continuity, to
form a positive disclination, but we note for now that the
split edges have to be held down by adhesive tape, Fig. 1(a).
Approximately two-thirds of the disk lie naturally flat without
surface fixity; the remainder has lifted off to form a distinctly
conical vertex connected to the flat parts by narrow transition
zones on each side. As the wedge angle is manually increased,
the cone becomes taller but not wider, and the angle subtended
around the vertex rises above 360°. Such angular excess
connotes the term “e-cone” for this shape [3]. For much larger
wedge angles, the width of the cone also changes as more
of the disk detaches from the underlying surface because of
increasing geometrical nonlinearity: although interesting, this
regime is beyond the scope of study.

Properties of e-cones have been widely studied in recent
times in view of, for example, growing biological structures
(and material activation in thin plates) [3] and of repeating
local features in highly deformed sheets and strips [4]. The
angular width of the conical projection has been observed to be
independent of material, thickness, or wedge angle—if not too
great; and this width also depends on how the conical region
is defined, whether or not the transition zones are included.
Figures 1(b) and 1(c) show a repeat of the card experiment
using a geometrically nonlinear finite element analysis. Its

“kas14@cam.ac.uk

2470-0045/2016/94(1)/013002(8)

013002-1

details are described in the caption and contours of transverse
displacement are shown above the level of imperfection needed
to induce buckling, which evidently include the transition
zones. The conical width is clearly in line with the 120°
from our crude card experiment; analytical studies that
consider a perfectly flat disk initially, suggest angles closer to
180° [5].

The shape in Fig. 1(a) is mostly developable because the
paper card is thin, but close to the vertex the surface must be
doubly and negatively curved because Gauss’s theorem tells
us that the angular excess imposed at the vertex produces an
exact amount of Gaussian curvature. If we then imagine the
card thickness being reduced to zero, the Gaussian curvature
becomes concentrated at the vertex tip as a “point charge.”
The same concentration occurs when the disk is folded instead
along three radial lines, in order to emulate the e-cone in a
discrete manner; see Fig. 1(d). These lines are symmetrically
located with respect to the radial cut: along the tallest meridian
and where the e-cone of Fig. 1(a) begins to lift off on either
side. When the wedge angle is opened horizontally, adjacent
plate regions slide on the surface as per the continuum case.
The other plates move upwards under fold line rotations to
form approximately the original conically shaped buckle. The
meridian now forms as a ridge, or mountain fold, and the
lift-off lines as valley folds. Assuming that the vertex is
perfect and that the plates, or facets, remain flat, the folded
shape is described entirely by the fold line rotations and the
wedge angle. This is a simpler kinematical specification, cf.
the continuum case, without detriment to the accuracy of
shape: both e-cones from Fig. 1 have roughly the same conical
widths and wedge angles, with very similar proportions of
shape.

Opening the wedge angle right up to when the cone facets
become vertical and contact each other, and closing it back to
zero, requires little effort when the fold lines are repeatedly
flexed for compliancy. The shape, however, becomes more
difficult to fold when the valley folds in plan are separated by
nearly 180°. At this value and beyond, the disk “locks” and
the wedge cannot be opened. This locking is not due to the
material stiffening but to inadmissible fold line rotations, as
will be shown. When they are separated by more than 180°,
folding can proceed only when disk is made to overlap at the
cut—when angular deficit is imposed at the vertex, and this

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.94.013002

PHYSICAL REVIEW E 94, 013002 (2016)

KEITH A. SEFFEN
(@) (b) (c) (d)

FIG. 1. The planar confined e-cone. (a) A thin disk of paper card is cut radially and splayed open onto a flat surface. The deformed shape is
held down by adhesive tape along the open edges. (b, ¢) Finite element analysis using the commercial software package ABAQUS [14]. A split
disk made of elastic S4RS5 shell elements sits slightly above a larger, rigid disk, which performs as the underlying surface. A linear eigenvalue
analysis of the elastic disk is performed to generate a stress-free transverse imperfection of 0.1%, in order to seed out-of-plane buckling as the
split is opened, which is just visible. Zero friction contact between the two surfaces prevents interpenetration as the buckle moves away from
the rigid base with differently colored height contours; in panel (c), the outline wedge has been added to encapsulate transverse displacements
larger than the initial imperfection, and subtends approximately 120°. (d) A discretely folded version of (a) using three fold lines symmetrically

located with respect to the radial cut. The central fold line is a mountain fold, the other two are valley folds.

case is treated momentarily. Otherwise, feasible folded shapes
are made stiff by fixing the wedge angle, say, by gluing the
open edges to the surface. Extra deformation in this case is
promoted by flexibility of the facets alone.

A wedge of material is inserted into the gap of Fig. 1(d)
and, by adjusting the fold line rotations, the folded shape
can be seated naturally upright; see Fig. 2(a). If the insertion
is repeated for the continuum case and no other forces are
applied, the disk will bend everywhere, including the wedge
itself and attempt to form a “free-standing” e-cone [3], which
displaces upwards and sits above the original surface. Bending
of the wedge in this case suggests folding the wedge in the
discrete case as an extra mountain fold so that all facets move
upwards, Fig. 2(b). As for the simple e-cone of Fig. 1(d), the
valley folds cannot be separated by 180° exactly, otherwise
folding is impossible: in other words, our free-standing e-cone
must be asymmetrically shaped. Other e-cones made with
more fold lines can, of course, exhibit more symmetrical

shapes but our simplified rendition is closest in behavior to
the simplest continuum case of Fig 1(a).

It is possible to recover the first shape of Fig. 2(a) by simply
flattening the wedge fold of Fig. 2(b). Furthermore, its folding
direction can be reversed to form another valley fold, requiring
the disk to be simply supported on a rim as shown in Fig. 2(c).
This shape can also be free-standing because the fold lines
can be worked into a set of compatible rotations but we show
it being held in equilibrium by a central point force—as for
the continuum case, which must be forcibly displaced from
its free-standing position. The resulting displacement fields
of the latter are developable and conical, and the effect of
such conical confinement under loads is compared alongside
angular (material) excess in Ref. [5], in the first study on their
interaction. These two variables are specified in Ref. [5] only
in kinematic terms without recourse to the expediting forces,
and the main results are listed shortly; but we impress two
further folded shapes in Figs. 2(d) and 2(e).

FIG. 2. (a) The planar confined e-cone of Fig. 1(d) with an added wedge of material in the open gap. (b) Like panel (a) except that the
wedge has a central mountain fold forming a free-standing e-cone. (c) A conically confined e-cone formed by centrally loading the e-cone of
panel (b) sitting on a rim so that the wedge fold becomes a valley. (d) A stiff pyramid, or p-cone, formed by cutting and overlapping a wedge
of material. This has three symmetrical folds with the cut (and overlap) lying halfway between two of them. (e) Like panel (d) but with an
extra valley fold for mobility. The row of schematic figures show valley folds as solid lines, mountain folds as dashed lines, material insertion
(angular excess) as a white-bounded wedge, and material removal (angular deficit) as a darker wedge.
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Angular deficit is imposed at the vertex by excising
material or by overlapping at the radial cut to form a negative
disclination. These shapes are sometimes called “d-cones,’
but the literature is not clear on whether or not “d” stands
for developable or deficit (or, indeed, disclination): here,
we shall assume a d-cone is a “developable cone” of zero
deficit following Ref. [10]. In addition to the cut, three fold
lines are needed for out-of-plane shaping when the deficit is
varied. They must be in the same sense either as valley- or
mountain folds, and their layout in plan view is a Y-shape
positioned symmetrically with respect to the cut; note that
being symmetrical is not essential for planar folding but here
it simplifies the problem slightly. The entire disk now folds
into a triangular pyramidal cone, Fig. 2(d), which we denote
as a “p-cone.” By fixing the angular deficit—by gluing the
overlapping parts together, the p-cone is rendered stiff. Adding
afourth symmetrical fold in the middle of the overlap, Fig. 2(e),
imparts mobility, i.e., enables rigid-body motion in the same
way as the wedge fold does in the e-cone of Fig. 2(c). If we
imagine the overlapping part (or the inserted wedge) folding
by itself, then we locally change the angular deficit (or excess)
as if we were shaping the folded disk under compatible fold
rotations. Note that both vertices in Figs. 2(d) and 2(e) have
positive Gaussian curvature.

We aim to consider more carefully the kinematics of our
discrete disclinations. As noted, there are already related and
successful continuum-based studies, which capture the surface
shape via the circumferential variation of radial generators
[6,7] as a governing equation of deformation akin to the
well-known beam elastica [8]; the disclination effect usually
enters via the boundary conditions. The recent study in Ref. [5]
concludes that the equilibrium shape of conically confined
e-cones depends only on the ratio of angular excess to the
square of conical indentation, i.e., vertex displacement, and
that the effects of conical confinement and Gaussian charge
are interchangeable for small deflections. They also solve for
the conical width as a function of the constraints, and regime
maps are furnished accordingly; but they also note that the
singular vertex presents solution challenges which may limit
the “application of predictions to real sheets”.

(a) (b)
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By deliberately focusing on discretely folded shapes, we are
making two points. First, that singular geometrical features are
complementary in the analytical sense when we consider point
vertices, fold lines, and zero thickness facets together. The
kinematics are only relevant because we cannot capture equi-
librium conditions without appropriate constitutive models for
these features, which are being developed in other studies, e.g.,
Ref. [9]. Second, we wish to emphasise the applicability of
our structures directly in practical problems and not just as
analogous solutions of the continuum cases. For example, the
natural conical widths of e-cones are largely invariant under
small deflections, but we allow this width, viz. the angular
separation of the valley folds, to vary so that we may explore a
fuller range of symmetrically folded shapes; we may go even
further by lifting the symmetry restriction, but that is another
level of study.

Our analysis is algebraic and solves for fold rotations
rather than displacements, which is fortuitous given that
disclinations are related to step changes in surface orientation.
Moreover, the relationship between angular excess and fold
rotations is captured explicitly in a simple Gauss mapping
of rotation vectors, which immediately reveals the relative
dependencies of shape purported in Ref. [5]. We solve first
for the behavior of simple d-cones without angular excess.
This gives a limiting case for confined e-cones, which are
treated afterwards. One surprising feature is that some Gauss
mappings can be composed from elements that themselves are
fundamental types of disclination: that these primitive units
can be combined to make other forms. For example, we show
that a d-cone combines the e-cone of Fig. 2(a) and the p-cone
of Fig. 2(d). This suggests that real disclinations may obey a
similar hierarchy.

II. DISCRETE D-CONES

A flat disk rests concentrically on a simple rim in Fig. 3(a)
and carries a central point force. Conical transverse displace-
ments ensue, where a given radial line rotates downwards about
the rim. Simple geometry shows that this leads to in-plane
circumferential compression, which cannot be maintained
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FIG. 3. Deformation of a d-cone. (a) Continuous d-cone. (b) Discrete d-cone. (c) Fold line layout for panel (b) where g is the half-width of
the elevated portion above the rim. (d) Schematic side-view of the deformed discrete d-cone showing the upward support forces and centrally
applied downward force. The bottom subfigure shows true views of the valley and mountain folds along the diameter in panel (c), which are
rotated by angles x and y from the horizontal plane. The “conical indentation” from Ref. [5] is the displacement of the center, d,, and the

upwards buckled displacement is d,.
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FIG. 4. Kinematics of a discrete d-cone. The direction of positive fold rotations as vectors along a mountain fold, panel (a), and valley
fold, panel (b), when moving counterclockwise around the vertex. (c) Like Fig. 3(c) but indicating the four facets A, B, C, and D between fold
lines, the three support points P, Q, and R, and the support lines, PQ and PR. 4 is the perpendicular lever arm about PQ for calculating the
displacement of the center. (d) The Gauss mapping for the rotation vectors along the fold lines: ab = y pertains to a rotation, y, between facets
A and B, and so forth for 6 (bc and da) and ¢ (cd). The internal curved arrows show the vector circuit when assessing the sign of the enclosed

area. The bottom subfigure shows how to relate x and y from Fig. 3(d).

indefinitely. This is relieved by the part of the disk buckling
upwards and separating from the rim into the d-cone mode
shape. Although our demonstration is contrived, d-cones
prevail as characteristic “motifs” in many other problems
of constrained thin-walled plate deformation [10,11]. Their
geometry for different materials and disk sizes is remarkably
consistent, in particular, the lift-off width, which has been the
focus of many experiments and analysis. There is reasonable
agreement depending on whether or not the width includes the
transition regions, which are curved in the opposite sense to
the conical bulk—and at what point in the post-buckling phase
the width is measured, but typically it subtends 110°-140° in
plan view.

Figure 3(b) is a discretely folded d-cone. The layout of fold
lines emanating from the central vertex is similar to the earlier
e-cones of Figs. 1 and 2, and is shown in plan view in Fig. 3(c).
The pattern also conforms to the rules of vertex folding in
origami structures where four symmetrically arranged fold
lines meet at the vertex as three valley folds and one mountain
fold [12]. This ensures mobility of the folded shape and thus
continuous motion up to a point where all facets can “flat-
fold” and contact each other in a vertical plane under fold
rotations equal to 180°. We shall concern ourselves only with
small rotations and deflections that do not alter the fold layout
in plan view for the sake of simplicity. The lift-off region
extends between the valley folds inclined at angle S on either
side of the mountain fold, which forms the buckled apex: in
Fig. 3(b), B = 60°, giving a lift-off angle of 120°. The disk
is now supported only at three points underneath each valley
fold, which, for analysis, we set to be at the disk rim of radius,
r, even though the disk must overlap the rim in practice.

A side-view of maximal displacements is given in Fig. 3(d),
where d; is the indentation depth and d, is the lift-off height.
These evidently arise when the relevant fold lines, shown in
true view, rotate by angles x and y, to the horizontal, giving

di=rx, dy=ry—rx. €))

In order to calculate x and y, we first consider the deformed
shape everywhere in terms of normal vectors to the disk
surface. As these normals rotate away from vertical, we can
map them with the same orientation onto the surface of a sphere
with unit radius—the unit sphere, as proposed by Gauss [2].
Within a given facet, all normals have the same orientation and
therefore map to a point on the unit sphere. When we move
across a fold, there is a step change in orientation between
facets, which traces part of a great arc equal in length to the fold
rotation. Following a complete path around the vertex produces
a closed figure of fold rotations. For small rotations, the figure
is effectively planar, and we have constructed, albeit though by
adifferent route, the vector diagram of fold rotations that would
be obtained by adding them directly as vectors in the same
sequence around the vertex [13]. The mapping for the d-cone
of Fig. 3(b) is now constructed using a positive right-handed
screw notation: the rotation vector for a mountain fold points
toward the vertex moving in a counterclockwise sense around
it, as shown in Fig. 4(a), and for a valley fold it points away,
Fig. 4(b). Because of the planarity of mapping, maximum
fold rotations are of the order of 15° so that the rotations
in Fig. 3(d) are much less than unity and the displacements
are shallow—but not to the detriment of predicting general
behavior.

The layout of d-cone fold lines is repeated in Fig. 4(c)
with facet labels A to D counterclockwise, and fold rotations
moving from A to B, B to C, and so forth as vectors ab, bc,
etc.—using the convention from Ref. [13]—when drawn in
sequence in Fig. 4(d). The Gauss mapping forms a “bow-tie”
polygon and, to simplify the notation slightly, we replace ab
with y, bc and da (because of symmetry) with 6, and cd
with ¢. The reason for pursuing Gauss’s method becomes
apparent because his remarkable theorem asserts that the
area enclosed by the polygon is equal to the angular deficit
at the vertex [2]. The area carries a sign depending on the
construction sequence; so, for the left-hand side of Fig. 4(d),
the vectors also form counter-clockwise when we move around
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FIG. 5. Gauss’s mapping for the various folded shapes from Fig. 2. (a) The planar confined e-cone. (b) The conically confined e-cone.
(c) The free-standing e-cone. (d) The p-cone. In all, the angular excess or deficit of the central vertex is of magnitude «. The fold notation and

nomenclature are the same as described in the captions of Figs. 2 and 4.

that side of the vertex in the same sense, giving positive
area, while in the right-hand side, they form in the opposite
clockwise sense, giving negative area. For a d-cone, however,
there is no deficit and thus, the net area must balance. In
Fig. 4(d), this requirement sets ¢ = y and 6 = ¢/ cos 8. We
see immediately that S must be less than 90° for positive values
of 6; more importantly, as 8 approaches this limit, € increases
exponentially outside the realm of small rotations and the
d-cone cannot fold in practice but deforms elastically under
the central load. If B is larger than 90°, the Gauss mapping is
no longer valid unless the vector, ab, reverses direction. The
facets, A and B, would now be connected by a mountain fold
and the mapping would be trapezoidal in outline with a net
negative area and, hence, angular deficit at the vertex; this is
a different physical problem altogether from the d-cone, so
B = 90° is a natural upper bound.

Returning to Fig. 4(d), the original rotations, x and y, occur
at right angles to the rotations across the fold lines to which
they pertain. Therefore, x and y can be drawn as vectors
that bisect and lie at right angles to ab and cd, respectively,
as shown. They originate from the same point and span the
width of the polygon, giving x + y = 6 sin 8. Their absolute
lengths can only be established when support points, P, Q,
and R, are added to Fig. 4(c). The facets, A and B, also
rotate about the lines PQ and PR with equal rotations that,
when projected onto the fold line between A and B, sum to
¢. These extra rotations, therefore, equal ¢/[2 cos(8/2)] and,
when multiplied by the lever arm & = r sin(8/2) as shown,
yield a vertex displacement, rx. Hence,

_¢ B _ .
X = Etani, y=¢tanf — x;
d _ tan B8
-2 2[tanﬁ/2 _ 1]. @

For B8 = 60°, d>/d, = 4, which tallies well with Fig. 3(b).
The expression is independent of fold rotations provided
they remain small, and it shows that the displacement ratio

can increase asymptotically as 8 approaches 90°, which we
observe in other paper card models. Conversely, as B tends to
zero—in the limit of the fold lines not overlapping in practice,
the displacement ratio approaches two.

III. DISCRETE E-CONES

We begin with the simplest discrete e-cone of Fig. 1(d)
equivalent to the “planar confined” continuum case, as it is
called, in Ref. [5]. Recall that the disk opens up along a radial
wedge with adjacent facets, A and B, remaining horizontal. We
define the angular excess to be the angle, o, subtended by the
open wedge in Fig. 5(a). Its magnitude has been exaggerated
for clarity, for otherwise, the original plan view of fold lines
cannot alter during deformation. There are three folds, and the
facets, C and D, move upwards. The Gauss mapping is also
drawn in Fig. 5(a) using the same rules and fold nomenclature
used in Fig. 4 with the valley folds having rotation 6 and the
mountain fold, ¢. It forms a simple isosceles triangle in which
0 = ¢/(2cos B). The enclosed area is trivial to calculate but
we must be mindful of signs because the mapping moves in the
opposite direction to the facet sequence in the disk; however,
positive area pertains to angular deficit when we have imposed
an excess. The area calculation is, thus,

NN [ ba ;
—§x5x¢anﬂ——a = ¢= @np’ 3)

The apex displacement, d,, can be directly computed from
multiplying the lever arm to it from either 6-fold line to return

rsinff = %:,/atanﬁ, 4)

after substituting for ¢ from Eq. (3). For positive values of o,
must lie between 0° and 90°. When 8 approaches the upper
limit, however, ¢ becomes disproportionately large compared
to o, and folded displacements are not viable in practice giving
way to locking as reported earlier. Conversely, negative values

d) =
2 2cos B

013002-5



KEITH A. SEFFEN

of «, i.e., angular deficit, would suggest 90° < 8 < 180°; this
is true but we need to be careful about the signs of rotations,
which is treated shortly. Note that the square-root presence in
Eq. (4) signifies that small changes in small values of « yield
relatively larger changes in displacement.

A material wedge subtending the same angle, «, is now
added to the disk in Fig. 5(b) with a central valley fold. This
is equivalent to the conically confined e-cone in Ref. [5] with
facets A and B moving downwards and C and D upwards, the
disk being supported at three points on a rim like the d-cone.
The valley fold angle is y and the Gauss mapping traces an
uneven bow-tie—unlike the d-cone. The 6-fold angle now
depends on ¢ and y according to 6 = (¢ + y)/(2cos B), as
does the enclosed area, which is made of two triangular areas
of opposite signs. The area calculation is, again, fairly trivial:

2 2
¢ Y e N

B 4tan 8  4tan B - tan g8
) @2 4o
e — =1 . 5
YT g ®

Once more S ranges from 0° to 90° and ¢ in Eq. (3) is recovered
when y is zero.

A side-view of this e-cone is similar in profile to Fig. 3(d),
where it is trivial to show that the maximal displacement ratio
depends on the same angles, x and y, using Eq. (1), giving
dr/dy = y/x — 1. Again, the sum of x and y spans the width
of the Gauss mapping, x + y = 6 sin 8, and again, absolute x
is found by considering how the central vertex moves due to
rotation about the support lines, returning x = (y /2) tan(8/2).
Using this information, we determine

ko]
d; y tan /2
Before computing some values, we remark that this ratio
depends on the fold angle ratio, ¢ /y, which in turn depends on
a/y? from Eq. (5) for a given value of 8. But the indentation
depth, x, is proportional to y, so we see that d, /d, is controlled
by the parameter /x?, which is precisely the claim made in
Ref. [5] when we remind ourselves that « is the Gaussian
charge and x measures the conical confinement.

If we set a parameter, C, equal to o/ )/2, which is similar
to a/x? except for the contribution from 8, we can make the
following predictions. When C is small and less than unity,
o is small and the displacement ratio approaches the case
of the d-cone, Eq. (2). On the other hand, a large value of C,
greater than unity, suggests that y is small and we approach the
planar confined case of Fig. 5(a), but we never reach it because
C becomes infinite. In this case, ¢/y ~ /4C/tan 8 using
Eq. (5), which then becomes the dominant term in Eq. (6):

d ¢ tanp  2/Ctanp
4 ytanpB/2 tanpB/2

Equations (2) and (7) are plotted in Fig. 6 alongside the exact
expression, Eq. (6), for several values of C. Since C ignores
any contribution from S, we can plot everything as functions
of B. The limit predictions perform very well and all curves
festoon in the sense of d,/d; being large for either small or
large values of 8, being somewhat flat in between. The absolute
minimum value of displacement ratio approaches two, and

(6)

)
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FIG. 6. Discrete e-cone displacements. C is equal to o/y? and
measures the influences of angular excess and conical indentation:
a large value (>>1) of C is close to the planar e-cone case, Eq. (7),
while a small value (« 1) approaches d-cone behavior, Eq (2). 8 can
extend up to 90°, but all curves rise asymptotically and diminish the
earlier detail, hence the abscissa range as shown. The solid curves are
exact solutions using Eq. (6).

high ratios (>10) can be attained, even for low values of C.
Thus, by choosing « and 8, the “control” range for d,/d; can
be very diverse. Note that absolute values d; and d, can be
found easily using Eq. (1) if we wish.

Consider two further shapes in closing this section. In
Fig. 5(d), the inserted wedge has a mountain fold as per the
free-standing e-cone of Fig. 2(b). The area enclosed by its
Gauss mapping is also given by Eq. (5) even though the direc-
tion of y has reversed (but y still takes a positive value). We
note, however, from the mapping that 8 = (¢ — y)/(2 cos ).
Hence, if we compare the shapes of free and conical e-cones
with the same «, which both have the same values of ¢ and
y from the area calculation, then the free-standing e-cone has
smaller 0 rotations. The “buckled” portion is therefore less
elevated in the free case. Constitutive behavior of the fold lines
is not considered here, but we can see why the free-standing
case has two mountain folds if the strain energy stored is
determined by the level of folding: some of the rotations are
relatively smaller, less strain energy is stored, and thus, it is
the preferred equilibrium state. This is speculative, of course,
but it matches how both e-cones “feel” in reality.

In Fig. 5(e), we reproduce the p-cone fold layout of
Fig. 2(d), where the angular deficit, «, of the overlap is a
positive value. Since the Gauss mapping moves in the same
direction as the facet orientation, then the area calculation
reveals that

4o
tan 8~

x%xytanﬁ:a = y= (8)

N =

which is exactly the same as the planar e-cone of Fig. 5(a) and
Eq. (3) when ¢ is replaced with y but only because the fold
rotations are in the same sense. Recall that if the sign of « is
reversed in Eq. (3) for angular deficit, a negative value of tan 8
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FIG. 7. d-cone properties from fundamental units. Gauss’s mapping for a d-cone, left, can be split into two cases of a planar e-cone, middle,
and a p-cone, right, of equal and opposite angular excess and deficit, respectively.

has § in the range 90° to 180°. If this requirement is applied
to the layout pattern in Fig. 5(a), then we form the same image
as Fig. 5(d) but flipped upside down (and with the original
mountain fold becoming a valley fold). Such antisymmetrical
behavior provides alternative insight into general e-cones, as
now discussed.

IV. PRIMITIVE FORMS

We return to the d-cone in Fig. 7. Given that its Gauss
mapping equates to the vector diagram of small rotations at
the vertex, we can apply the rules of vector manipulation to the
mapping—indeed, any mapping. For example, we can divide
the bow-tie into two identical triangular halves, which can be
recombined to yield the original mapping. But if we compare
both halves to Fig. 5, they are, respectively, the planar e-cone
and the p-cone, which are redrawn in Fig. 7. The angular
excess and deficit at each vertex must cancel in order to
produce a d-cone: in other words, a d-cone can be formed
by adding together a planar e-cone and a p-cone with equal
and opposite levels of Gaussian charge. In practice, this does
not happen; it is merely a different view of how the properties
of shape superpose. But it does hint that we may consider
the performance of planar e-cones, or p-cones, by themselves,
in order to understand general disclination cases. Indeed,
all of the Gauss mappings presented are a combination of
these primitive units of differing Gaussian charges, depending
on the net level at the vertex. Consequently, there may be
hidden insights afforded by the equivalent continuum cases,
particularly the p-cone, because of its obvious axisymmetry
and potentially simpler analysis. We leave this as an exercise
in further work.

V. CONCLUSIONS

There are excellent and detailed studies on the continuous
shape of deformed surfaces around disclinations. We have
focused here on developable, folded-plate approximations of
the same problem for simplicity’s sake, in order to reveal more
succinct, if approximate, expressions for the kinematics. We

have attempted to frame our results from the same perspective
in Ref. [5] by considering d-cones, planar e-cones, and then
conically confined e-cones. The last one affords interaction
of the types of constraint that may be imposed either at a
material level as vertex angular excess or when forces are
applied externally to cause a conical displacement field. Our
approach is only valid for small deflections and rotations but
has confirmed some of the known key dependencies when
thinking about “output” measures of shape. In particular, we
have seen that displacements (and fold rotations) do depend on
the ratio of Gaussian charge to the square of indentation depth,
and that we can produce the same displacement field by varying
one or the other—in this sense, they become interchangeable
[5]. A real benefit in our method is the use of the Gauss
mapping, originally laid out in Ref. [13] for d-cones. It
provides direct and simpler insight into these constraint effects
purely from a kinematical perspective; and being a vector
method, any general mapping can be broken down into smaller
stand-alone mappings, which define fundamental disclination
effects. By focusing on these simpler elements, new insight
into real and general disclination effects may be garnered,
such as the singular properties at real vertices—which are not
yet well understood. We have also seen the potential for gains
in displacement capabilities by prescribing certain fold line
layouts. In this sense, the structure behaves as a transducer
of shape control with a single degree-of-freedom because four
fold lines are needed to make the structure mobile; and we may,
for example, drive rotations along one fold line using a motor,
in order to produce displacements, and rotations, everywhere.
Even though our analysis is restricted to small displacements,
folded d-cones are mobile for larger rotations because their
layouts obey origami principles for folding their vertices flat.
Folded e-cones are strictly kirigami structures because material
is added or removed by cutting before folding. However, we
have chosen a fold line topology similar to d-cones, which
appears to allow flat-folding of e-cones, but we cannot be sure
if there is some influence from the flexibility of the facets in our
crude experiments. Hence, there may be common principles
between origami and kirigami structures yet to be formally
established.
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