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Flows of hard granular materials depend strongly on the interparticle friction coefficient μp and on the inertial
number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical
simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for
10−4 � I � 10−1: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of
energy dissipation, changing from collisional to sliding friction, and back to collisional, as μp increases from
zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations
and the stress ratio both display nonmonotonic behavior with μp , corresponding to transitions between the three
regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields
scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose
memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I � 10−2.5

that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation.
This implies in that range that μ(I) − μ(0) ∼ I1−2b, where b ≈ 0.2 is an exponent that characterizes both the
dimensionless velocity fluctuations L ∼ I−b and the density of sliding contacts χ ∼ Ib.

DOI: 10.1103/PhysRevE.94.012904

Introduction. Dense flows of granular media are central
to many industrial processes and geophysical phenomena,
including landslides and earthquakes [1–3]. At a fundamental
level, describing such driven materials remains a challenge, in
particular near the jamming transition where crowding effects
become dominant and flow stops. In the last decade, progress
was made by considering the limit of perfectly rigid grains,
for which dimensional analysis implies that the strain rate
ε̇, the pressure P , and the grain density ρ can only affect
flows via the inertial number I = ε̇D

√
ρ/P , where D is grain

diameter [4–6]. In particular, for stationary flows the packing
fraction φ and stress anisotropy μ = σ/P , where σ is the
shear stress, are functions of I. From the constitutive relations
φ(I) and μ(I) the flow profile can be explained in simple
geometries [4,7–9]. Here we focus on dense flows I � 0.1
for which the networks of contacts between grains span the
system and particle motion is strongly correlated [10,11], and
we do not consider the quasistatic regime I � 10−4 where
flow appears intermittent [5,12–14]. In this intermediate range
one finds

μ(I) = μc + aμ Iαμ, φ(I) = φc − aφ Iαφ , (1)

where μc and φc are nonuniversal and depend on details of the
grains. Experiments on glass beads and sand find exponents
αμ ≈ αφ ≈ 1, consistent with numerical simulations using
frictional particles reporting αμ = 0.81 and αφ = 0.87 [15].
Despite their importance, the constitutive laws Eq. (1) remain
empirical. Building a microscopic framework to explain them
would shed light on a range of debated issues, including
transient phenomena [2,16], nonlocal effects [17–19], and
the presence of S-shaped flow curves when particles are
soft [20–22].

To make progress, it is natural to consider the limiting case
where particles are frictionless, a situation that has received
considerable attention in the jamming literature [23–26]. For
hard particles, two geometrical results key for inertial flows

are as follows. First, as the density increases, the network
of contacts becomes more coordinated, implying that motion
becomes more constrained. This leads to a divergence of the
velocity fluctuations 〈δV 〉 when constraints are sufficient to
jam the material [27–30]. Thus the contact network acts as a
lever, whose amplitude is characterized by the dimensionless
number L ≡ 〈δV 〉/(ε̇D). At the same time, the rate at which
new contacts are made increases, and the creation of each
contact affects motion on a growing length scale. These effects
imply that velocity fluctuations decorrelate on a strain scale
εv that vanishes at jamming [31]. The theory of Ref. [31],
which uses the fact that dissipation can only occur in collisions
for frictionless particles, predicts αμ = αφ = 0.35,L ∼ I−1/2,
and εv ∼ I. Encouragingly, these results agree with the
numerics of Ref. [32], which found αμ ≈ αφ ≈ 0.38 and
L ∼ I−0.48. However, αμ and αφ differ significantly from
their values for frictional grains stated above, suggesting
the presence of different universality classes. Currently, why
friction qualitatively affects flows and potentially leads to
several universality classes, how many universality classes
exist, and what differs between them microscopically are
unresolved questions.

In this work we use numerical simulations to answer these
questions. We systematically study dense flows over a large
range of I and μp. By focusing on the microscopic cause
of dissipation, we show the existence of three universality
classes, as illustrated in Fig. 1. At low friction, there exists a
frictionless regime in quantitative agreement with the theory
of Ref. [31]; in particular we establish that εv ∼ I. As the
friction increases, one enters the frictional sliding regime,
where dissipation is dominated by sliding at contacts instead of
collisions, and for which εv ∼ I holds true but L ∼ I−b with
b ≈ 0.22. We relate the exponent b to the density of sliding
contacts, χ ∼ Ib. Most importantly, we show that although
the value of μc in Eq. (1) reflects sliding dissipation, the
dependence of μ with I is governed by collisional dissipation
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FIG. 1. Phase diagram of dense homogeneous inertial frictional
flow. In the frictionless and rolling regimes, most energy is dissipated
by inelastic collisions, while in the frictional sliding regime energy
dissipation is dominated by sliding. Along the phase boundary, grains
dissipate equal amounts of energy in collisions and in sliding. For
I � 0.1, one enters the dilute regime [9]. The dashed line has
slope 2.

when I � 10−2.5, leading to αμ = 1 − 2b. Finally, at even
larger μp one enters a rolling regime where dissipation is
once again dominated by collisions, and where exponents
are consistent with those of frictionless particles, both for
kinetic observables and constitutive laws. We derive the phase
boundary between the frictionless and the frictional sliding
regime. Overall, our work explains why friction qualitatively
changes physical properties, and paves the way for a future
comprehensive microscopic theory of dense granular flows.

Numerical protocol. To model inertial flow of frictional
particles, we use a standard discrete element method [33] in
two dimensions, described in more detail in Appendix A. Col-
lisions are computed by modeling grains as stiff viscoelastic
disks: when grains overlap at a contact α, they experience
elastic and viscous forces �f e

α and �f v
α , respectively, leading to

a restitution coefficient which we choose to be e = 0.1 [34].
The tangential (normal) components �fα

T (f N
α ) are restricted

by Coulomb friction to satisfy | �fα
T | � μpf N

α ; contacts that
saturate this constraint are said to be sliding, while those that
obey a strict inequality are said to be rolling.

Shear is imposed with rough walls bounding the upper
and lower edges on an x-periodic domain. We perform our
numerics at imposed global shear rate and constant pressure,
following a system preparation described in Appendix A. We
discard data that do not satisfy strict criteria for homogeneity
of the flow, as specified in Appendix A. Grain stiffness is such
that relative deformation at contacts is 	 ≈ 10−3.8, within
the rigid limit established previously [5], and system size
is large enough to ensure the absence of finite-size effects.
Independence of our results with respect to 	, e, and N is
shown in Appendix B.

Partitioning dissipated power. Frictional particles can
dissipate energy either through inelastic collisions, at a rate
Dcoll, or by sliding at frictional contacts, at a rate Dslid. In our
contact model, inelasticity is due to the viscous component of
contact forces; therefore the collisional dissipation rate Dcoll

can be written

Dcoll ≡
∑
α∈C

f N,v
α UN

α +
∑
α∈CR

�fα
T,v · �UT

α , (2)

where �Uα is the relative velocity at contact α, decomposed
into normal and tangential components, UN

α and �UT
α . Here C

denotes all contacts, of number Nc, and CR denotes rolling
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FIG. 2. Ratio of dissipation due to sliding, Dslid, to dissipation
from collisions, Dcoll, vs μp . The triangle has slope 1.

contacts. The dissipation rate due to sliding is

Dslid ≡
∑
α∈CS

�fα
T · �UT

α , (3)

where CS is the set of sliding contacts. In steady state,
dissipation must balance the work done at the boundaries [35].
The energy input from the shear stress is 
σε̇, where 
 is the
system volume, and for large systems, additional contributions
from fluctuations of the normal position of the wall are
insignificant. We define dimensionless dissipation rates per
particle D̃coll ≡ Dcoll/(
pε̇), D̃slid ≡ Dslid/(
pε̇), so that [36]

μ = D̃coll + D̃slid. (4)

To investigate which source of dissipation dominates in
Eq. (4), we consider the ratio Dslid/Dcoll, shown in Fig. 2. As
expected, collisional dissipation dominates in the frictionless
limit, but sliding dissipation becomes more important as μp

is increased, and becomes dominant at intermediate friction
coefficients and small inertial number, consistent with earlier
simulations for μp = 0.3 [36]. Strikingly, the dependence
on μp is nonmonotonic: when μp reaches ≈ 0.2, this trend
abruptly reverses, and Dslid/Dcoll decreases with μp, implying
that collisional dissipation dominates as μp → ∞.

To define phase boundaries, we use the inertial number
at which Dslid/Dcoll = 1, resulting in the phase diagram of
Fig. 1. From the nonmonotonicity of Dslid/Dcoll with μp, this
leads to two phase boundaries merging at I ≈ 0.1, where
the dense flow regime ends [9,36]. This defines three flow
regimes: frictionless, frictional sliding, and rolling, where
sliding dissipation dominates only in the intermediary regime.
Later in this work, we will show that this phase diagram
correctly classifies kinetics as well as constitutive laws.

Connecting dissipation to key kinetic observables. In the
rigid limit, collisions become very short in duration, and
the power dissipated in collisions can be expressed in terms
of microscopic observables [31], as we now recall. Each
time a particle changes its direction with respect to its
neighbors, a finite fraction of its kinetic energy ∼mδV 2 must
be dissipated, where m is the particle mass (we consider
finite restitution e < 1). Since εv is the characteristic strain
at which velocities decorrelate, this occurs at a rate ∝ε̇/εv;
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FIG. 3. Lever L vs I, (a) for μp � 0.3, and (b) for μp � 0.3. The dashed lines are ∝ I−1/2, while the dotted line is ∝I−0.22.

thus Dcoll ∼ N (ε̇/εv)m〈δV 2〉 and

D̃coll ∝ N (ε̇/εv)mδV 2

NDdpε̇
∝ I2L2

εv

. (5)

The rate of sliding dissipation can be directly estimated
from its microscopic expression, Eq. (3). We assume that the
force at the sliding contact is typical, i.e., | �f T

α | = μpf N
α ∼

μppDd−1, and that the sliding velocity is of the order of the
velocity fluctuation, i.e., | �UT

α | ∼ δV . These assumptions hold
true in the sliding frictional regime where they matter (they
eventually break down in the rolling regime where sliding
contacts become rare and atypical; see Appendix C). We get
the estimate

D̃slid ∝ Ncχ〈| �f T |〉S〈| �UT |〉S
NDdpε̇

∼ μpχL, (6)

where 〈·〉S denotes an average over sliding contacts, whose
fraction is χ . Using Eqs. (4), (5), and (6) we now get the
following constraints on the different regimes:

μ ∼ I2L2ε−1
v , frictionless, rolling, (7)

μ ∼ μpχL, frictional sliding. (8)

We now test these scaling relations and use them to compute
the boundary of the frictionless regime.

Measuring kinetic observables. We measure the lever
effect defined as L ≡ 〈δV 〉/(ε̇D), where 〈δV 〉 is the typical
magnitude of velocity fluctuation about the mean velocity
profile [37]. Our results are shown in Fig. 3. For any μp, L
grows as I → 0. In the frictionless limit, we find L ∝ I−0.50,
in agreement with earlier results [32] and the prediction [31].
A striking result is that the amplitude of this growth is
nonmonotonic in μp, with a minimum around μp ≈ 0.2, thus
closely paralleling the phase diagram of Fig. 1. Moreover, in
the μp → ∞ limit, the divergence is again close toL ∝ I−0.50.
In contrast, curves that are fully in the frictional sliding
regime, as occurs for μp = 0.1 or μp = 0.3, are well fitted
by L ∝ I−b with b = 0.22, close to experiments finding
L ∝ I−1/3 [11,38].

We now turn to the strain scale εv beyond which a particle
loses memory of its velocity. It can be extracted from the decay
of the autocorrelation function [39] C(ε) = 〈V y

i (0)V y

i (ε)〉,
where we use the vertical component of velocity at particle
i, V

y

i , averaged over all particles and initial time steps. The
normalized correlation function C̃(ε) = C(ε)/C(0) is shown
for μp = 0.02 and various I in Fig. 4(a). We see that beyond a
scale εv , C̃(ε) decays as a power law, as observed numerically
in overdamped suspensions [31,39]. For all μp, C̃(ε) has a
similar form; we find that for ε � 10−2 it is well fitted by
{1 + [ε/εv(I)]ν}−η, with ν = 1.1 and η dependent on μp.
By rescaling ε to obtain a collapse, shown in Fig. 4(b), we
obtain the scale εv . Repeating this process for all μp leads to
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FIG. 4. Autocorrelation of particle velocities, C̃(ε) = 〈V y

i (0)V y

i (ε)〉/〈V y

i (0)2〉, for μp = 0.3 and indicated I. (a) C̃(ε) vs ε. (b) C̃(ε) vs
ε/εv . In (b), unfilled symbols correspond to strains larger than 0.01, not used for fitting, and the solid line shows the fitted form.
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FIG. 5. (a) Decorrelation strain scale, εv , vsI for selected μp . The dotted, dashed, and dot-dashed lines are ∝I1.25,I1.1, andI0.9, respectively.
(b) The fraction of sliding contacts, χ , vs I, for various μp (symbols as in Fig. 3). Dotted, dashed, and dot-dashed lines have slopes 0.43, 0.41,
and 0.27, respectively.

the results shown in Fig. 5(a) for selected μp; other μp are
shown in Appendix D. We observe that for all I and all μp,
we have approximately εv ≈ I, although our best exponent
for the rolling regime is closer to εv ≈ I1.28. This result is
thus in excellent agreement with the prediction of [31] for the
frictionless case, and also with experimental measurements
finding εv ∼ I [38]. We recall below our previous argument,
which we expect to hold more generally for frictional particles.

Finally, the fraction of sliding contacts χ is shown in
Fig. 5(b). For each μp, χ decays as I → 0. In the frictionless
regime, χ ≈ 1, as expected, while in the frictional sliding and
rolling regimes, χ decays as a power law as I is decreased. For
the frictional regime, such as μp = 0.3, data are well fitted by
χ ∼ I0.27, while in the rolling regime we find a sharper decay,
χ ∼ I0.43 for μp = 10.

Our results on microscopic quantities are summarized in
Table I. We see that the scaling relations Eqs. (7) and (8) are
consistent with the data.

Regime boundaries. We can now estimate when the fric-
tionless regime breaks down. Since in that regime L ∼ I−0.5,
εv ∼ I, and χ ∼ 1, we have according to Eqs. (5) and (6)
Dslid/Dcoll ∼ μpI−0.5, consistent with Fig. 2. The frictionless
regime must break down at an inertial number Ic where this
ratio is of order 1, yielding Ic ∼ μ2

p in agreement with Fig. 1.

Inside the sliding regime, we have εv ≈ I. To determine
the transition to a rolling regime, we note from Eq. (8) that
Dslid/Dcoll ∼ 1/(IL2) ∼ μ2

pχ2/I. We observe that the prod-
uct χμp decays with large μp at fixedI (data not shown). Thus,
although the dissipation of each sliding contact grows with μp,
fewer and fewer contacts slide as μp becomes very large, and
the latter effect dominates when μp is large enough. This
qualitatively explains the observed nonmonotonic behavior
with μp.

Constitutive relations. Experimentally, the most accessible
quantities are the constitutive relations μ(I) and φ(I), which
we show in Fig. 6. To discuss universality classes, it would
seem appropriate to measure the exponents αμ and αφ entering
Eq. (1). However, these exponents are much harder to measure
than those summarized in Table I, because of finite-size effects
in the fitting parameters μc and φc [32]. Instead, we simply
consider the cases μp = 0, μp = 0.3, and μp = 10 for which
our data are respectively in the frictionless, frictional sliding,
and rolling regimes. In the inset to Fig. 6 we show that δμ(I) ≡
μ(I) − μc is nearly identical in the frictionless and rolling
regimes (the points overlap), and definitely distinct from its
behavior in the frictional sliding regime. This observation
supports further our claim for three distinct universality
classes.

FIG. 6. (a) Volume fraction φ vs I for various μp (symbols as in Fig. 3). (b) Effective friction μ vs I (symbols as in Fig. 3). Inset shows
nonmonotonic behavior of μ(I) − μc, for μp = 0,0.3,10. (c) Decomposition of μ into collisional and frictional components. Both lines have
slope 0.6.
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TABLE I. Summary of scaling behavior. Predictions for the
frictionless regime are quoted from the theory of [31], while the
other predictions are Eqs. (7), (8). In the frictional sliding regime,
scalings are taken for the extremal value μp = 0.3, while for the
rolling regime, scalings are taken from μp = 10.

Regime Relation Prediction Measured

Frictionless L∼I−b b = 1/2 b = 0.50
εv∼Ic c = 1 c = 1.10
L∼I−b b = 0.22

Frictional εv∼Ic c = 1 c = 0.95
sliding χ∼Id d = b d = 0.27

δμ∼Iαμ αμ = 1 − 2b αμ = 0.6

L∼I−b b = 0.50
Rolling εv∼Ic c = 1 c = 1.28

χ∼Id d = 0.43

We now argue that in the frictional sliding regime, the
exponent αμ describing the evolution of the macroscopic
friction with inertial number as defined in Eq. (1) can be
deduced from the exponent b characterizing the velocity
fluctuations. From Eq. (4), the partition of dissipation is also
a partition of μ. As shown in Fig. 6(c), we observe that the
contribution from sliding is nearly independent of I, while the
contribution from collisions is vanishing as I → 0. So long
as the variation in sliding dissipation with I is negligible, this
implies that μ(I) − μc is dominated by collisional dissipation,
even in the frictional sliding regime. We find that this is the
case for I � 10−2.5 (data not shown). This facilitates precise
measurement of μ(I) − μc in this range, with which we obtain
the measurement αμ = 0.6 for μp = 0.3. Moreover, using
Eqs. (4) and (5) we obtain

δμ(I) ∝ I2L2

εv

∼ IL2 ∼ I1−2b, frictional sliding, (9)

implying αμ = 1 − 2b. Our prediction αμ ≈ 0.6 is in reason-
able agreement with the previous measurement of [15] where
αμ ≈ 0.8, considering the restricted range of inertial number
where we expect this power-law behavior to hold.

Scaling argument for the characteristic strain scale. The
relation εv ≈ I can be rationalized by a generalization of the
argument in [31]. We use the geometrical fact that in dense
flows, when a grain has an unbalanced net force, �F , the ensuing
motion will tend to make the remaining contacts of the grain
align along �F (see Fig. 7). Since forces are repulsive, this
further increases the unbalanced force and further accelerates
the grain. The increase in net force is proportional to the typical
contact force, pDd−1, as well as to the rotation of the contacts,
of magnitude ∼Ldε; thus

dF

dε
∼ pDd−1L, (10)

where L is the dimensionless magnitude of the velocity
fluctuation. This equation can also be derived formally, as
shown in Appendix E. In inertial flow, unbalanced forces are

proportional to accelerations, F = pI2dL/dε, which leads to

d2L
dε2

∝ L
I2

. (11)

Equation (11) indicates that there is a characteristic strain
scale εv ≈ I in which a velocity fluctuation grows by an
amount proportional to its initial magnitude. In steady flow,
such growth must be destroyed by collisions on the same
strain scale, since the latter reorganize the direction of particle
motion. Hence this is indeed the scale of decorrelation of
particle velocities. (At very large μp, the direction of a contact
force can be unrelated to the contact direction, and corrections
to our argument are plausible.)

Discussion. In this work we have shown that dense inertial
granular flows can be classified into three regimes, in a
phase diagram spanned by the friction coefficient μp and the
distance to jamming, characterized by the inertial number
I. By considering the microscopic cause of dissipation,
we have shown that its nature must change as the friction
coefficient μp increases from zero. One eventually leaves the
frictionless regime to enter in the frictional sliding regime,
where both the kinetics and constitutive relations differ. As μp

increases further, fewer contacts slip, and one enters the rolling
regime where collisions once again dominate dissipation, and
where exponents are consistent with that of the frictionless
regime.

Experimentally, these results could be tested by measuring
the correlation function C(ε) = 〈V y

i (0)V y

i (ε)〉, which captures
both the lever amplitude L (at ε = 0) and the strain scale εv .
This will require a sufficient resolution in the strain ε that
can be probed. Varying the friction coefficient in these studies
would also be valuable.

On the theoretical level, a complete theory of the frictional
sliding regime, the most important in practice, is still lacking.
Here we have proposed a scaling description relating the
singularities in the constitutive law μ(I) to those in the
kinetic observables εv(I), L(I), and χ (I), which can all
be expressed in terms of a single unknown exponent b.
A key challenge for the future is to predict the value of
b. Moreover, our arguments are mean field in nature, as
they assume that dissipation occurs rather homogeneously
in space, and that velocity fluctuations are described by a
single scale L. Although there is evidence that such mean-field
arguments are exact for frictionless particles [31], they may

φ

FIG. 7. Illustration of geometrical nonlinearity. If the central
grain has an unbalanced force as indicated by the arrow, then the
ensuing flow will tend to align the contact normals of the dominant
contact forces (thick lines) with the unbalanced force; i.e., the angle φ

will increase. Geometrically, dφ/dt ∝ V , the velocity of the particle.
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be only approximate in the frictional case where intermittent
strain localization is sometimes reported [5,14]. Concerning
the rolling regime, why it has the same scaling exponents
as the frictionless regime also needs to be clarified further,
beyond their similarity in dissipation mechanism established
here.

Finally, this work could be extended in several directions.
It would be very interesting to measure the kinetic quantities
presented here in the intermittent quasistatic regime of very
slow flows I � 10−4 [5,12–14]. Similar extensions could be
done with respect to particle shape, where local ordering
is important [40,41], and particle softness, where the flow
curve can become sigmoidal, leading to hysteresis [20–22].
Last, overdamped suspensions present the same problem as
inertial flows: various numerical studies have focused on
frictionless particles [15,27,42–45], which appear consistent
with the theory developed in [31]. Together with Eq. (6),
the theory predicts that frictional sliding should dominate
over viscous dissipation when η0ε̇/P 
 μ2

p, where η0 is
the viscosity of the solvent. It is currently unclear whether
this transition qualitatively affects physical properties, as
experiments [46,47] and numerics [48] with friction are rea-
sonably compatible with the frictionless theory. Numerically
building a phase diagram analogous to Fig. 1, comparing the
amplitude of sliding dissipation to other sources, would resolve
this issue.
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APPENDICES

In these appendices, we provide additional details of
our results. Appendix A describes details of the numerical
simulations, while Appendix B shows that our main results
are independent of the grain stiffness, restitution coefficient,
system size, and numerical integration time step. Appendix C
shows atypical behavior of sliding velocity and sliding force
in the rolling regime. Appendix D shows the velocity auto-
correlation function for several values of μp and εv for all
values of μp considered. Appendix E computes the effect of
geometrical nonlinearity during flow.

APPENDIX A: NUMERICAL SIMULATIONS

Simulations are performed with a standard discrete element
method code [33], which integrates Newton’s equations of
motion for each grain with Verlet time-stepping. We focus on
two dimensions, as empirically exponents do not appear to
depend on dimension; see [31] for a review of the literature
on this point. Collisions are computed by modeling grains
as viscoelastic disks: when grains overlap at a contact α,
they experience elastic and viscous forces �f e

α and �f v
α . The

coefficient of the viscous force is chosen to obtain a restitution

coefficient e = 0.1 in binary collisions; away from the singular
limit e → 1 that we do not consider, varying this coefficient
does not strongly affect our results, as shown in Sec. II. These
forces can be decomposed into their contributions normal to
the contact, f N,e

α and f N,v
α , and tangential to the contact,

�fα
T,e and �fα

T,v . The tangential force is imposed to stay inside
the Coulomb cone, | �fα

T | � μpf N
α . Contacts that saturate the

Coulomb constraint are said to be sliding.
The grains are polydisperse with equal numbers of diameter

(0.82,0.94,1.06,1.18), the same mixture used in [22]. Previous
work established that the polydispersity does not affect μc

in simple shear flow, even over a huge range of polydisper-
sity [50]. Results in the main text are reported for a value
of grain stiffness such that the grain relative deformation is
set to 	 = 10−3.8, appropriate for some materials [2]. This
is well within the range 	 < 10−3 in which rheological
results are independent of 	, as previously established in
simulations of inertial flow of frictionless and frictional
particles [5,15,17,32,48]. This result is verified by the explicit
dependence of our phase diagram on 	, reported in Sec. II
for 	 ∈ {10−3.8,10−2.8,10−1.8}. We studied three system sizes
N ∈ {1000,1800,3700}. Results are reported for the largest
N ; the absence of finite-size effects is established in Sec. II.
The shortest time scale of the dynamics is the microscopic
elastic time scale

√
m/k; we chose our numerical time step 	t

such that it never exceeds 0.06
√

m/k. This ensures that binary
collisions are resolved with >15 steps, and the much slower
multibody collisions typical of dense flow will be resolved in
even greater detail. Independence of our results with respect
to 	t is shown in Appendix B.

The square domain of size Lx × Ly is periodic in the
x direction and has upper and lower walls. The walls are
created from the same polydisperse mixture as the bulk,
staggered to create roughness. The walls obey an equation of
motion

M
d2�r
dt2

+ η
d�r
dt

= �Fbulk + �Fext, (A1)

where M is mass, η is a damping coefficient, �Fbulk is the force
from the bulk of the packing, and �Fext is an external applied
force. The bulk-wall interactions are via contact forces, exactly
as in the bulk. The external force in the y direction is constant,
such that F

±y
ext = ∓PLx on the top (+) and bottom (−) walls.

In the x direction, the external force is chosen to impose a
constant velocity ±Vw, and hence a constant global shear rate
ε̇ = 2Vw/Ly , up to fluctuations in Ly .

We seek to make the flow as homogeneous as possible.
Following [5], we set η = √

mk, where k is the spring constant
for particle-particle elastic interactions, and m the mean
particle mass. We tested the dependence of the results on M .
When M/m ∼ 1, the wall equation Eq. (A1) is dominated by
the viscous term, and can exhibit long transients. We therefore
set M/m = 50, so that the wall density and particle density
are the same order; this minimized transients.

With this choice of wall parameters, we find that steady
states are achieved where the relative pressure fluctuations
range from 1% at I ∼ 10−5 to 20% at I ∼ 0.1; thus the mean
particle overlap 	 ∝ P/k is fixed to within this precision.
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FIG. 8. N dependence of observables. (a) Dissipation ratio vs I. (b) χ vs I. (c) L vs I.

To prepare homogeneous steady states, initially isotropic
packings are created from a gas at volume fraction φ0 =
0.5, and then sheared for a pre-strain ε0. As discussed
below, an analysis of Eq. (A1), leads to our choosing ε0 =
max(0.2,	−1/2I), which we checked ensures that a steady
state is reached. After this initial strain, without collecting
data, we strain the systems for ε = 0.3, collecting data every
δε = 5 × 10−4.

In all cases, we discard runs that are not sufficiently
homogeneous. As a first criterion, we exclude simulation runs
where the mean velocity profile has a shear band. As a second
criterion, we find for certain parameter values that resonant
elastic waves bounce back and forth between the walls at very
high frequency, as discussed in [51]. Resolution of these waves
requires a much smaller time step than is needed otherwise,
so we do not include these runs. Details of these criteria
follow.

To determine an appropriate pre-strain scale ε0, consider the
y direction bulk-wall force on on the top wall, F

+y

bulk. This is
a springlike force, since it results from the elastic interactions
between the particles adjacent to the wall, and the wall itself,
but with a nontrivial spring constant. It can be estimated from
the law φc − φ ∝ Iαφ . Indeed, linearizing this law around
a mean volume fraction φ̄ and mean pressure P̄ , we find
P − P̄ ∝ −ε̇2(φc − φ̄)−1/αφ−1(yw − Ly/2)/Ly , where Ly is
the mean thickness of the domain and we used (φ −
φ)/φ̄ = −(yw − Ly/2)/(Ly/2). Hence the bulk-wall force is
approximately F

+y

bulk ∼ PLx ∼ −kw(yw − Ly/2) with kw ∼

ε̇2(φc − φ̄)−1/αφ−1 ∼ P̄ (φc − φ̄)−1. The strain scale associated
with the damping term in Eq. (A1) is then ε0 ∼ ε̇η/kw ∼
	−1/2I(φc − φ̄), where 	 = p/k. We conservatively take
ε0 = max(0.2,	−1/2I).

Our two criteria for ensuring homogeneity of the flows
are that there is no static shear band, and that the walls
are not in resonant motion. To test for a shear band, we
compute the deviation of the mean velocity profile from a
linear one, δv(y) = v(y) − ε̇y, and compute its normalized
standard deviation, 〈[δv(y) − 〈δv〉]2〉y/(Lyε̇)2. For a perfect
shear band, this is 1/

√
12 = 0.29; we discard runs where it

exceeds 0.2.
For certain parameter values, resonant elastic waves bounce

back and forth between the walls at very high frequency, as
discussed in [51]. Resolution of these waves requires a much
smaller time step than is needed otherwise, and in our code they
display an unphysical alternation of the velocity of the wall
from positive to negative values at each strain increment where
we save data. Therefore we compute a normalized numerical
derivative of the vertical wall velocity, O = [Vw(ε + 	ε) −
Vw(ε)]/[	ε〈δV 〉], where Vw is the wall velocity (for brevity,
here we include only one wall), and 〈δV 〉 is the velocity scale of
grains in the bulk, computed from their fluctuations. We find
that for well-behaved runs, OI ∼ 1, while for numerically
unstable ones, OI > 10 000. Therefore we exclude runs with
OI > 2000. We checked that the few runs so excluded
agree in their location in parameter space with the theory
of [51].
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101
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id
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μp = 0.3, e = 0.1
μp = 0.02, e = 0.5
μp = 0.3, e = 0.5

10-3 10-2 10-1

I
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100
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μp = 0.3, e = 0.1
μp = 0.02, e = 0.5
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10-2 100

I

100

101

L
=

δV
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D
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μp = 0, e = 0.1
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μp = 0.02, e = 0.5
μp = 0.3, e = 0.5

(a) (b) (c)

FIG. 9. e dependence of observables. (a) Dissipation ratio vs I. (b) χ vs I. (c) L vs I.
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FIG. 10. (a) 	 dependence of phase diagram for 	 = 10−3.8 (squares, solid), 10−2.8 (diamonds, dashed), and 10−1.8 (triangles, dash-dotted).
(b) Absence of dependence of L on time step 	t for μp = 0.02.

APPENDIX B: DEPENDENCE OF RESULTS
ON �,e,N, AND �t

In the main text, we reported results for grain relative
deformation 	 ≈ 10−3.8, number of particles N ≈ 3700,
restitution coefficient e = 0.1, and time step 	t ≈ 0.06

√
m/k.

Here we discuss how our results depend on these choices. We
show representative plots for N ≈ 1000,1800,3700 at several
values of μp and several quantities in Fig. 8. We see that χ

and Dslid/Dcoll are independent of N at the two largest values
studied. Since velocity fluctuations are suppressed at the wall,
L displays an expected mild, systematic dependence. This
behavior is representative for all values of μp. In all cases the
minor dependence in L does not affect the scaling behavior
of observables, and in particular the phase diagram is not
affected. Similarly, representative plots for e = 0.5 in small
systems N ≈ 1000 (Fig. 9) show that Dslid/Dcoll,χ , and L
display only a weak dependence on the restitution coefficient.

Although the grain relative deformation 	 ≈ 10−3.8

is well within the rigid limit established in previous
work [5,15,17,32,48], we checked how our phase diagram
depends on 	 ∈ {10−3.8,10−2.8,10−1.8}, as shown in Fig. 10(a).
For the two smallest values of 	, the frictionless–frictional-
sliding transition is independent of this value above the
quasistatic regime, and the frictional-sliding–rolling transition
displays only a very small dependence.

Finally, in Fig. 10(b) we show independence of our results
on the time step 	t , which was halved for a set of simulations
with μp = 0.02, which includes both frictionless and frictional
sliding regimes.

APPENDIX C: SLIDING DISSIPATION
IN ROLLING REGIME

In the rolling regime, only a small subset of contacts are
sliding, as shown in Fig. 5(b) of the main text. This raises the
possibility that the forces and velocities at these contacts may
be atypical of the system as a whole. We investigate this with
the quantities ζ ≡ 〈f N 〉S/(pDd−1), and LT = 〈| �UT |〉S/(Dε̇),
where 〈·〉S denotes an average over sliding contacts. As shown
in Fig. 11, atypical behavior of sliding contacts is indeed shown
for large μp, and in fact we find in this regime that both ζ and
LT /L show power-law behavior. In particular, for μp = 2 we
find ζ ∼ I0.31 and LT /L ∼ I−0.28, while for μp = 10 we find
ζ ∼ I0.43 and LT /L ∼ I−0.34. The quantities ζ and LT /L
would be needed for an accurate scaling estimate of sliding
dissipation in the rolling regime.

APPENDIX D: VELOCITY AUTOCORRELATION
FUNCTION

In the main text we introduced the autocorrelation function

C(ε) = 〈
V

y

i (0)V y

i (ε)
〉
, (D1)

in terms of the vertical component of velocity at particle i, V y

i ,
averaged over all particles and all initial time steps for a given
strain increment ε. In Fig. 12, we show C(ε)/C(0) for several
values of μp. The values of η are listed in Table II, and the
resulting values of εv(I) are shown in Fig. 13.

10-4 10-3 10-2

I

10-1

100

ζ
=

f N
S
/p

D

10-4 10-3 10-2

I

10-1

100

L T
/ L

(a) (b)

FIG. 11. (a) ζ vs I. Dotted and dashed lines have slopes 0.43 and 0.31, respectively. (b) LT /L vs I. Dotted and dashed lines have slopes
−0.34 and −0.28, respectively.
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FIG. 12. Autocorrelation of particle velocities, C(ε) = 〈V y

i (0)V y

i (ε)〉, for indicated μp and I from 10−4.1 (down triangles) to 10−1.3 (circles)
[symbols as in Fig. 4(a) of the main text]. (a)–(d) C(ε)/C(0) vs ε. (e)–(h) C(ε)/C(0) vs ε/εv . In (e)–(h), unfilled symbols correspond to strains
larger than 0.01, not used for fitting, and the solid line shows the fitted form.

APPENDIX E: GEOMETRICAL NONLINEARITY IN FLOW

We aim to compute how forces evolve along flow of hard
particles. In particular, we consider flow along a floppy mode,
where the relative velocity at a contact, �uij , is zero at rolling
contacts, and only transverse at the sliding contacts. The
definition of �uij , in particular the motion of j relative to i

at their mutual contact, is

�uij = �Vj − �Vi + (−1)d	 �ωij × �nij , (E1)

where 	 �ωij = Rj �ωj + Ri �ωi . This holds both in d = 2 and
d = 3, where the cross product in 2D is defined as �v × �u =
viεijuj in terms of the Levi-Civita symbol ε12 = −ε21 =
1,ε11 = ε22 = 0. In 2D �ω becomes a scalar, and �ω × �n =
ω × �n is the vector ωεkl �nl . In this way we can handle both
cases simultaneously.

By multiplying �uij along an arbitrary set of virtual forces
and torques, we obtain the theorem of complementary virtual
work [52]:

−
∑
ij∈CS

�uT
ij · �f T

ij = −
∑

i

[ �Vi · �Fi+�ωi · �τi]

+
∑

ij∈∂


�U ext
ij · �fij , (E2)

where �Fi = −∑
〈ij〉 �fij and �τi = −∑

〈ij〉 Ri �nij × �fij are the
net virtual contact force and contact torque on particle
i, and �U ext

ij = − �Vi + (−1)dRi �ωi × �nij on the boundary.
Equation (E2) applies only in between collisions. It is

TABLE II. Exponent η in fit of C(ε)/C(0).

μp 0 0.002 0.02 0.1 0.3 0.5 0.8 2 10

η 1.2 1.2 0.75 0.5 0.5 0.55 0.65 0.75 0.75

important to stress that Eq. (E2) holds for any virtual force
field { �fα}. To compute the nonlinearity in flow, we will use the
virtual work theorem with {d �fα/dε} as the virtual “forces.”
This allows us to identically remove the leading order terms in
flow and consider only those that evolve with strain. The basic
equation is then

∑
α∈∂


�U ext
α · d �fα

dε
= −

∑
ij∈CS

�uα · d �fα

dε
+

∑
i

[
d �Fi

dε
· �Vi

+ d �τi

dε
· �ωi

]
+

∑
i

�ωiRi ·
∑
α∼i

d �nα

dε
× �fα,

(E3)

10-4 10-3 10-2 10-1

I
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10-4
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μp = 0
μp = 0.002
μp = 0.02
μp = 0.1
μp = 0.3
μp = 0.5
μp = 0.8
μp = 2
μp = 10

FIG. 13. Strain scale εv from collapse of C(ε). Lines as in
Fig. 5(a) of the main text.
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where contacts are denoted as α. Here the last term is needed
to precisely cancel the d �nα/dε terms that appear in dτi/dε

when expanded. Under constant stress boundary conditions,
we can fix all the boundary forces, so that the left-hand side
vanishes. The terms on the right-hand side can be simplified
using the definition of floppy modes, and the fact that at sliding
contacts we have | �f T

α | = μpf N
α . After a long computation, in

d = 2 we can rewrite Eq. (E3) exactly as

0 =
∑
α∈CS

[
μpuα

df N
α

dε
− f N

α

ε̇δr
(1 − μp)u2

α

]
−

∑
α

f N
α

ε̇δr
|	 �ωα|2

+
∑

i

[
d �Fi

dε
· �Vi + d �τi

dε
· �ωi

]
, (E4)

where uα is the magnitude of sliding velocity at contact α. In
d = 3 there are several additional terms that are not expected
to be important, for example involving the slight difference be-
tween sliding directions and the directions of tangential forces.

When flow is along floppy modes, velocities have a
characteristic scale δV ; we will assume that the angular and
linear velocities have the same scale, δω ∼ δV/D. Then since
χ � 1, in terms of scaling we have

0 ≈ χNCμpδV
dp

dε
− NC

p

ε̇
δV 2 + N

dF

dε
δV, (E5)

where we used that d �Fi/dε · �Vi > 0. Under constant stress
boundary conditions, the dp/dε term is negligible (more
precisely, it vanishes up to correlations between uα and
df N

α /dε). Then we find

dF

dε
≈ z

2

p

ε̇
δV, (E6)

as stated in the main text. Equation (E6) indicates how
quickly configurations flow out of equilibrium along floppy
modes, and applies for both viscous and inertial dynamics.
The magnitude of unbalanced forces, F , can itself be written
in terms of geometrical quantities, but this depends on the
dynamics.
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