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Liquid morphologies and capillary forces between three spherical beads
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Equilibrium shapes of coalesced pendular bridges in a static assembly of spherical beads are computed by
numerical minimization of the interfacial energy. Our present study focuses on generic bead configurations
involving three beads, one of which is in contact to the two others while there is a gap of variable size between
the latter. In agreement with previous experimental studies, we find interfacial “trimer” morphologies consisting
of three coalesced pendular bridges, and “dimers” of two coalesced bridges. In a certain range of the gap opening
we observe a bistability between the dimer and trimer morphology during changes of the liquid volume. The
magnitude of the corresponding capillary forces in presence of a trimer or dimer depends, besides the gap
opening, only on the volume or Laplace pressure of the liquid. For a given Laplace pressure, and for the same
gap opening, the capillary forces induced by a trimer are only slightly larger than the corresponding forces in the
presence of three pendular bridges. This observation is consistent with a plateau of capillary cohesion in terms
of the saturation of a wetting liquid in the funicular regime, as reported in the experimental work [Scheel et al.,
Nat. Mater. 7, 189 (2008)].
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I. INTRODUCTION

Capillary forces and the mechanics of wet granular mate-
rials remained an active field of research since the seminal
works of Haines [1] and Fisher [2] on soil mechanics. Until
to date the majority of models consider capillary forces
in the presence of pendular bridges [3–8], and are thus
restricted to describe the mechanics at low liquid saturations
[9,10]. Recent developments in three dimensional imaging
techniques such as fast confocal microscopy [11] and x-ray
tomography [12] made it possible to investigate the shape of
liquid clusters consisting of coalesced pendular bridges with a
resolution well below the scale of a single grain. The growth
of these “funicular structures” in disordered packings of disks
during condensation, and the corresponding evolution of the
cohesive forces have been recently investigated also in Lattice
Boltzmann simulations [13].

Despite these advances, only a few attempts have been made
to quantify capillary forces between spherical grains in the
funicular regime [12,14,15]. It is evident that the magnitude of
the cohesive forces at different liquid saturations is intimately
linked to the morphology of the interstitial fluids on the scale
of single grains [12,16]. A better understanding of the liquid
structures emerging in the funicular regime and the capillary
cohesion caused by them may help to predict landslides
or avalanches [17], and to complement existing models for
technological applications in wet granular aggregation or
particle coating [18]. Besides the immediate relevance for the
mechanics of wet granulates, modeling the cluster morphology
of partially wetting liquids will also have repercussions on the
theory of fluid transport in wet granular beds [10,16,19–21].

In this article we present the results of a systematic study of
fundamental liquid morphologies and corresponding capillary
forces in arrangements of spherical beads at saturations above
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the regime of pendular bridges. These liquid clusters appear
above a threshold saturation corresponding to the transition
from the pendular regime to the funicular regime. Considering
perfectly wetting liquids and a random close packing of spher-
ical beads, the pendular bridge regime is limited to a range of
liquid contents W < W ∗ ≈ 2.5 × 10−2, here expressed with
respect to the total sample volume [12,22]. At slightly higher
liquid contents W > W ∗, the lateral extension of a pendular
bridge on a bead does not anymore permit the formation
of isolated bridges. Consequently, a certain fraction of the
pendular bridges coalesces and transforms into a funicular
structure, i.e., into liquid clusters that are simultaneously in
contact to at least three beads.

The most characteristic cluster morphology found in gran-
ular bed of highly wettable spherical beads is a “trimer” of
pendular bridges [12]. As can be seen in the three dimensional
rendering of x-ray tomography data in Fig. 1(a) [12], three
pendular bridges have coalesced around a triangular opening
formed by three adjacent beads. In what follows we refer to
the center of the opening as a “throat.” Throats are found in
large numbers in a disordered assembly of spherical beads
[12,23], and it is not surprising that filled throats connecting
three adjacent bridges represent the most generic liquid
structure beyond isolated pendular bridges. A close inspection
of the liquid morphology shown in Fig. 1(c) reveals that this
large liquid cluster indeed consists mostly of these trimer units:
Any of the three pendular bridges belonging to a certain trimer
unit can be part of a least one more trimer unit. The filled throats
in a granular assembly can thus form large interconnected
chains of pendular bridge “polymers.” Owing to its outstanding
importance we will focus our present numerical study on a
single trimer.

Capillary forces of pendular bridges between two spherical
beads in contact display only small variations with the
liquid volume [2,15,17]. This observation readily explains the
insensitivity of the mechanical cohesion of a wet granular
assembly with respect to the liquid content W in the pendular

2470-0045/2016/94(1)/012907(16) 012907-1 ©2016 American Physical Society

http://dx.doi.org/10.1038/nmat2117
http://dx.doi.org/10.1038/nmat2117
http://dx.doi.org/10.1038/nmat2117
http://dx.doi.org/10.1038/nmat2117
http://dx.doi.org/10.1103/PhysRevE.94.012907


CIRO SEMPREBON et al. PHYSICAL REVIEW E 94, 012907 (2016)

FIG. 1. (a) Trimer morphology computed in our numerical energy
minimizations. (b),(c) Renderings of segmented x-ray mircotomog-
raphy images of a wetting liquid between spherical glass beads and
a large liquid cluster in a disordered packing from x-ray tomography
[12]. Bead radius R = (355 ± 35) μm, wetting liquid aqueous ZnI2

solution in (b) and (c).

regime W � W ∗ [17]. Quite surprisingly, the magnitude of
capillary cohesion evolves smoothly while the liquid content
is increased from the pendular regime W � W ∗ into the
funicular regime W � W ∗ [12]. Measurements of capillary
cohesion employing the fluidization threshold or the tensile
strength [9,12] reveal a plateau in the range of W from
approximately 0.03 reaching to values larger than ≈0.1. At
higher liquid contents, capillary cohesion gradually weakens
with increasing W and vanishes at full saturation of the pore
space (W ≈ 0.4). In the latter case, every bead in the granular
bed is completely immersed in liquid and, thus, there are no
fluid interfaces that can give rise to capillary cohesion.

An experimental quantification of capillary forces in small
ensembles of beads is difficult and in situ measurements are
hardly feasible with the currently available experimental tech-
niques. To reach a quantitative picture of capillary cohesion
between three or more beads, we employ numerical minimiza-
tions of the interfacial free energy and obtain the equilibrium
morphology of the liquid interfaces along with the magnitude
and direction of capillary forces. The respective capillary
forces as a function of the surface-to-surface separations can
be then employed to formulate a model for the mechanics of
wet beads, provided the complete set of rules to transform,
merge, or split liquid cluster in response to slow changes of
the local bead configuration is known [16].

A statistical analysis of x-tomography images revealed
that local triangular configurations with three detectable finite
separations between the bead surfaces are extremely rare in
random packings of monodisperse beads [12,21]. The majority
of these local throats exhibit only one detectable gap between
the surfaces of the beads. Beads of the remaining two pairs
are in mechanical contact. The other extreme case where all
three bead pairs are in contact is equally rare. No significant

differences in the statistics of surface-to-surface separations
of adjacent beads between dry and wet assemblies could
be detected in the x-ray tomography [12]. In view of the
three dimensional parameter space that accounts for the most
general configurations of three beads, we will restrict our
discussion in this work to the most relevant case, i.e., three
bead configurations with two mechanical contacts and one
finite gap opening. Local bead configurations where all three
pairs are in contact are covered as a special case. To account for
the range of experimentally relevant situations we report the
results for both the volume controlled case and the pressure
controlled case. In a forthcoming work, we will present the
results on the general case with two and three finite gap
openings, respectively.

This article is organized as follows: In Sec. II we introduce
the physical model and give details about the numerical
method to compute equilibrium configurations of the liquid
interface. In Sec. II, we summarize the fundamentals of
theory of capillarity and methods to compute capillary forces
between solid bodies in numerical energy minimizations. The
appearance of trimers and dimers of pendular bridges in
local bead configurations with two contacts are described in
Sec. III A and compared to wetting experiments in Sec. III B.
Numerically computed capillary forces between beads in the
presence of trimers and dimers are presented and discussed in
Sec. III C. Finally, we conclude with a summary and outlook
in Sec. IV.

II. PHYSICAL MODEL AND NUMERICAL
IMPLEMENTATION

Before we address the theory of capillary forces, we will
first give a short outline of the framework of capillarity. To
this end, we will consider the most general case of N spherical
beads in contact to two fluid phases. The position of the N

bead centers are given by vectors r1,r2, . . . ,rN with Cartesian
coordinates ri = (xi,yi,zi). For later convenience we denote
vectors and tensors by boldface symbols. The fluid phases in
contact to the beads may represent two immiscible liquids or
a liquid in coexistence with a vapor phase. As we assume
the beads to be fixed in space, or allowing only adiabatically
slow variations of their positions, any flow inside the fluids has
ceased once a mechanical equilibrium of the bulk phases and
their interfaces has been reached. In this state, both fluids are
at rest relative to the surface of the beads which implies the
absence of viscous stresses.

A. Interfacial energies

The shape of the liquid-vapor interface in mechanical
equilibrium and the corresponding capillary forces and torques
acting on the beads can be obtained from thermodynamic con-
siderations of the interfacial free energy E . For given positions
r ≡ (r1,r2, . . . ,rN ) of the bead centers, the functional

E {�lv} = γ lv Alv + (γ ls − γ vs)
N∑

i=1

Als
i (1)

assigns a free energy to every configuration �lv of the liquid-
vapor interface. The first term on the right-hand side of Eq. (1)
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represents the free energy of the liquid-vapor interface with
area Alv and interfacial tension γ lv. The second term in Eq. (1)
accounts for the free energy related to the surface �ls

i of bead
i in contact to the liquid with area Als

i ≡ |�ls
i | and the liquid-

solid and vapor-solid surface tension γls and γvs, respectively.
Liquid-fluid interfaces display a pronounced contact angle

hysteresis on virtually all solid materials, including model
granulates consisting of submillimetric glass, basalt, or ruby,
beads [12,21]. In the case of a finite contact angle hysteresis,
the free energy difference �γ ≡ γ ls − γ vs in Eq. (1) has to
be replaced by the work per length, �γ s

a and �γ s
r , that is

necessary to advance or recede, respectively, the contact line of
the wetting liquid on the bead surface. Static contact hysteresis
implies that �γ s

a − �γ s
r > 0 even for asymptotically slow

contact line displacements. As a consequence of this “static
friction,” the local contact angle θ in mechanical equilibrium
depends on the history of contact line motion and can thus
assume any value between the receding contact angle θr and
the advancing contact angle θa > θr. To elucidate the relation
between capillary forces induced by a liquid cluster and
the free energy landscape we will assume a fully reversible
displacement of the contact line in this work, i.e. consider
idealized surfaces without contact angle hysteresis.

Moreover, we will neglect the influence of gravity and
buoyancy, as their effects are typically small in liquid clusters
with extensions on the length scale of the grains, which is
typically between 1 mm and 100 μm. The capillary length for
an air-water interface is in the range of a few millimeters [24].
Expressed in terms of the Bond number Bo ≡ �ρ gR2/γ lv

with a typical vertical dimension of the interface in the range of
the bead radius R, we have Bo � 1. Furthermore, we assume
that the typical distances between the liquid interface and solid
walls are large such that contributions of the disjoining pres-
sure to the normal stress at the interface can be safely excluded.

Under these conditions, any mechanically stable interface
configuration �lv in contact to the beads with fixed positions
r̄, is a local minimum of the free energy Eq. (1). Dealing
with nonvolatile liquids, we have to consider minima of the
functional (1) under the subsidiary constraint of a fixed volume
V of the liquid body. We will refer to this situations as the
“volume controlled case.”

In some situations it is justified to assume that the liquid
in contact to the beads can be exchanged with a reservoir
that fixes the pressure difference P ≡ P l − P v between the
liquid (l) and vapor (v) phases. The pressure controlled case
applies to experimental systems where a liquid transport can
proceed either through thin films on the surfaces of the particles
[12,21,25,26] or directly through a diffusive flux in the vapor
phase; see, e.g., Ref. [27]. If these equilibration processes are
fast on the time scale of an experiments [12,19,21], it is justified
to view the total liquid in the sample as a liquid reservoir,
and assume the Laplace pressure P to be the relevant control
parameter. If this is the case, we need to consider local minima
of the Grand interfacial free energy

G = E − P V. (2)

The grand interfacial free energy takes into account the work
received from or done at the volume reservoir, respectively.
We will refer to this case as the “Laplace pressure controlled
case.”

Any extremum of the free energy E under the constraint
of a fixed volume V necessarily satisfies two conditions. The
first condition is expressed by the Young-Laplace equation:

P = 2Hγ lv, (3)

that holds in every point of the interface �lv . The mean
curvature H is the sum of the two principal curvatures, or
any pair of normal curvatures of the interface into orthogonal
direction; see for instance Ref. [28]. In the absence of gravity,
the Laplace pressure P is independent on the position which
implies that �lv is a surface of constant mean curvature.

The second necessary condition of a local free energy
minimum is due to Young, Dupré, and Laplace and expresses
the mechanical equilibrium at every point the three phase
contact line:

γ lv cos θ0 = γ sv − γ sl. (4)

The equilibrium contact angle θ0, also termed Young’s or
material contact angle, is determined solely by interfacial free
energies. As already mentioned, for a comparison to “real”
surfaces, we need to account for the dissipation of work during
and advancing or receding motion of the three phase contact
line, and consider static advancing and static receding contact
angles θa and θr , respectively, instead of Young’s angle θ0.

Owing to inherent nonlinearity of the energy functional
Eq. (1), the interfacial free energy E may exhibit more
than one local extremum for a given liquid volume V and
given positions r̄ of the beads. The equilibrium shapes can
be distinguished by suitable order parameter describing the
interfacial shape. The free energy E of these equilibrium
shapes is a function E(r̄,V ) in a certain range of bead
coordinates r̄ and liquid volume V .

In the many instances one finds multiple local energy min-
ima for given positions r̄, volume V , and material contact angle
θ0. In this case, the function E(r̄,V ) is multivalued and forms
a number of branches (or “leafs”). Analogous statements hold
for the Grand free energy G and the corresponding energy land-
scape G(r̄,P ), where the Laplace pressure P represents the
accessible control parameter, instead of the liquid volume V .

Any interfacial configuration that satisfies Eqs. (3) and
(4) is an extremum of the interfacial energy G for the given
Laplace pressure P in Eq. (3). From this observation we can
conclude that an extremum of the free energy Eq. (1) for
a certain volume V is also an extremum of the Grand free
energy Eq. (2) for a certain Laplace pressure P and vice versa.
This implies that the set of interfacial equilibria in the volume
controlled case and in the Laplace pressure controlled case are
identical. The mechanical stability of these extrema, however,
may differ between the volume and the pressure controlled
cases. Apart from a constant, the free energies G and E are
identical for all interfacial configurations enclosing the same
volume V . Hence, any local minimum of G will be also a
local minimum of E under the constraint of a constant volume
V , where the Laplace pressure P in G can be regarded as
a Lagrange multiplier. Therefore, mechanical stability in the
Laplace pressure controlled case always implies mechanical
stability in the volume controlled case. The converse statement,
however, is not necessarily true: the liquid may exhibit more
locally stable states in the volume controlled case as compared
to the Laplace pressure controlled case.
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At specific values of the relevant control parameters liquid
volume V or Laplace pressure P and bead configuration r̄,
termed “bifurcation points,” the number of local minima and
saddle points of the energy functionals E and G changes.
Bifurcation points can be classified according to universal
aspects of the underlying energy landscape, i.e., the number of
control parameters and order parameters as well as the sym-
metries of the energy functionals. More details on this subject
of catastrophe theory can be found, e.g., in Refs. [29,30].

B. Capillary forces

The interfacial free energy E(r̄,V ) of a branch of liquid
equilibrium states can be employed to compute the capillary
force acting on the beads. If we assume that E equals the
reversible work during displacement of the beads, the total
force Fi acting on bead i can be obtained, besides a negative
sign, from the energy gradient

Fi = −∇ri
E(r̄,V ), (5)

with respect to the Cartesian coordinates ri of the particles
i ∈ {1,2, . . . ,N}.

Capillary forces are unique for the equilibrium conforma-
tion of the liquid in contact to the beads, and do not depend
on whether the liquid volume or the Laplace pressure is con-
sidered as the controlled parameter. Whenever ∂V P̃ (r̄,V ) �= 0,
we can find the inverse function V = Ṽ (r̄,P ) for given bead
positions r̄, where we use the tilde to distinguish the variable
from the respective function. As shown in the Sec. 1 of the
Appendix, we can derive the identity

∇ri
G(r̄,P ) = ∇ri

E(r̄,V )|V =Ṽ (r̄,P ), (6)

expressing that the capillary forces in a mechanical equilibrium
are the same in the volume controlled case and the Laplace
pressure controlled case, provided we consider corresponding
values of the volume V and the Laplace pressure P . Higher
derivatives of E(r̄,V ) and G(r̄,P ) with respect to the co-
ordinates r̄ [evaluated at a Laplace pressure P = P̃ (r̄,V )],
however, differ in the general case.

Once the interfacial energies Ẽ(r̄,V ) or G̃(r̄,P ) are known,
we can derive the capillary force Fi from partial derivatives
with respect to the Cartesian coordinates riα , α ∈ {x,y,z}
for every bead i. This approach is numerically cumbersome
because one needs to scan a high dimensional function over
a large range of parameters. Calculating the capillary forces
directly from the configuration �lv of the interface in a
local minimum of E or G , respectively, involves integrations
over the three phase contact line of the interface which is
numerically much less costly.

To determine the total capillary force acting on each
single bead, let us first imagine that every bead is enclosed
by a control surface. This virtual control surface shall be
infinitesimally close to the bead surface. By definition, the
control surface must not intersect with any of the adjacent
beads. Integration of the normal component of the stress tensor
over the control surface yields the total capillary force on a
bead. In a mechanical equilibrium of the interfaces, the bulk
fluids, and the beads the fluid is at rest relative to the beads
which implies that viscous stresses are absent. The magnitude

and direction of this force is independent on the particular
choice of the control surface.

The total capillary force Fi acting on bead i = 1,2,3 can
be split into a contribution of the pressure in the liquid and
ambient fluid (superindex p) and a contribution that stems
from the interfacial tension (superindex t):

Fi = Fp
i + Ft

i . (7)

The first contribution Fp
i is given by the Laplace pressure P

multiplied by the local surface normal Ns of the solid, and inte-
grated over the surface �ls

i of the bead i in contact to the liquid:

Fp =
∫

�ls
i

dA P Ns. (8)

Note that this contribution to the capillary force vanishes if
the bead is completely immersed in the liquid provided that
P is independent on r.

The second contribution Ft
i arises only in the presence of

a three phase contact line 	i on the bead i, i.e., if bead i is
partially wet. Locally, the interfacial tension γ lv of the liquid-
vapor interface �lv pulls into a direction perpendicular to both
the tangent vector t of the contact line 	i , and the local normal
vector N of �lv in a point r on 	i , which is expressed as a
force per unit length,

f = γ lv(Ns sin θ − ns cos θ ). (9)

The sketch in Fig. 2(b) illustrates the definition of the two local
orthonormal vector bases {t,N,n} of the liquid vapor interface
�ls and {t,Ns ,ns} on the surface �s of the bead, as well as the
local contact angle θ between �ls and �s in a point r ∈ 	i . The
surface normal of the free interface, N, and the local normal
of the bead surface, Ns, allow us to express the local contact
angle as

cos θ = N · Ns. (10)

The vectorial line force Eq. (9) integrated over the contact
line 	i on bead i yields the total force that the liquid–vapor
interface exerts on bead i:

Ft
i =

∫
	i

d
 f(r). (11)

In our numerical energy minimizations, integrals of Eq. (9)
over the contact line can be performed as summations of
the corresponding expressions over the edges of the mesh
representing the contact line. Employing the divergence
theorem, one can re-express the surface integral in Eq. (8) by
line a integral over suitable functions of the local Cartesian co-
ordinates of the point on the contact line as well as the Cartesian
components of the normal and conormal vector in that point.

In the remainder of this article, we will consider the ideal
case of a homogeneous bead surfaces for a vanishing contact
angle hysteresis where the local contact angle is identical to
Young’s angle θ0 as given by Eq. (4). The computation of
capillary forces through an integration of local interfacial and
normal stresses on the beads following Eqs. (7)–(11) is not
restricted to the case of vanishing contact angle hysteresis.
In contrast to the computation of forces from the free
energy landscape, this approach can be applied to any liquid
configuration where only the free interface is in mechanical
equilibrium with the bulk fluids.
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FIG. 2. (a) Geometry of three spherical beads with arbitrary gap
openings sij , i �= j ∈ {1,2,3}. The total capillary force Fi acting on
sphere i (blue arrows) is decomposed into force pairs acting along the
line joining the bead centers (black arrows). (b) Local orthonormal
vector bases in a point r of the contact line 	i of a liquid-vapor
interface �lv on the surface �s

i of beads i. Here, t denotes the tangent
to 	i , Ns the normal of �s

i , N the normal of �lv, θ the contact angle,
while n and ns denote the outward pointing conormal vectors on �lv

and �ls, respectively.

C. Numerical implementation

Due to a lack of high symmetries like, e.g., the rotational
symmetry, the computation of the equilibrium shapes of a
liquid volume wetting three spheres can be achieved only
by means of numerical methods. In this work we employ
a numerical minimization of the interfacial energy with the
freely available software Surface Evolver developed by Brakke
[31]. A fundamental idea behind this method is that the shape
of a liquid droplet in contact with a rigid substrate is entirely
fixed by the configuration of the free liquid-vapor interface.

In the numerical model of the liquid in contact with the
beads, the shape of the liquid-vapor interface is approximated
by a mesh of small triangles spanning a set of nodes. The
interfacial energy is a function of the 3N coordinates of
the nodes, and can be minimized using a number of built-
in optimization algorithms [31]. Nodes of the mesh which
represent the three phase contact line have to glide and
stay on the spherical surface of one of the beads. Local
geometrical constraints keep the nodes of the contact line on
the surface. Contributions to the interfacial energy which stem

FIG. 3. Liquid morphologies in contact to three beads of equal
radius with one nonzero gap opening showing (a) a trimer, (b) a dimer,
(c) three pendular bridges, and (d) a dimer coexisting with a single
pendular bridges; cf. also the magnifications of (c) and (d).

from the surface of the beads in contact with the liquid are
completely determined by the configuration of the boundary
to the liquid-vapor interface and are numerically computed
from line integrals of suitably chosen functions over the closed
contact line [31].

It is not restrictive to assume the centers of the three beads
to lie in the plane z = 0, and compute only half of the liquid
morphology by exploiting the reflection symmetry with respect
to the plane at z = 0. To account for the possibility of local
energy minima with a different topology of the liquid-vapor
interface, but for the same values of control parameters, we
employed a series of initial configurations in the numerical
model, each equipped with a meaningful interfacial topology.
Figure 3 shows the four configurations between three beads
that were found in our numerical calculations. However, we
cannot completely rule out the possibility to find even more
physically meaningful local energy minima, i.e., with liquid-
vapor interfaces that are not self-intersecting or penetrating
into the beads.

During minimization of the interfacial energy, the condition
of a constant liquid volume is imposed through a global integral
constraint on the total volume, being the sum over all liquid
bodies. Provided the configuration is in a local minimum of the
interfacial free energy, the Lagrange multiplier corresponding
to this integral constraint that has to be calculated in every
minimization step is identical to the Laplace pressure P ,
i.e., the pressure difference across the liquid-vapor interface.
Alternative to the ensemble of interfacial configurations
enclosing a constant volume, one may consider an ensemble
where the Laplace pressure of the liquid is fixed by a reservoir
while the total liquid volume is allowed to adjust.

A variety of gradient based energy minimizations schemes
including a conjugate gradient descent are implemented in
the Surface Evolver [31]. Furthermore, a complete script
language allows us to extract geometrical quantities from the
liquid-air interface, such as the position of special points of
the contact line. Long and short edges of the triangulation are
refined, respectively, removed from the mesh after a number of
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FIG. 4. Capillary forces F of a pendular bridge between two
spherical beads as a function of the surface-to-surface separation s in
the volume controlled case for V = 0.025, 0.05, and Laplace pressure
controlled case for P = −9, −4.5. Exact solutions are shown as lines
while numerical energy minimizations using the surface evolver are
displayed by symbols. Inset: Force difference �F between energy
minimizations and corresponding analytical solutions as a function
of s.

minimization steps in order to keep the size distribution of the
triangles in a desired range. Subsequent edge flipping allows
the mesh to adapt to large changes of the liquid configuration.

To optimize the convergence we alternate coarse and fine
triangulation meshes: coarse after changes of one or more
control parameters are modified, to allow a fast evolution of the
liquid interface, and fine when converging to an equilibrium
morphology. The typical edge length of a fine triangulation
is approximately 0.025 in units of the bead radius, while
the typical number of nodes in a trimer morphology on
the order of ∼1000, with fluctuations on around 20%. To
account for flat parts of the energy landscape, the convergence
criterion is not based on an energy difference, but rather on the
maximum relative displacement among all nodes during each
minimization step. Quantities of interest are averaged over the
last 30 steps and written to the data file after the convergence
criterion is satisfied.

To assess the accuracy of our numerical method, we validate
the capillary forces of a pendular bridge for a given volume or
Laplace pressure with exact solutions of the interfacial profile;
cf. Fig. 4 and Section 3 of the Appendix. Besides a small region
of surface-to-surface separations s close to the point of rupture
smax, the difference of capillary forces F obtained by energy
minimization and the “analytical” solutions remains below
≈1% with respect to the maximum value F max attained at
s = 0. Only close to the point of rupture, the relative difference
increases to ≈2.5%. We expect to find a similar relative error
for the capillary forces of the trimer morphology where the
same meshing routines were applied during numerical energy
minimizations.

Performing numerical computations of interfacial energies,
Laplace pressures, and forces, it is useful to employ dimen-
sionless rescaled physical quantities. For later convenience,
we rescaled any length in the system by L0 ≡ R and express
volumes in units of V0 ≡ R3. Energies will be rescaled by E0 ≡
γ lvR2 and, consequently, capillary forces and the Laplace

pressure by a force scale F0 ≡ γ lv R and pressure scale P0 ≡
γ lv/R, respectively. For the sake of brevity and to improve the
readability of the text, we will from now on refer to the nondi-
mensional rescaled quantities, if not otherwise mentioned.

III. RESULTS

Throughout this work we consider three identical spherical
beads, as illustrated in the sketch of Fig. 2. Assuming a
wetting liquid in our numerical energy minimizations we set
the contact angle to θ0 = 5◦. Two of the three bead pairs
in the numerical model are in contact, while the third pair
exhibits a finite gap. Without losing generality, we chose gap
openings s12 > 0 and s13 = s23 = 0, i.e., beads 1 and 2 are
not in mechanical contact. Hence, the two remaining control
parameters that define the relative position of the beads are s12

and either the liquid volume V or the Laplace pressure P .

A. Liquid morphologies

Figure 3 presents all mechanically stable interfacial mor-
phologies encountered in our numerical energy minimizations
in the volume controlled case. These are the trimer of three
coalesced pendular bridges in panel (a) of Fig. 3, a dimer of two
coalesced bridges at the contacts in (b), three isolated pendular
bridges in (c), and a bridge dimer at the contacts coexisting
with a pendular bridge across the gap in (d). Throughout this
work we assume that separate liquid bodies can be exchange
volume. Consequently, the relevant parameter in the volume
controlled case is the total volume of all liquid bodies.

Inspection of the liquid-vapor interface of the dimer and the
trimer shows that both interfaces are topologically equivalent
to the surface of a sphere perforated by three holes. Despite
this similarity, the overall shape of a trimer and dimer are
qualitatively different. The liquid of a trimer fills the central
opening, or throat, formed by the three adjacent beads. In the
presence of a dimer, however, the central part of this throat is
empty of liquid. Dimer morphologies can thus be described
by a pair of pendular bridges that have coalesced in a small
section of their contact lines.

To distinguish the trimer from the dimer morphologies,
and to detect certain types of instabilities that occur during
quasistatic changes of one or more control parameters, we
consider two suitable shape descriptors as indicated in Fig. 5.
Let us imagine a cut through the liquid body by the symmetry
plane x = 0 orthogonal to the plane z = 0 passing through the
centers of the spheres. The first shape descriptor is now the
distance d between the intersection of liquid interface and the
y axis, and the surface of bead 3; cf. Fig. 5. As a second shape
descriptor, we chose the smallest distance h of two points on
the concave part of the upper and lower meniscus in the throat.
This minimum thickness of this “liquid lamella” may become
ill-defined if the meniscus in the throat lack a concave shape,
unlike the example shown in Fig. 5.

The plots in Fig. 6(a) illustrate the evolution of the meniscus
distance d as a function of the liquid volume V , for a set of fixed
gap opening s12 in the range between 0.05 and 0.25. At a large
gap opening s12 = 0.25, we observe a continuous increase of d

for an increasing volume V , and no discontinuous jumps. The
distance d follows the same curve during a volume decrease.
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FIG. 5. (a) View of a trimer morphology with liquid volume
V = 0.2 and material contact angle θ0 = 5◦ wetting a throat of three
beads with one finite gap s12 > 0 and two contacts s13 = s23 = 0. The
foremost bead and half of the liquid interface are rendered transparent
to enhance the cut along the symmetry plane. (b) Magnified view
of a cut through a trimer along its symmetry plane, illustrating the
definition of the order parameter meniscus distance d and the distance
h of the two opposing menisci in the throat.

A clear transition between trimer at large V and dimer at
small V cannot be found. Only at small volumes, the dimer
morphology eventually decays, caused by a decoalescence of
the meniscus as d → 0. This interfacial instability, indicated
by square symbols in Fig. 6(a), will lead to two separated
pendular bridges as a final state.

At smaller gap openings s12 = 0.13, 0.17, 0.21 the menis-
cus distance d shown in Fig. 6(a) displays discontinuous jumps
to larger or smaller values, depending on whether the volume
V is decreased or increased, respectively. Owing to these
jumps, we find a range of control parameter s12 and V where
two branches of local minima of the interfacial free energy
(1) can be found in our numerical energy minimizations.
This mechanical bistability between a dimer and a trimer
allows a clear distinction of the morphologies. The branch
of liquid conformations with the larger or smaller value
of d are classified as trimers and dimers, respectively. The
corresponding interfacial instabilities limiting the range of
mechanically stable trimers and dimers will be termed the
“snap-in” and the “pop-out” instability in the remainder of this
article. The latter two instabilities are indicated by downward
and upward triangles, respectively, in Fig. 6.

For a gap opening s12 of 0.13 and smaller, the snap-in
instability occurs at a volume smaller than the smallest volume
that allows a stable dimer to be formed, cf. the corresponding
branches shown in Fig. 6(a). Hence, trimers can directly
break up into two separated pendular bridges during a volume
decrease without passing through the dimer morphology. For
the examples shown in Fig. 6(a), the trimer branch terminates
for a finite value d > 0 at gap opening s12 of 0.05 and 0.09.

FIG. 6. (a) Distance d between the outer meniscus at the gap and
the surface of sphere 3 as a function of the volume V for different gap
openings s12. (b) Minimal distance h of the two opposing menisci in
the throat as function of V for the same values of s12. (c) Morphology
diagram in terms of the V and s12 displaying the lines of instabilities
as outlined in the main text. The bifurcation point and the kink are
indicated by the star (�) and diamond (�) symbol, respectively. For a
definition of d and h, cf. also Fig. 5.

In these cases the minimal thickness h of the liquid lamella
in the throat reaches zero before a discontinuous inward jump
of the outer meniscus in the gap or a decoalescence can lead to
the decay of the trimer. A collision of the two opposing menisci
in the throat triggers a sudden opening of the liquid interfaces.
The circles in the plots shown in Figs. 6(a) and 6(b) indicate
this “burst” instability during a decreasing liquid volume. The
burst instability of the central liquid meniscus very likely leads
to three separated pendular bridges as the final state.

Figure 6(c) illustrates the stability boundaries of the
trimer and dimer morphologies that correspond to one of the
four possible types of instability. With systematic scans of
parameters s12 and V , we identified a bifurcation point at
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(V �,s�
12) = (0.26,0.22) as indicated by the black star in the

stability diagram Fig. 6(c). The tangents to the lines indicating
the snap-in and the pop-out instability become parallel and
terminate in a cusp. This type of bifurcation is generically
observed for systems with two control parameters and one
order parameter; see, e.g., Refs. [29,30]. The lines of the snap-
in instabilities and the burst emerge from a point (V �,s

�
12) =

(0.09,0.125), where the two stability lines form a kink. The
latter point is indicated by a black diamond in Fig. 6(c). Note
that mechanically stable dimers can exist in the “ideal” case
s12 = 0 of all three beads in contact, provided that the volume
falls into the narrow range between V ≈ 0.115 and V ≈ 0.15.

It turns out that also a mechanically stable “chimera”
morphology of a dimer and an isolated pendular bridge
across the finite gap is possible. In contrast to the trimer, the
latter morphology is always metastable (not the global energy
minimum of the interfacial energy) and can be found only in
a small region of control parameters. As for a single bridge
dimer, a volume decrease will likely induce a breakup of the
interface between the two coalesced bridges and the formation
of three pendular bridges. Alternative to decoalescence, we
observed that the pendular bridge located at the gap may
transfer liquid into the dimer and break up.

An increase of the liquid volume of the dimer chimera state,
however, will lead to a coalesce of the dimer and the pendular
bridge at the gap. The resulting trimer will completely fill the
throat opening. Similar to the decay at decreasing volume, an
increase of the gap opening at fixed volume could induce a
rupture of the pendular bridge spanning the gap. Here, we can
speculate that the liquid will first form a transient dimer that
finally decays, after a pop-out of the meniscus between the
two coalesced bridges, into a trimer.

B. Experiments

Motivated by the results of our numerical energy mini-
mizations in Sec. III A, we investigated the decay of the trimer
morphology and the final states during a slow decrease of
liquid volume in an experimental realization. To this end,
we fix three spherical ruby beads of identical radius R =
(300 ± 5) μm (purchased from Saphirwerk Industrieprodukte
AG and Sandoz Fils Sa, both Switzerland) on a microscopy
glass slide using modeling clay. Two pairs of the beads are in
mechanical contact (s13 = s23 = 0) while a small separation
is intentionally left between the surfaces of the third pair
(s12 > 0). Deionized water is employed as a volatile wetting
liquid with a receding contact angle of θr � 10◦ on the surface
of the cleaned ruby beads, similar to the material angle of
θ0 = 5◦ in our numerical energy minimizations in Sec. III A.
In the beginning of the experiment a small water droplet is
placed in the throat formed by the three ruby beads. During
evaporation the shape of the meniscus is recorded by optical
microscopy in the top view; cf. also Fig. 7(a). Experiments are
performed at similar temperatures and relative humidities to
ensure comparable evaporation rates.

Examples of video frames of a trimer recorded during
a typical evaporation experiment are displayed in Fig. 7(a)
for two gap openings. In good agreement with the numerical
results of the previous Sec. III A, we observe a burst instability

FIG. 7. Evaporation of water bridge trimers in an assembly of
three ruby beads with a radius of R = (300 ± 5) μm with a finite gap
between beads 1 and 2. (a) Optical micrographs of a pendular bridge
trimer with a finite gap opening s12 = 0.115 (top left) and s12 = 0.135
(top right) and the corresponding final states of the burst instability
(left bottom) and snap-in instability (bottom right). (b) Distance d of
the outer meniscus in the gap from the surface of the opposing bead as
a function of time t elapsed after the meniscus has passed a distance
d = 0.8 for different gap opening s12. (c) Estimated mean curvature
H of an evaporating trimer at the point of instability as a function
of the gap opening s12 in evaporation experiments and numerical
energy minimizations.
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for s12 = 0.115 (left column) and a discontinuous snap-in at
s12 = 0.145 (right column). The distance of the meniscus in
the gap to the surface of the opposing bead is denoted as d; cf.
also Fig. 7(a) and Sec. III A. According to our convention, we
rescaled the distance d by the bead radius R.

Figure 7(b) shows the meniscus distance d extracted from
the video frames as a function of time t for a series of gap
openings s12. To compare the temporal evolution of d during
a snap-in for different values of the gap opening s12, we chose
an individual offset on the time axis for each curve in Fig. 7(b)
such that the meniscus distance at time t = 0 attains the value
d = 0.8.

Irrespective of the gap opening s12, the meniscus distance d

is monotonously deceasing as time t passes. The crossover
from a sudden, discontinuous snap-in to a gradual and
continuous decrease of d occurs between gap openings s12

of 0.155 and 0.245. At this point, we observe also a qualitative
change in the form of the functions shown in Fig. 7(b), which
display an increasing s-like shape of the curves as s12 is
decreased. The transition agrees well with the predictions
of our numerical energy minimizations in Sec. III A, where
we expect a bifurcation point at a gap opening s�

12 = 0.22
separating the continuous from the discontinuous trimer decay.
The corresponding measured meniscus distance d� at the
expected bifurcation point as well as the values of d at
the onset of the snap-in instability for s12 < s�

12 agree well
with the numerically obtained results of Sec. III A shown in
Fig. 6.

The snap-in instability was not observed in our evaporation
experiments at gap openings s12 � 0.115. In the latter cases,
the trimer decays upon a volume reduction because the central
part of liquid-vapor undergoes a sudden burst instability. In
the majority of cases the final state attained after the snap-in
instability at s12 > 0.12 is a pendular bridge dimer. In contrast
to the snap-in instability, burst instabilities occur for small gap
openings s12 < 0.12, only, and lead to a final state of three
pendular bridges.

For a quantitative comparison of the trimer instabilities
observed in different experimental realizations and our nu-
merical energy minimizations, it is useful to consider the mean
curvature H of the liquid-vapor interface at the onset of the
instability leading to the decay of the trimer. To this end we
extracted the projected shape of the menisci of the coalesced
pendular bridges spanning the pair of beads that are in contact.
Because the outer parts of these interfaces are hardly affected
by the liquid in the throat connecting the pendular bridges,
the projected contours of these menisci are still close to the
shape of an isolated pendular bridge. Adopting the toroidal
approximation of pendular bridges for these menisci, we fit
the in-plane contour of the outer menisci by circular arcs.
The mean curvature H of the interface is the arithmetic mean
H = (κ‖ + κ⊥)/2 of the in-plane (‖) and out-of-plane (⊥)
curvatures κ‖ = 1/r‖ and κ⊥ = 1/r⊥, respectively. Here, r‖
is the radius of the fitted arc while r⊥ denotes the distance of
the outer meniscus from the respective contact of the bead pair.
This geometrical analysis of the liquid interface is done only
on the last video frame that still shows a complete trimer,
or before the outer meniscus in the gap accelerated while
approaching the snap-in instability.

Figure 7(c) displays the values of the mean curvature H

estimated in our experiments for various gap openings s12.

In comparison to the experimental data, we plot in Fig. 7(c)
the corresponding values of the mean curvature obtained in
our numerical energy minimizations. A transition between
the snap-in and the burst instability is clearly visible as a
kink in both the experimental and the numerical data. A
small systematic shift in the mean curvature between the
experimental data points and the numerical results is apparent
in the plot of Fig. 7(c), but the numerical data fall into the
range of the experimental uncertainties. Our experimental data
show a cross-over between the burst and the snap-in instability
for a gap opening s12 ≈ 0.12. This value coincides perfectly
with the numerically determined value where we assumed a
material contact angle of θ0 = 5◦.

C. Capillary forces

After discussing the spectrum of liquid equilibria and their
instabilities in Secs. III A and III B, we will now turn to the
capillary forces on the beads in contact to the liquid. It is
evident that the total capillary force acting on a single bead in
the presence of three axially symmetric pendular bridges is a
superposition of central forces.

As long as we consider ideal spherical beads with a
vanishing contact angle hysteresis, the total capillary force
Fi on a bead i ∈ {1,2,3} in the presence of the trimer or dimer
morphology can be decomposed into central force pairs; cf. the
illustration in Fig. 2. Provided the bead centers do not lie on the
same line, this decomposition is unique. This finding is derived
from the observation that the interfacial free energy Eq. (1) is
invariant under arbitrary simultaneous rigid translations and
rotations of beads and liquid. A proof is given in Sec. 2 of
the Appendix for arbitrary equilibrium liquid morphologies
in contact with three spherical beads. Similar conclusions
were reached by Admal and Tadmor in Ref. [32] considering
forces on the molecular level for general three and four body
interactions.

Due to the reflection symmetry of the particular bead
configuration considered in this work, the magnitudes of
the pair forces Fij with i,j ∈ {1,2,3} are invariant upon
interchanging bead 1 with bead 2. Hence, the capillary
forces satisfy F13 = F23, and we need to consider only two
independent forces: the force F12 acting across the gap and the
force F13 acting at one of the two contacts.

1. Three pendular bridges

Figures 8(a) and 8(b) illustrates the capillary forces F12

and F13, respectively, for a symmetric bead configuration with
one finite gap opening s12 > 0 and two contacts s13 = s23 = 0
in the presence of three pendular bridges with total volume
V . As mentioned in the beginning of Sec. III A, we assume a
mutual exchange of liquid volume between the bridges. This
transport can be due to liquid films on the surface of the beads
or diffusion through the continuous fluid phase. The Laplace
pressure P of the bridges as a function of gap opening s12 and
total volume V is shown in Fig. 8(c).

The dashed lines in the color maps Figs. 8(a)–8(c) indicate
the region (s12,V ) where configurations of three pendular
bridges are mechanically stable. Whenever the boundary of the
latter region is reached during an adiabatically slow change of
s12 and V , the bridge ensemble will become unstable and decay
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FIG. 8. Attractive capillary forces F12 across the gap (a) and F13 at the contact (b) in presence of three pendular bridges as a function of the
gap opening s12 and liquid volume V . Capillary forces F12 and F13 and volume V of three pendular bridges in the pressure controlled case are
shown in panels (c), (d), and (f), respectively, as a function of s12 and P .

into an interfacial morphology with a lower interfacial free
energy. For small total volumes V below the full circle symbol
in Fig. 8, the ensemble of three pendular bridges becomes
unstable with respect to a mutual exchange of volume. In the
course of this instability, the pendular bridge located at the
gap will be spontaneously “sucked up” by the two bridges at
the contacts. In the upper part of the stability limit left of the
symbol, we observe that the contact lines of at least one pair
of bridges touch, followed by coalescence.

Inspection of Fig. 8(a) shows that the attractive force F12

acting across the gap at a fixed total liquid volume V of the
bridges varies strongly with the gap opening s12, dropping from
a value of F12 ≈ 5 at s12 = 0 to F12 ≈ 0 at the gap opening
s12 = smax

12 (V ) on the stability limit for the given volume V .
The values of F12 at s12 = 0 and s12 = smax

12 (V ) are rather insen-
sitive with respect to changes in V ; cf. Fig. 8. As expected, the
force F12 for a vanishing gap opening s12 = 0 increases slightly
with decreasing V , and approaches the value 2π cos θ0 ≈ 6.23
of a pendular bridge only in the asymptotic limit V → 0 [2].
The value of maximum gap opening s12 = smax

12 (V ), however,
depends strongly on the total liquid volume V .

In contrast to F12, the attractive capillary force F13 at the
bead contacts shown in Fig. 8(b) does not display a significant
variation with either the gap opening s12 or the total volume
V . We obtain values F13 ≈ 5.5 with a slight increase to

F13 ≈ 6.23 in the asymptotic limit V → 0, as expected from
the force F12 at s12 = 0. The Laplace pressure P of three
communicating pendular bridges in Fig. 8(c) depends on both
control parameters, s12 and V . Apparently, the dependence of
P on V is more pronounced than the dependence of P on the
gap opening s12.

In many instances it is appropriate to assume that the liquid
clusters in the wet granular assembly exchange volume with
neighboring liquid structures [12,19,21]. Here, the neighbor-
ing structures act as a liquid reservoir, and one may regard the
average Laplace pressure in the granular bed to be a suitable
control parameter. In the latter case, an equilibrated liquid
cluster represents a local minimum of the Grand interfacial
energy G at a given Laplace pressure P rather than a local
minimum of the interfacial energy E for a fixed volume V .

Capillary forces F12 and F13 of three pendular bridges in
the pressure controlled case are shown in Figs. 8(d) and 8(e) as
a function of gap opening s12 and Laplace pressure P . We find
the same crossover between the decay modes as in the volume
controlled case discussed above. For high Laplace pressures
P (with negative sign, but with low magnitude), the pendular
bridges are unstable with respect to coalescence while for small
values of P (i.e., with negative sign, and large magnitude), the
bridge at the gap becomes unstable with respect to a volume
exchange with the reservoir. The corresponding stability limit
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FIG. 9. Attractive capillary forces F12 across the gap (a), F13 at the contact (b), and Laplace pressure P of trimer or dimer (c) as a function
of the gap opening s12 and liquid volume V . In regions of trimer or dimer bistability, the forces of the morphology with the smaller meniscus
distance d is displayed; cf. also the diagram in Fig. 6. Capillary forces F12 and F13, and volume V of a trimer or dimer morphology in the
pressure controlled case are shown in panels (d)–(f), respectively, as a function of s12 and P .

in Figs. 8(a)–8(c) is shown as a dashed line where the open
circle symbol indicates the crossover between the two modes
of instability.

Similar to the volume controlled case, the force F12 acting
across the gap decays with increasing gap opening s12; cf.
Fig. 8(d). At a fixed gap opening s12, the capillary forces
become stronger with a decreasing Laplace pressure P (i.e.,
with negative sign and increasing magnitude), reaching the
asymptotic value 2π cos θ ≈ 6.23 for s12 = 0 only in the
limit P → −∞. Close to the straight segment of the stability
boundary left of the symbol related to bridge coalescence, we
find F12 ≈ 5, similar to the magnitude in the volume controlled
case at large V . Figure 8(e) displays the capillary force at
the bead contacts, F13, which is insensitive with respect to
P , and with similar magnitude in the range F13 ≈ 5 close to
coalescence. For completeness, the total volume V of the three
bridges is shown the last panel of Fig. 8(f).

2. Trimer or dimer morphology

In the following we will discuss the capillary forces of
the trimer or dimer morphology in the volume and pressure
controlled cases. Figures 9(a) and 9(b) display the magnitude
of the attractive capillary forces F12 at the gap opening and
F23 at the bead contacts. In regions where both the dimer

and the trimer are locally stable shapes for the given values
of the control parameter gap opening s12 and liquid volume
V , the map displays the forces corresponding to the trimer.
Apparently, the attractive force F12 a trimer exerts across
the gap depends strongly on the gap opening s12, but only
weakly on the liquid volume V . As expected from the liquid
distribution between the beads, the attractive force F12 of a
trimer is larger than the corresponding force of a dimer for the
same values of s12 and V .

In contrast to F12, the attractive capillary force F13 of a
trimer acting at the two bead contacts varies only slightly with
the gap opening s12, and hardly depends on the volume V .
The magnitude of F13 varies around a value of 6, i.e., differs
only slightly from the asymptotic value 2π cos θ0 ≈ 6.23 for
pendular bridges between two spherical beads in contact in
the limit V → 0. Similar to the trimer morphology, a pendular
bridge dimer exerts a rather constant attractive force F13

between beads in contact. The value F13 ≈ 5 of a dimer is
smaller as compared to the capillary force in the presence of a
trimer with an identical volume.

In addition to the capillary forces, Fig. 9(c) shows the
Laplace pressure P of the dimer or trimer morphology. The
Laplace pressure depends mainly on the liquid volume V and
only weakly on the gap opening s12. Dimers display a larger
Laplace pressure P (i.e., negative with a smaller magnitude)
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trimer or dimer

trimer or dimer trimer or dimer

trimer or dimer

FIG. 10. Comparison of the stability boundaries of a trimer or dimer morphology and of three pendular bridges in terms of the gap opening
s12 and (a) the total liquid volume V in the volume controlled case or (b) the Laplace pressure P in the pressure controlled case. (c) Capillary
force F12 at the gap as a function of gap opening s12. Shown are data for three pendular bridges at a fixed total volume V = 0.116 (dashed-dotted
lines) and for a fixed Laplace pressure P = −6 (dotted line) in comparison to data for the trimer morphology at a fixed volume V = 0.190
(dashed line) and for a fixed Laplace pressure P = −6 (solid line). (d) Data for three pendular bridges of fixed total volume V = 0.164
(dashed-dotted line) and for a fixed Laplace pressure P = −4.5 (dotted line) in comparison to data for a trimer at fixed volume V = 0.264
(dashed line) and for a fixed Laplace pressure P = −4.5 (solid line).

as compared to a trimer at the same volume. Filling the throat
with the available volume of the dimer requires a transfer of
liquid from the region of the coalesced pendular bridges. This
redistribution of liquid is accompanied by a decrease of the
Laplace pressure. Note that the Laplace pressure of a trimer is
typically negative but may become positive for large volumes.

In analogy to the volume controlled case, we display in
Figs. 9(d) and 9(e) the capillary force F12 at the gap and F13

at the contacts, respectively, for liquid morphologies in the
Laplace pressure controlled case. It is apparent that the region
in the (s12,P ) plane where the dimer or trimer morphology
exists as a local minimum of the Grand interfacial free energy
displays a shape similar to the region in the volume controlled
case. In the pressure controlled case, a trimer decays during
changes of s12 and P either by a snap-in of the liquid menisci
in the gap or by a burst instability leading to an opening of the
throat.

The Laplace pressure at the burst instability increases
approximately linearly with the gap opening s12, and the

corresponding curve P (s12) terminates together with the line
of the snap-in instability in a point (s�

12,P
�) = (0.12,−8.5). At

this point, the stability boundary of the trimer in the (s12,P )
plane exhibits a kink. The stability boundaries corresponding
to the snap-in and pop-out instabilities join smoothly in a
cusp bifurcation point at (s∗

12,P
∗) = (0.4,−2.3) which lies

outside the range shown in Figs. 9(d)–9(f). The two almost
parallel dashed lines in the upper region of the color plots
Figs. 9(d)–9(f) indicate the narrow region where dimers can
exist as metastable configurations in the Laplace pressure
controlled case.

In full analogy to the volume controlled case, the capillary
force F12 of a trimer acting across the gap in the Laplace
pressure controlled case displays a strong dependence on the
gap opening s12, but varies only weakly with the Laplace
pressure P . A stronger dependence is observed only above
a value of P ≈ −4.5, at a point where the trimer itself
would have already coalesced with other neighboring liquid
structures (bridges or trimers) inside the random assembly of
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spherical beads [12,21]. The capillary force F12 at the gap
created by the trimer is approximately by a factor ∼1.1 larger
than the capillary force of a single bridge at a prescribed
Laplace pressure of P = −4.5 at the same distance s12.

Figure 9(e) reveals that the capillary force F13 at the contacts
depends on the magnitude of the Laplace pressure P , while
F13 is virtually constant with respect to the gap opening s12.
Also in this case, the capillary force is approximately by a
factor ≈1.1 larger than the force for a single pendular bridge
at the contact held at the same value of P = −4.5. The liquid
volume V of a trimer in the Laplace pressure controlled
case depends to a larger degree on the magnitude of P and
only weakly on the gap opening s12; cf. the color plot in
Fig. 9(f). An analogous statement applies to an ensemble of
three isolated pendular bridges that are allowed to exchange
liquid.

Simulations of the mechanics and dynamics of large wet
granular assemblies require efficient models for capillary
cohesion. At low liquid saturations, in the regime of pendular
bridges, the cohesive force can be treated as a superposition
of two-body forces. For saturations in the funicular regime,
a simple mapping of the capillary cohesion forces onto an
equivalent ensemble of pendular bridges would be desirable.
In the simplest approach, one would assume that the magnitude
of capillary forces caused by the trimer are similar to those in
the presence of three pendular bridges for the same volume or
Laplace pressure.

Figures 10(a) and 10(b) provide a quantitative comparison
of the stability boundaries of three pendular bridges to the ones
of the trimer or dimer morphology in the volume controlled
and the pressure controlled cases, respectively. The plots in
Figs. 10(c) and 10(d) display the capillary force at the gap for
three pendular bridges and the trimer or dimer morphology
as a function of the gap opening. As we are plotting the
capillary force F12 and F13 in the volume controlled and the
Laplace pressure controlled cases in the same plot, we chose
specific values of volume V and Laplace pressure P . For these
particular values of the control parameters, the morphologies
in the pressure and volume controlled cases are identical at
zero gap opening s12 = 0. From the discussion in Sec. III C
we can conclude that also the capillary forces between the
beads must be the same.

Figures 10(c) and 10(d) clearly demonstrate that a trimer
or dimer morphology induces a higher attractive force across
the gap than three pendular bridges held at the same Laplace
pressure. An analogous statement applies for a trimer and three
communicating pendular bridges in the volume controlled
case. If we now assume the contribution of the Laplace pressure
to be the only contribution to the capillary force, we could
expect to find an increased cohesion in the presence of a
trimer due to the central region between the beads that, in
contrast to three pendular bridges, is filled by liquid. But at
the same time, the contact line of a trimer morphology is
shorter than the length of the contact lines of all three pendular
bridges. Due to this reduced length, the surface tension of
the liquid-vapor interface in a trimer contributes less to the
cohesive capillary force as compared to three pendular bridges.
While the relative magnitude of these two effects is not evident
from simple geometrical arguments, the direct comparison of

numerical data in Fig. 10 for Laplace pressure P = −4.5 (c)
and −6 (d) indicate that the increase due to the enhanced
suction dominates over the decease of the direct contribution
of interfacial tension. In addition to the increased cohesion in
the trimer, the snap-in transition from trimer to dimer occurs
at a larger gap opening as compared to the point where the
pendular bridge at the gap decays. Hence, the total work to
break up a trimer by increasing the gap opening s12 exceeds
the work required to rupture a capillary bridge at the gap.

IV. CONCLUSION AND OUTLOOK

In this article we have explored the morphology and
capillary forces of a pendular bridge trimer representing the
most fundamental liquid cluster in disordered assemblies of
wet spherical beads. We have focused our study on local
triangular bead configurations with two contacts and one finite
gap. Numerical minimizations of the interfacial energy reveal
a shape bistability between a dimer and a trimer of pendular
bridges. The capillary hysteresis between trimer and dimer
shapes is present both in the volume and in the Laplace pressure
controlled cases. As the gap opening is changed, we find a
cross-over between two different interfacial instabilities that
can occur during a quasistatic volume reduction. At small
gap openings the two opposing menisci in the triangular
throat touch and break up in a sudden burst. For intermediate
gap openings, however, the trimer decays by a discontinuous
snap-in of the meniscus located at the gap once the meniscus
is close to the narrowest point between the bead surfaces. A
continuous motion of the meniscus is observed in wide gaps.
Systematic evaporation experiments in the geometry of three
beads with a single finite gap opening quantitatively reproduce
the transition from a snap-in to a burst instability of a trimer
as the gap opening is decreased.

In respect to the modeling of the attractive capillary forces
in an assembly of spherical beads, it is well justified to replace
the bridge dimer by two separate pendular bridges which are
held at the same Laplace pressure as the dimer. Bridge trimers,
however, induce attractive capillary forces across the gap that
are slightly larger than the force of a pendular bridge at the
gap for the same Laplace pressure. The rupture distance of
the pendular bridge at the gap is systematically larger than the
gap opening where the snap-in transition from trimer to dimer
occurs. Hence, trimers of pendular bridges not only yields to
an increased cohesion between the beads but also the range
over which the increased capillary force act is enlarged. Both
effects lead to an enhanced dissipation of work during a slow
deformation of a granular assembly. These two observations
may already be sufficient to explain the shallow maximum of
the strength of wet granulates in the funicular regime reported
in experiments [12,21].
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APPENDIX

1. Equivalence of capillary forces

Respecting the sign convention of the Laplace pressure, we
find the identity

P = P̃ (r̄,V ) = ∂V E(r̄,V ). (A1)

Starting from the definition (2) of the Grand interfacial free
energy G , differentiation with respect to the coordinates r̄ and
using Eq. (A1) we obtain the following identity:

∇ri
G

(
r̄,P

) = ∇ri
E(r̄,Ṽ (r̄,P )) − P ∇ri

Ṽ (r̄,P ). (A2)

By the chain rule of differentiation, we can write the first term
in Eq. (A2) as

∇ri
E(r̄,Ṽ (r̄,P )) = ∇ri

E(r̄,V )|V =Ṽ (r̄,P )

+ ∂V E(r̄,V )|V =Ṽ (r̄,P )∇ri
Ṽ (r̄,P ), (A3)

and using the expression Eq. (A1) for the Laplace pressure,
we finally obtain

∇ri
G(r̄,P ) = ∇ri

E(r̄,V )|V =Ṽ (r̄,P ), (A4)

which proves the equivalence of capillary forces in the volume
and pressure ensembles.

2. Decomposition of forces

First, we will consider the case of three identical beads
whose centers are not colinear, i.e., r12 × r13 �= 0 where rij ≡
ri − rj are the relative positions of the bead centers ri , i ∈
{1,2,3}. The co-linear case will be discussed separately.

Employing the unit vector nij pointing from the center of
bead i to the center of bead j , and the unit vector n⊥ given by

n⊥ = r12 × r13

|r12 × r13| , (A5)

we can decompose the forces Fi onto bead i into a sum of
forces

3∑
j=1
j �=i

Fij nij + F⊥
i n⊥ = Fi (A6)

with i ∈ {1,2,3}. Since the three vectors n12,n13,n⊥ are not
collinear and thus form a basis of the three dimensional
Euclidean space, the decomposition according to Eq. (A6)
of F1 is unique. An analogous statement hold for the forces
F2 and F3, respectively. To prove the conjecture that the three
body force can be uniquely decomposed into a sum over central
force pairs, we have to show that Fij = −Fji as well as F⊥

i = 0
holds for all i,j ∈ {1,2,3} and j �= i.

We start our proof with the observation that the interfacial
free energy is invariant under continuous rigid rotations of
the three bead centers around an arbitrary axis. Hence, in the
absence of contact angle hysteresis the total torque on the
spherical beads vanishes:

3∑
i=1

(ri × Fi + Ti) = 0, (A7)

where Ti is torque acting on bead i about its center ri .
Additionally, the invariance of the interfacial energy with

respect to rotations of the beads around an arbitrary axis
passing through its center yields Ti = 0 for i ∈ {1,2,3}.
Together with Eq. (A7) we arrive at the identity

3∑
i=1

M · [ Fi × (ri − r0)] = 0, (A8)

which holds for an arbitrary rotation axis |M| = 1 and center
of rotation, r0, because all forces Fi with respect to the centers
of the beads must sum to zero. The latter statement is a direct
consequence of the invariance of the free energy with respect
to continuous rigid translations. Without restricting generality,
we chose the center r0 ≡ r1 and a direction M ≡ n⊥ of the
axis. Equation (A8) can be now rewritten as

n⊥ · [(F23 n23+F⊥
2 n⊥)×r13+(F32 n32+F⊥

3 n⊥) × r12]=0.

(A9)

By the definition of the unit vectors n⊥ and n23 = −n32, we
have n⊥ · nij = 0 and

n23 × r13 = −n32 × r12 = 2 A�

|r23| n⊥, (A10)

where A� is the area of the triangle defined by the three bead
centers. With Eqs. (A10) and (A9), we arrive at F23 = −F32.
The choice of bead indices was arbitrary which implies that
also F12 = −F21 and F13 = −F31 must hold.

In order to show F⊥
1 = F⊥

2 = F⊥
3 = 0, we chose a rotation

axis in the plane of the three bead centers, passing through
the center of bead 1. The direction of the rotation axis is
given by

M ≡ r21 + r31

|r21 + r31| (A11)

where r0 ≡ r1. With this choice, the torque acting on the beads
has to satisfy

(r21 + r31) × n⊥(F⊥
2 − F⊥

3 )

|r21 + r31| = 0, (A12)

which gives F⊥
2 = F⊥

3 .
Following the same line of arguments for a rotation axis

passing through the center of bead 2 and the point r2 + (r12 +
r32)/2, we obtain F⊥

1 = F⊥
2 . Since the sum of overall forces

Fij in the plane of the three bead centers vanishes, also all
normal forces must sum to zero, leaving as the only possibility
F⊥

1 = F⊥
2 = F⊥

3 = 0.
In the case of three colinear bead centers, a unique de-

composition into three central force pairs must not necessarily
be possible. A simple counterexample is forces F1 = F3 and
F2 = −2 F1, all orthogonal to the line, distances r12 = r32

where bead 2 is located halfway in between beads 1 and
3. The singular nature of this case can be easily seen when
approaching the co-linear configuration from a non-linear
configuration. If there is no spontaneous symmetry breaking
of the liquid shape, all capillary forces must act parallel to the
line passing through the bead centers which, again, allows a
unique decomposition into central force pairs.
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3. Delaunay shapes

The free interface of a cylindrically symmetric pendular
bridge is a surface of constant mean curvature. A general
parameterization of these shapes was constructed by Delaunay
[5,33] and can be expressed in cylindrical coordinates (r,ϕ,z)
as z = Z (r) with a function

Z (r) = ro E(φ,k) ± ri F (φ,k) + R, (A13)

where R =
√

(r2
o − r2)(r2 − r2

i )/r . Definitions of the incom-
plete elliptic integrals E(φ,k) and F (φ,k) are found, e.g., in
Ref. [34]. The two parameters ro and ri denote the minimal
and maximal distance, respectively, of a point on the surface
from the z axis. A plus sign in Eq. (A13) describes an
undoloid surface while the negative sign corresponds to a
self-intersecting nodoid surface. For both types of surfaces,
the modulus k and phase angle φ read

k =
√

r2
o − r2

i

r2
o

and φ = arcsin

⎛
⎝ ro

√
r2 − r2

i

r

√
r2
o − r2

i

⎞
⎠. (A14)

The mean curvature of a Delaunay surface is simply given by

H = 1

ro ± ri

> 0, (A15)

where the plus sign corresponds to the undoloid surface and
the negative sign to a nodoid surface. Spheres and catenoids
are obtained as limiting shapes for 0 < ro < ∞, ri → 0 and
ro → ∞, 0 < ri < ∞, respectively.

To construct the shapes of capillary bridges in the pressure
controlled case, we consider undoloid solutions for P > 0
and the inner, inverted part of a nodoid solution for P < 0.
In the latter case, we need to multiply the right-hand side of
Eqs. (A13) and (A15) by −1 to account for the inverted orien-
tation of the interface. Regular nodoid segments for P > 0 can
be excluded as they correspond to unstable repulsive pendular
bridges. In the following the positive and negative signs refer
to regular undoloid and inverted nodoid shapes, respectively.

In the Laplace pressure controlled case, we use relation
Eq. (A15) to express the outer radius ro by the inner radius

ri and H . To match the contact angle θ0 on the surface of the
beads with radius R, we determine the contact line radius rc for
given minimal radius ri as a solution of the implicit equation

R cos (α(rc) + θ0) = rc (A16)

with the slope angle

α(r) = ± arctan

⎛
⎝

√(
r2
o − r2

)(
r2 − r2

i

)
r2 ± rori

⎞
⎠ (A17)

of the undoloid for H > 0 (positive sign) or the inverted nodoid
for H < 0 (negative sign). The solution rc of Eq. (A16) is then
used to compute the surface-to-surface separation

s = 2
[±Z (rc) − R +

√
R2 − r2

c

]
(A18)

of the spherical beads. The volume enclosed by the Delaunay
surface between plane cuts at z = 0 and z = ±Z (r) is given
by [35]

V (r) = ±π

3

[(
2r3

o + 2r2
i ro ± 3r2

o ri

)
E(φ,k) − ror

2
i F (φ,k)

+ (
r2 + 2r2

o + 2r2
i ± 3rori

)
R

]
(A19)

and, corrected by the volume of a spherical cap,

Vc(r) = π

3
[(R −

√
R2 − r2)2(2R +

√
R2 − r2)], (A20)

with radius R and base radius r , yields the liquid volume of
the pendular bridge

V = 2[V (rc) − Vc(rc)]. (A21)

The corresponding capillary force is derived from a stress
balance at a plane cut through the liquid neck at z = 0 as

F = 2π ri(1 − H ri). (A22)

To compute the capillary force of a pendular bridge for a
given volume, we follow the same procedure as for the pressure
controlled case, but compute a series of solutions for various
mean curvatures H . The mean curvature that yields the desired
liquid volume is obtained from an interpolation of V (H ), and is
further employed to calculate the surface-to-surface separation
s from Eq. (A18) and capillary force F according to Eq. (A22).
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