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The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena
with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system
based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study the effect of the curved, diffuse
solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial
energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface
and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy
is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial
energy (rs). The comparison of the results based on both radii shows that the difference re − rs is always positive
and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real
nucleation barrier for small cluster sizes, which is defined as a function of the radius rs , and compared it with
the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function
of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical
Tolman formula with a positive Tolman length.
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I. INTRODUCTION

The understanding of structural and thermodynamic as-
pects of interfaces is important for a proper description of
various applications, such as vaporization and condensation
transformations, melting, and crystallization. One of the most
important interfacial properties is the interfacial energy, which
is a key ingredient to control the behavior of several important
phenomena, such as nucleation and crystal growth. For this
reason, various theoretical approaches have been developed
to estimate the interfacial energy. To date, these approaches
can only be viewed as estimates of the interfacial energy
due to the large number of assumptions. The influence of the
surface curvature and the diffuse nature of the interface on its
equilibrium properties is still not fully understood due to the
presence of a finite diffuse layer which gives rise to various
definitions of the nucleus size as well as raises questions about
the actual surface where the interfacial energy is to be evaluated
[1]. In contrast to the planar interface, the surface area of
the curved diffuse interface directly depends on the droplet
size, and even a small change in radius results in a significant
shift in the resulting interfacial energy. Bohr et al. reported
that a small fluctuation of the order 0.5 fm in the radius of
nucleus within the diffuse interface region leads to a shift
of the order of 102 MeV in the resulting surface energy of
Pb [2].

In the 1990s, several nonclassical theories of crystal nucle-
ation were developed which explained the dependency of the
interfacial energy on the undercooling and the corresponding
nucleus size that contradicts the classical nucleation theory
(CNT). In the context of nonclassical theories, the modified
self-consistent classical theory [3,4], the field theoretic ap-
proaches based on the density functional theory [5–7], and
the diffusion interface theory [8–10] were introduced (see
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also a recent review of nonclassical theories in [11]). Various
phenomenological dependencies of the interfacial energy on
the nucleus size were also proposed [4,12]. A well established
nonclassical theory of the liquid-vapor phase separation was
developed by Tolman [13]. It proposed that the surface tension
of small liquid droplets existing in equilibrium with the vapour
phase depends on its radius as

γ (r) = γ∞
1 + 2δT

r

, (1)

where δT is the Tolman length. A number of investigations
based on the Gibbs dividing surface approach have been
performed to study the dependence of δT on the temperature
and radius. A recent review of that approach was done by
Tröster et al. [13].

In contrast to the theoretical attempts, several simulation
techniques provide the possibility to compute the interfacial
energy more efficiently with much higher accuracy. The
properties of the interface on the atomic scale were investigated
in many works by means of Monte Carlo (MC) and molecular
dynamics (MD) simulations [14,15]. In [14], the nonclassical
nucleation barrier of a liquid-gas system is defined as a
function of the supercooling δρ = ρ1 − ρ2 according to the
following relation:

�F (δρ) = 4πr3

3
(F1 − F2) + 4πr2FI , (2)

where F1 is the free energy of the gas at the density ρ1, F2 is the
free energy of the gas at the density ρ2, and FI is the interfacial
energy evaluated by MC simulations. It was shown that the
nonclassical nucleation barrier differs from the classical theory
at large δρ, and this difference vanishes at a critical value. As a
prolongation of this work [15], another method was developed
in which the surface energy of liquid droplets was obtained
from the Helmholtz free energy function in the grand canonical
ensemble calculated by MC simulation. This method focuses
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on the equilibrium properties of the vapor-liquid coexistence
region.

In addition to the MC and MD simulations, the phase-field
crystal (PFC) modeling derives its attractiveness from the fact
that it does not need any explicit tracking of the interface,
and thus the satisfaction of complicated interfacial boundary
conditions is not needed. In comparison to the traditional
phase-field models, the periodic atomic density field in the
PFC model can give an additional contribution to the definition
of the interfacial energy and can explain various size effects
observed in the MC and MD methods [16–19]. The PFC
model has emerged as an efficient simulation tool for problems
involving a tightly coupled atomic and continuum scale. It is a
phenomenological but still quite generic approach to describe
crystals of isotropic as well as anisotropic building blocks
[20–23]. Thus, in the multiple time- and length-scale diagrams
of materials modeling it provides a bridge between atomistic
and continuum simulation techniques.

Recently, we proposed a method for the investigation of the
liquid-solid interface by means of the PFC model for a binary
system [24]. The main focus of this study is to demonstrate
the usefulness of the finite system size approach to derive
the liquid-solid interfacial energy and its dependence on the
droplet (cluster) radius. It was shown that the interfacial energy
for small droplets deviates from the predictions based on CNT.
In [24], we defined the droplet (cluster) size by using the
concept of the equimolar dividing surface. However, according
to the Gibbs-Tolman concept [25,26], two different radii or
dividing surfaces can be introduced. The first radius (re) is
the equimolar radius, which corresponds to the equimolar
dividing surface and defines the physical size of the droplet,
i.e., the actual surface at which the surface tension is applied.
The second radius (rs) is the surface tension radius, which
provides the minimum of the surface tension coefficient. In
recent studies of liquid droplets [27,28], it was shown that the
difference of the radii re − rs in an asymptotic limit of large
systems derives the Tolman length. This means that, for the
calculation of the curvature correction to the surface energy,
a finite layer in the particle distribution should be taken into
account. In this framework, Toth and Granasy [29] defined the
surface energy, the nucleation barrier, and the Tolman length
for two pure metals and a binary alloy using the equimolar
radius re calculated by the phase field approach and the radius
of the surface tension rs defined by diffuse interface theory
[10].

In the present work, we highlight further improvements in
the finite size approach for the derivation of the liquid-solid
interfacial energy and the nucleation barrier by comparing
the simulation results based on two concepts used for the
description of dividing surface (re and rs). More specifically,
the main goal of this article is to define a precise sharp
interface at which the interfacial energy can be evaluated
by using the concept of the equimolar dividing surface
and the concept of the minimization of the interfacial en-
ergy as well as to extract the corresponding nucleus-size-
dependent interfacial energies and nucleation barriers for
both concepts. This study will also demonstrate how the
definition of the dividing surface influences the resulting
interfacial energy and the nucleation barrier for small nucleus
sizes.

This paper is organized as follows. In Sec. II, we present the
mathematical formulation of the PFC model for binary systems
and calculate the equilibrium phase diagram. In Sec. III, we
briefly describe the simulation scheme for the investigation
of the liquid-solid interface. In Sec. IV, two methods
of the evaluation of the interfacial energy are presented
based on the definition of the dividing liquid-solid surface;
i.e., the definition based on the minimum interfacial energy and
the equimolar dividing surface. The simulation results for the
calculation of the interfacial energy and nucleation barriers for
various cluster sizes are presented in Sec. V. Furthermore, we
present a comparison of simulation results with the predictions
based on the classical as well as nonclassical theories.

II. PHASE-FIELD CRYSTAL MODEL FOR
BINARY SYSTEMS

In this section, we briefly introduce the PFC model for
binary systems based on the work of Elder et al. [17] and
describe the method for the evaluation of the equilibrium phase
diagram by using the common tangent construction technique.

A. Model description

We consider a binary system composed of two components
A and B, with representative atomic number densities, i.e., ρA

and ρB , respectively. The free energy for such a binary system
includes contributions from the energy of density fields of
both components and their interaction. A dimensionless atomic
density field n and a dimensionless concentration field c can
be written as

n = ρA + ρB

ρ̄
− 1,

(3)

c = ρB − ρA

ρ̄
,

where ρ̄ is the mean density of the system. We refer to these
fields as diffusion fields in the following sections of this paper.

The free energy functional for a binary system is derived in
the form

F =
∫

F (n,c)d�r, (4)

with the dimensionless total free energy

F (n,c) = n

2
[Bl + Bs(2R2∇2 + R4∇4)]n − t

3
n3 + v

4
n4

− γ c + w

2
c2 − ξ

2
c3 + u

4
c4 + ε2

2
| �∇c|2 + · · · ,

(5)

where t , v, γ , w, ξ , u, and ε are constant model parameters. Bl ,
Bs , and R depend on the concentration and can be expressed by
Taylor expansion. Assuming Bl

0, Bs
0, Bl

2, and R0 to be the only
nonzero coefficients for mathematical simplicity, one ends up
with the following expressions:

Bl = Bl
0 + Bl

2c
2,

Bs = Bs
0, (6)

R = R0.
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The components of an alloy can have various atomic sizes. In
this case, by choosing R as a concentration dependent value,
the additional elastic strain will arise on the interface and lead
to increasing interfacial energy.

The energy parameters in this paper are expressed in units
of ρ̄kBT , where kB is the Boltzmann constant and T is the
temperature, and space parameters are given in units of the
lattice constant a.

Considering substitutional diffusion between both compo-
nents A and B, i.e., equal mobility of the components, one gets
decoupled dynamical equations for both diffusion fields n and
c. In a simple case, if one assumes a constant mobility (M),
then the dynamical equations can be written as

∂n

∂t
= M∇2 δF

δn
, (7)

∂c

∂t
= M∇2 δF

δc
. (8)

Using the free energy expression (5), we obtain the derivative
of the free energy with respect to the atomic density, i.e.,

δF
δn

= nBl − tn2 + vn3 + BsR2

2
[(2∇2 + R2∇4)n]

+ Bs

2
[2∇2(nR2) + ∇4(nR4)] (9)

and the derivative of the free energy with respect to the
concentration field, i.e.,

δF
δc

= Bl
2cn

2 − γ + wc − ξc2 + uc3 − ε2∇2c. (10)

A one-mode approximation technique is used to initialize
the total density n, i.e.,

n = n0 + A

(
1

2
cos

[
2qy√

3

]
− cos(qx) cos

[
qy√

3

])
, (11)

where A is the amplitude and q is the wave number. Inserting
this expression into (5) and then minimizing with respect to q

and A gives the equilibrium values

qeq =
√

3

2R
,

Amin =
4
(
t − 3vn0 +

√
t2 + 24tvn0 − 36v2n2

0 − 15v�B
)

15v
,

(12)

where �B = Bl − Bs = �B0 + Bl
2c

2 with �B0 = Bl
0 − Bs

0
being a linear function of the temperature.

B. Phase equilibrium

The binary PFC model [17] was developed for a binary
alloy with two components. One component is taken as a
solute and the second component is taken as a matrix. In
the current scenario, it is similar to the phase-field model
for binary alloys with one concentration field. However, in
reality, the PFC model contains two diffusion fields, because
the system has three components: A, B, and empty places. If
the atomic density field decreases the densities of particles, A

and B decrease too, and we have an increase in empty places.

In general, the liquid and solid phases have different mean
densities. Hence, to describe a three-component system, the
model should have two density fields, while one component
is the matrix. It is similar to ternary alloy systems, and we
can state that our system can be considered a multicomponent
system.

The equilibrium phase diagram for the model can be
calculated using the following set of nonlinear equations:

μn
s

(
ceq
s ,n

eq

0,s

) = μn
l

(
c
eq

l ,n
eq

0,l

) = μn,eq,

μc
s

(
ceq
s ,n

eq

0,s

) = μc
l

(
c
eq

l ,n
eq

0,l

) = μc,eq, (13)

ωs

(
ceq
s ,n

eq

0,s

) = ωl

(
c
eq

l ,n
eq

0,l

)
,

where μn
s/l and μc

s/l are the diffusion potentials and ωs/l are the
grand potential densities of the solid and liquid phase, which
are defined as

ωs/l

(
c
eq

s/l,n
eq

0,s/ l

) = F̄
eq

s/ l − μc,eqc
eq

s/l − μn,eqn
eq

0,s/ l . (14)

It is important to mention here that Eq. (13) is similar to the
equations for a ternary alloy, which are based on the common
tangent construction between the Gibbs free energies of two
phases (see, e.g., Ref. [30]).

In Eq. (14), the mean solid free energy density is calculated
as an integral over the system box:

F̄s =
√

3

2π2

∫ 2π√
3

0
dx

∫ π

0
dyFs(x,y) (15)

with

Fs(x,y) = Bl n
2

2

+ Bs n

2

[
2

(
∂2

∂x2
+ ∂2

∂y2

)
+ ∂4

∂x4
+ ∂4

∂y4
+2

∂4

∂x2∂y2

]
n

− tn3

3
+ vn4

4
− γ c + wc2

2
− ξc3

3
+ uc4

4
. (16)

The mean liquid free energy density is defined as

F̄l = Fl = Bl n
2
0

2
− tn3

0

3
+ vn4

0

4
− γ c + wc2

2
− ξc3

3
+ uc4

4
.

(17)

The corresponding diffusion potentials are defined as

μn
s =

√
3

2π2

∫ 2π√
3

0
dx

∫ π

0
dy

∂Fs

∂n
,

μc
s = ∂F̄s

∂c
, μn

l = ∂F̄l

∂n0
, μc

l = ∂F̄l

∂c
.

(18)

To calculate the equilibrium parameters of the phase diagram,
one first chooses a value n

eq

0,l and then calculates other
parameters: c

eq
s , n

eq

0,s , and c
eq

l corresponding to the chosen
value n

eq

0,l by solving Eq. (13).
For our investigations, we calculated the section of the

equilibrium phase diagram at the undercooling �B0 = 0.05
as shown in Fig. 1. The regions of the liquid and solid phases
as well as the region of the coexisting of both phases are
clearly identified in the figure. The model parameters used in
the calculations are listed in Table I.
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FIG. 1. Section of the equilibrium phase diagram at �B0 = 0.05.
The region of the initial concentrations used in the following
simulations is identified by a broken line.

III. SIMULATION SCHEME FOR THE INVESTIGATION
OF THE LIQUID-SOLID INTERFACE

Simulations are performed for two cases, i.e., a circular
solid cluster surrounded by the liquid phase. The governing
model equations (7) and (8) are solved numerically in
two- dimensions on a system domain of size Lx × Ly with
Lx = La, Ly = La

√
3/2. The corresponding area of the

simulation box is A = L2a2
√

3/2. One unit cell has a size
a × √

3/2a. Note that the lattice constant is defined as a =
2π/qeq = 4πR/

√
3 ≈ 7.26. The discretization size is chosen

�x = �y = a/9 ≈ 0.806. The number of the discretization
points is calculated as integer values Nx = (int)Lx/�x, Ny =
(int)Ly/�y. In one unit cell we have around 9 × 9

√
3/2 ≈

9 × 8 discretization points.
We initialize simulations with a sufficiently small time step

of �t = 0.0005 to ensure the stability of the scheme. The
result of test simulations showed that after 150 000 steps the
resulting system parameters change very slowly. Based on
these findings, we changed the time step to �t = 0.0015 after
400 000 steps.

For the simulation the simple explicit Euler method was
used for the time discretization and the spherical Laplacian
approximation was used for the space derivatives [17]. Periodic
boundary conditions are applied in all directions of the domain.
The periodic boundary condition in the y direction is not
perfect due to the choice of �y. To avoid the influence of
the boundaries, we limit the nucleus size using small phase
fractions. The initial solid cluster was inserted in the center
of the simulation box. In order to investigate the influence of
system size on final results, we varied the size of the simulation

TABLE I. Model parameters used in simulations.

Bl
0 Bs

0 Bs
2 R0 t v

1.05 1.0 −1.663 1.0 0.6 1.0

γ w ξ u ε

0.002 0.088 0.59 4.0 1.2

TABLE II. The parameters used in the simulation as initial values,
the diffusion potentials, and the corresponding equilibrium values
from the phase diagram.

Parameter

n0,s n0,l cs cl μn
s μc

s

Initial 0.01380 −0.0088 0.2090 0.1000 −0.009171 0.00477
Equil. 0.01347 −0.0063 0.1925 0.1169 −0.006484 0.00460

box, i.e., L = 30,40, . . . ,80. The initial phase fractions are
varied as pin

s = 0.25,0.2,0.15,0.1. The radius of an initial solid
cluster (r in) is defined as a function of the initial solid phase
fraction, i.e.,

r in =
(

pin
s A

π

)1/2

. (19)

To ensure the conservation law we used pin
s + pin

l = 1.
The initial values for the diffusion fields are chosen as

equilibrium values for the liquid phase and for the solid phase
[n is initialized by Eq. (11) with Amin and qeq]. The initial
parameters used in the simulations are listed in Table II. They
slightly differ from the equilibrium parameters in the phase
diagram to take into account the change of the equilibrium
concentrations near the curved interface according to the
Gibbs-Thomson effect.

The average values of the diffusion fields c̄ and n̄ are defined
by the initial phase fractions, i.e.,

c̄ = cin
s pin

s + cin
l

(
1 − pin

s

)
,

n̄ = nin
s pin

s + nin
l

(
1 − pin

s

)
. (20)

The average values of the diffusion fields c̄ and n̄ should be
constant during one simulation run.

In these investigations, we calculate the following param-
eters after each simulation run: the mean free energy density
of the system (F̄ ), the mean diffusion potentials of the system
(μn/c), free energy densities and diffusion potentials in each
phase (Fs/l , μ

n/c

s/l ), the mean diffusion fields of the system,
and the diffusion fields in each phase (c̄, n̄, cs/l , ns/l). These

FIG. 2. Four unit cells in the center of the simulation box used
for the calculation of averaging parameters in the solid phase.
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quantities, corresponding to different phases, are calculated by
averaging in four unit cells, which are lying in the center of
the box for the solid phase and on the left bottom corner of the
box for the liquid phase. The area of averaging for the solid
phase is shown in Fig. 2. The simulations keep running until
the system achieves the desired equilibrium state, i.e., when
the values of diffusion potentials in both phases are equal up to
nine digits. The final coexistence values for each phase (cs/l ,
ns/l , Fs/l), the mean free energy density (F̄ ), and the mean
diffusion potentials of the system (μn/c) in the coexistence are
used for the calculation of the interfacial energy in Sec. V.

IV. THEORETICAL DEFINITION OF THE
INTERFACIAL ENERGY

In this section, we present a detailed description of the two
concepts that we used to define the position of the dividing
surface for a solid-liquid phase coexistence and the extraction
of the corresponding interfacial energy.

A. Definition of the minimum interfacial energy

In this subsection, we derive the dividing surface for
a system with an arbitrary number of diffusion fields for
the case of solid-liquid coexistence by using the concept
of the minimum interfacial energy for the definition of a
droplet radius [27,31]. We consider a system of size V in
three-dimensional space, which contains a solid cluster of
volume Vs = 4πr3/3 with the surface area S = 4πr2 in the
liquid matrix of volume Vl = V − Vs . The solid phase fraction
is calculated as ps = Vs/V . We define ν number of diffusion
fields in this derivation. The values of diffusion fields in the
solid and liquid phases are identified as ρi

s/l , where i is the
index for a field. For our binary PFC model, we have two
diffusion fields n and c.

The free energy of the system can be written as a sum of
the volume and surface contributions

F = FV + FS, (21)

where

FV = ωsVs + ωlVl +
ν∑
i

μi
(
ρi

sVs + ρi
l Vl

)
(22)

and

FS = γ S +
ν∑
i

μiρi
I S. (23)

Here ωs/l = Fs/l − ∑ν
i μiρi

s/ l are the grand potential densities
in the liquid and solid phase, γ is the interfacial energy, and ρi

I

are the excess diffusion fields at the interface. One can define
the mean diffusion fields in the system, ρ̄i , as

ρ̄i = ρi
sVs/V + ρi

l Vl/V + ρi
I S/V . (24)

From Eqs. (21)–(24), one can get an expression for γ as

γ = F − ∑
i μ

i ρ̄iV − (ωsVs + ωlVl)

S
. (25)

We define � = F − ∑
i μ

i ρ̄iV as the mean grand potential of
the system and ω = �/V = F̄ − ∑

i μ
i ρ̄i as the mean grand

potential density of the system with F̄ = F/V . Equation (25)
can be transformed to Eqs. (26) and (27) by adding the term
−ωlVs + ωlVl , i.e.,

(ω − ωl)V = −�ωlsVs + γ S = − 4
3πr3�ωls + 4πr2γ

(26)

and

γ (r) = (ω − ωl)V

4πr2
+ �ωlsr

3
, (27)

where �ωls = ωl − ωs is the difference in the grand potential
densities in the liquid and solid phases, which represents the
capillary pressure. It can be seen that Eq. (26) defines the grand
potential of the formation of a nucleus of radius r . Note that
all terms on the right-hand side of Eq. (26) depend on the
definition of the dividing surface.

The standard procedure to derive the nucleation barrier and
the critical nucleus size is to calculate the derivative from
Eq. (26) with respect to r with ∂(ω−ωl )

∂r
= 0. It yields

�ωls = 2γ

r
+ ∂γ

∂r
. (28)

The derivative ∂γ

∂r
is taken for a stabilized solid cluster, which is

in coexistence with the liquid phase having the constant values
of (ω − ωl)V and �ωls , corresponding to the given values of
ρ̄i . The radius r is the distance from the center of a cluster
(a nucleus). The function γ (r) has a minimum at a radius rs ,
which is called the radius of the surface tension [31]. Using
the relation (27) and ∂γ

∂r
|r=rs = 0, one can get an expression

for the radius of the surface tension:

rs =
(

ps
s

3V

4π

)1/3

(in 3D), (29)

where

ps
s = (ω − ωl)

(ωl − ωs)
(30)

is the solid phase fraction defined in terms of grand potentials.
The corresponding interfacial energy from (28) is defined as

γ (rs) = �ωlsr
s

2
(in 3D). (31)

The relation of the nucleation barrier as a function of the
critical radius will have the form

�Gn ≡ (ω − ωl)V = 2
3π (rs)3�ωls = 4

3π (rs)2γ (rs). (32)

To determine the minimum of the interfacial energy for a
two-dimensional case, one can rewrite Eqs. (26) and (27) as

(ω − ωl)A = −πr2�ωls + 2πrγ (33)

and

γ (r) = (ω − ωl)A

2πr
+ �ωlsr

2
. (34)

Similarly, to derive the nucleation barrier for a two-
dimensional case, one can calculate the derivative from
Eq. (33) with respect to r by using ∂(ω−ωl )

∂r
= 0. The resulting

expression for a two-dimensional case can be written as

�ωls = γ

r
+ ∂γ

∂r
. (35)
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Then, from ∂γ

∂r
|r=rs = 0 and (34) follows the relation for the

radius of the surface energy

rs =
(

ps
s

A

π

)1/2

(in 2D) (36)

and the expression for the minimum interfacial energy

γ (rs) = �ωlsr
s (in 2D). (37)

It can be seen that, for the radius rs , the difference in
the grand potentials (ω − ωl)B in Eq. (26) has a maximum
which corresponds to the nucleation barrier �Gn. Substituting
(37) into (33), one can get the expression for the nucleation
barrier as a function of the critical nucleus radius for a
two-dimensional case, i.e.,

�Gn = (ω − ωl)A = π (rs)2�ωls = πrsγ (rs). (38)

For the calculation of the minimum interfacial energy (in
Sec. V), we use Eq. (34), which can be written as

γ (rs) =
[
ω − (

ωsp
s
s + ωlp

s
l

)]
A

2πrs
. (39)

B. Definition of the equimolar interfacial energy

In this subsection, we derive the expression for the
equimolar radius re based on the concept of equimolar dividing
surface. According to the definition, the equimolar surface is a
surface where the contribution of the diffusion fields is equal
to zero. By multiplying Eq. (24) with μi and taking the sum,
one can get

ν∑
i

μi ρ̄i =
ν∑
i

μi
(
ρi

sVs/V + ρi
l Vl/V

) +
ν∑
i

μiρi
I S/V .

(40)

From this relation, one can obtain the corresponding solid
phase fraction defined in terms of the diffusion fields by setting
ρi

I = 0 and using pe
s = Vs/V , i.e.,

pe
s =

∑ν
i μi

(
ρ̄i − ρi

l

)
∑ν

i μi
(
ρi

s − ρi
l

) . (41)

Then, the expression for the equimolar radius can be obtained
by using pe

s = 4π (re)3/(3V ), i.e.,

re =
(

pe
s

3V

4π

)1/3

(in 3D). (42)

For a two-dimensional case, the expression for the equimo-
lar radius can be derived as

re =
(

pe
s

A

π

)1/2

(in 2D). (43)

For the case of equimolar surface, Eq. (34) for the interfacial
energy reduces to

γ (re) = FI (re)A

2πre
, (44)

where

FI (re) = F̄ − (
Fsp

e
s + Flp

e
l

)
(45)

is the excess free energy, which stands for the interface. We
use Eq. (44) for the calculation of the equimolar interfacial
energy in Sec. V.

Finally, Eq. (33) for the case of the equimolar surface
transforms to

(F̄ − Fl)A = −π (re)2(Fl − Fs) + 2πreγ (re), (46)

where all terms are positive. It is important to mention here
that the quantity (F̄ − Fl)A is not the actual nucleation barrier
because it is not possible to obtain relations such as Eqs. (37)
and (38) for the equimolar dividing surface case.

To illustrate the difference between the minimum interfacial
energy and the equimolar interfacial energy, we derived useful
relations in terms of re and rs . From Eq. (34) follows

γ (re) = �ωls

2

(
re + (ω − ωl)A

(ωl − ωs)πre

)

= �ωlsr
e

2
(1 + kse), (47)

where kse = (rs/re)2 = ps
s/p

e
s . This relation transforms to the

relation (37) if ps
s = pe

s . Using (47), one can rewrite Eq. (38)
for the nucleation barrier as

(ω − ωl)A = π (re)2�ωlskse = πreγ (re)
2kse

1 + kse

. (48)

Furthermore, an additional equation for γ (re) can be
evaluated from Eq. (34) by reducing the part accounts for
the diffusion fields, i.e.,

γ (re) = (Fs − Fl)re

2

(
p0

s

pe
s

− 1

)
, (49)

where

p0
s = F̄ − Fl

Fs − Fl

(50)

is the solid phase fraction in terms of the free energies.

C. Interfacial energy of a slab configuration

In addition to the interfacial energy for a curved liquid-solid
interface, we have also calculated the interfacial energy for a
slab crystal with two planar interfaces by using the following
expressions:

γ slab(re) = FI (re)A/(2L) (51)

and

γ slab(rs) = [
ω − (

ωsp
s
s + ωlp

s
l

)]
A/(2L)

= (ω − ωl)A

L
. (52)

The above expression shows that the interfacial energy of a
slab configuration also depends on the location of the dividing
interface.

V. RESULTS AND DISCUSSION

In this section, we present the main simulation results
obtained from the simulation scheme described in Sec. III.
As an example, a typical solid cluster in equilibrium with
the surrounding liquid phase, obtained from simulations
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(b)

(a)

FIG. 3. A stable solid crystal coexists with the surrounding liquid
phase for pin

s = 0.25 and L = 50: (a) n-diffusion field and (b) c-
diffusion field. The x and y axes show the number of grid cells.

performed with pin
s = 0.25 for L = 50, is depicted in Fig. 3.

The time evolutions the parameters before they arrive the
steady state are shown in Fig. 4 for the system size L = 40
with pin

s = 0.25. The diffusion potentials μn
s and μc

s for solid
and liquid phases evolve to common mean values, the solid
fractions ps for the equimolar radius and for the minimum
radius evolve to steady state values, and the interfacial energies
γ for both radii evolve to constant equilibrium values too.

A. Calculation of the equimolar interfacial energy

For the calculation of the equimolar interfacial energy,
we use the excess free energy FI calculated by Eq. (45) as
discussed in Sec. IV. The equimolar interfacial energy as
a function of the equimolar radius of a solid cluster (re)
calculated from Eq. (44) is demonstrated in Fig. 5. The
equimolar radius is calculated from the solid phase fraction
(pe

s ) by using Eq. (43). The values of the interfacial energies
obtained for different system sizes follow a master curve
which demonstrates that the resulting interfacial energies are
independent of the system size.

0.00064

0.00066

0.00068

0.0007

0.00072

γ

γ(r
e
)

γ(r
s
)

(d)

time steps

0
0
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0.3

0.4

p s

p
s

e

p
s

s
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1×107 2×107 3×107 4×107 5×107 6×107

time steps
0 1×107 2×107 3×107 4×107 5×107 6×107

0.0042

0.0044

0.0046

0.0048

0.005

0.0052

μc

μ
l

c

μ
s

c

0 1×107 2×107 3×107 4×107 5×107 6×107 7×107

time steps

-0.0094

-0.0092

-0.009

-0.0088

-0.0086

μn

μ
l

n

μ
s

n

(c)

(b)

(a)

FIG. 4. The time evolution of the diffusion potentials μn
s (a), μc

s

(b), the solid fraction ps (c), and the interfacial energy γ (d). The
system site L = 40 and the initial solid fraction is 0.25.

The dependence of the interfacial energy on the cluster
radius can be fitted by the following analytical expression
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FIG. 5. Dependence of the interfacial energy γ (re) on the radius
re for various system sizes as a function of the radius (a) and as a
function of the inverse radius (b).

(similar to the expression in Ref. [32] derived from the diffuse
interface approach):

γ (r) = γ∞

(
1 − δ

r
+ a1

[
δ

r

]2)
, (53)

where γ∞ is the reference interfacial energy, δ is a charac-
teristic length, and a1 is a numeric constant. The values of
these fitting parameters obtained from simulations are listed
in Table III. In Fig. 4, the simulation results are also compared
with the nonclassical Tolman theory [13]. In this case, the
interfacial energy as function of the radius can be described

TABLE III. The fitting parameters of the dependencies (53) and
(54) for the equimolar interfacial energy γ (re) as well as the minimum
interfacial energy γ (rs). For comparison the interfacial energies for
the slab configuration γ slab calculated by the PFC model are also
listed.

Energy Function γ∞ δ,δT a1 γ slab

γ (re) PFC fit Eq. (53) 0.000833 2.313 0.6838 0.000872
γ (re) Tolman Eq. (54) 0.000834 2.402 0 0.000872
γ (rs) PFC fit Eq. (53) 0.000806 1.678 0.3737 0.000824
γ (rs) Tolman Eq. (54) 0.000825 2.159 0 0.000824

by the formula for 2D case:

γ (r) = γ∞(
1 + δT

r

) , (54)

where δT is the Tolman length. The corresponding fitting
parameters are listed in Table III. Both fitting functions give the
same correlation coefficient: 0.9975 for equimolar surface and
0.9947 for minimal surface tension. The root mean squared
error is equal to 0.0063–0.0066.

The interfacial energies for the slab were estimated for x

and y directions of slab configuration with L = 50, pin = 0.5.
For re we get γ slab (x direction) = 0.00106, γ slab (y direction)
= 0.000684. For rs we get γ slab (x direction) = 0.000926,
γ slab (y direction) = 0.000723. Then, the average energy of
both directions was calculated and used in Table III and Fig. 5.
It is important to mention here that the interfacial energies
of the slab configuration, calculated from both definitions of
dividing surface γ (rs) and γ (re), go to their limits γ∞(rs) and
γ∞(re), which are close to each other.

The simulation results in Fig. 5 show that the interfacial
energy varies monotonically with re and goes to a limit value.
It can also be seen that the interfacial energy reaches zero at a
critical nucleus radius.

B. Calculation of the minimum interfacial energy

In order to calculate the interfacial energy based on
the concept of minimization of interfacial energy, we used
Eq. (34). For the calculation of the minimum radius rs Eqs. (36)
and (30) were also used. The resulting interfacial energy as a
function of the cluster radius (rs) is plotted in Fig. 6. It can
be seen that the resulting values of the interfacial energies for
different system sizes also follows a master curve (similar to
Fig. 5). The corresponding fitting parameters for the functions
(53) and (54) are listed in Table III. The fitting functions are
almost identical.

For the validation of our results, we calculate the values of
�ωlsr

s and the results show that it is equal to the interfacial
energy with a precision of up to seven digits in accordance
with Eq. (37).

C. Comparison of the dividing surfaces

From the definition of the equimolar surface, it follows
that NI ≡ ∑

i μ
iρi

I (the sum of the excess diffusion fields
multiplied by the diffusion potentials) is zero for the equimolar
surface and nonzero for the other dividing surface concept.
Equation (40) transformed to the 2D case was used to calculate
NI (here the volume quantities should be changed to surface
quantities):

NI =
ν∑
i

μi ρ̄i A

2πr
−

ν∑
i

μi

(
ρi

s

πr2

2πr
+ ρi

l

(B − πr2)

2πr

)
.

(55)

The dependencies of NI on the distance from the center of
the cluster are plotted in Fig. 7 for particular choices of pin

s =
0.25 and L = 40,50. The equimolar radius, which corresponds
to NI(re) = 0, and the radius rs are indicated by dashed lines.
Our simulation results demonstrate that the dependence of NI
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FIG. 6. Dependence of the interfacial energy γ (rs) on the radius
rs for various system sizes as a function of the radius (a) and as a
function of the inverse radius (b).

on the radius is similar to the dependence obtained previously
from nonclassical investigations of a liquid-vapor system [27].
However, the values of re are larger than rs .

In order to define the dividing surface which has the
minimum interfacial energy, we have used parameters from
the phase coexistence data and calculate the interfacial energy
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r
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0.005
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0.015

N
I

L = 40
L = 50

r
e

r
s

FIG. 7. Dependence of NI on the distance from the center of
the solid cluster for L = 40 and L = 50 and a particular choice of
pin

s = 0.25.
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0.002

γ
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L = 40

r
e

r
s

FIG. 8. Dependence of the interfacial energy γ on the distance
from the center of the solid cluster for L = 40 and L = 50 and
a particular choice of pin

s = 0.25. The radius corresponding to the
minimum interfacial energy and the equimolar radius are indicated.

by using Eq. (34). The resulting dependencies of γ on the
distance from the center of a solid cluster are plotted in Fig. 8
for the particular choices of pin

s = 0.25 and L = 40,50. The
minimum interfacial energy and both radii are indicated by
dashed lines. The results show again that the values of re are
larger than rs .

The difference between radii, calculated from both defini-
tions of dividing surface, is further demonstrated by plotting
re − rs as function of re in Fig. 9. The value re − rs for the
slab configuration was calculated as (

√
pe

s − √
ps

s )
√

A/π for
the x direction. It can be seen that the radius rs is smaller
than the equimolar radius re and the difference between
the radii increases with increasing cluster size. In previous
investigations of both radii for a liquid droplet [13,27] it was
shown that with increasing density field (that corresponds to
the increasing droplet radius) the difference re − rs decreases
and goes to a limit, which is the Tolman length, and this value
is negative, because rs becomes larger than re. Contrary to
a liquid droplet in a gas phase, our simulation results for
solid-liquid coexistence demonstrate a positive Tolman length,
i.e., re > rs . The results for the Tolman length are comparable
to the calculations in the work of Toth and Granasy [29], where
the Tolman lengths were estimated for pure Cu, pure Ag, and
for a Cu-Ag alloy as positive values of order 1–4 angstrom (see
Fig. 13 in [29]). Hence a positive Tolman length is a common
characteristic for the crystal nucleation. In this context, it is
worth mentioning that the presence of an additional diffusion
field in binary alloys can influence the magnitude of the Tolman
length. To investigate the effect of the second component on
the Tolman length more precisely, the results of the binary PFC
model can be compared to the one-component PFC model in
future work.

In Fig. 9, we show the fitting function of inverse radius for
the calculated values of the Tolman length δT = re − rs :

δT = 5.442

(
1 − 6.269

re

)
, (56)

where the correlation coefficient is equal to 0.9744 and the
root mean squared error is equal to 0.431.

012801-9



JULIA KUNDIN AND MUHAMMAD AJMAL CHOUDHARY PHYSICAL REVIEW E 94, 012801 (2016)

2 4 6 8 10 12 14 16 18 20 22
r
e

0

1

2

3

4

re  -
 r

s

(b)

(a)

fit Eq. (56)
Eq. (57)
L = 30
L = 40
L = 50
L = 60
L = 70
L = 80 

0 0.05 0.1 0.15 0.2
1/r

e

0

1

2

3

4

re  -
 r

s

fit Eq. (56)
Eq. (57)
L = 30
L = 40
L = 50
L = 60
L = 70
L = 80 
slab

FIG. 9. Difference of radii re − rs for various system sizes as a
function of the radius re (a) and as a function of the inverse radius
1/re (b). The solid line is the fitting function.

The Tolman length as a function of the characteristic length
and the inverse radius was evaluated from Eq. (53) in the form

δT = δ

(
1 − a1

δ

re

)
(57)

with parameters taken from Table III and plotted in Fig. 9
for comparison. Note that for Eq. (54) the Tolman length is a
constant. The difference between the calculated values re − rs

and the Tolman length defined by the expression (57) can be
observed. This difference is too high to be explained by the
insufficient precision of the PFC method because it is up to
the eighth digit, as shown in our previous work [24] by the
comparison with the mode expansion method.

D. Calculation of the nucleation barrier

First, we have calculated the nucleation barrier for our
two-dimensional system by using relations given in Sec. IV.
The critical nucleus radius rc can be evaluated from Eq. (33)
with ∂(ω−ωl )

∂r
|rc

= 0 as rc = γ (rc)
�ωls (rc)−∂γ /∂r

. The standard relation
for the nucleation barrier can be obtained if one omits the
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FIG. 10. The real nucleation barrier �Gn = (ω − ωl)A as a
function of the equimolar radius calculated from PFC simulation
(square symbols and dash-dotted line), the nucleation barrier �Ge

n =
πreγ (re) (symbols and dashed line), and the classical nucleation
barrier �GCNT,e

n = πreγ∞(re) (solid line).

dependency of the interfacial energy on the radius, i.e.,

�Gn = πrcγ (rc). (58)

In order to evaluate the nucleation barriers with the interfacial
energy depending on the curvature based on the concept
of equimolar dividing surface, we insert the values of the
equimolar radius re and the corresponding equimolar inter-
facial energies from our simulation results in Eq. (58). The
resulting nucleation barrier �Ge

n = πreγ (re) as a function of
the equimolar radius is plotted in Fig. 10 as dashed line. This
dependency is compared to the classical nucleation theory
�GCNT,e

n = πreγ∞(re) (solid line), where γ∞(re) is the fitting
parameter of Eq. (54) for the equimolar surface (see Table III).
The deviation from the CNT can be seen, which occurs due to
the curvature dependency of the interfacial energy.

Figure 10 demonstrates (by the dash-dotted line) the de-
pendency of the real nucleation barrier �Gn = (ω − ωl)A on
the equimolar radius re. The comparison of the dependencies
πreγ (re) and (ω − ωl)A shows that the value of (ω − ωl)A is
much smaller and that it is not possible to calculate precisely
the real nucleation barrier as function of the radius by using
the equimolar interfacial energy γ (re). That is in agreement
with the theoretical relation (48).

Second, in addition to the nucleation barriers based on the
equimolar surfaces, we have also calculated the nucleation
barriers based on the concept of minimum interfacial energy
with the radius rs . Figure 11 demonstrates that the dependency
of the real nucleation barrier �Gn = (ω − ωl)A and the
dependency of the nucleation barrier based on the minimum
interfacial energy �Gs

n = πrsγ (rs) on the radius rs are
equivalent. The dependencies are shown as the dashed and
dash-dotted lines. The simulation results are in agreement
with the nucleation theory [see Eq. (38)]. The comparison to
the classical nucleation barrier, �GCNT,s

n = πrsγ∞(rs) (solid
line), shows that for small rs the values of the nucleation
barrier (ω − ωl)A differ from the classical theory, again due
to the curvature dependence of the interfacial energy. Here

012801-10



NUMERICAL DETERMINATION OF THE INTERFACIAL . . . PHYSICAL REVIEW E 94, 012801 (2016)

6 8 10 12 14 16 18 20
r
s

0

0.01

0.02

0.03

0.04

0.05

0.06

nu
cl

ea
ti

on
 b

ar
ri

er

CNT
πr

sγ(r
s
)=(ω - ω

L
)A

FIG. 11. The real nucleation barrier �Gn = (ω − ωl)A and the
nucleation barrier �Gs

n = πrsγ (rs) as a function of the cluster radius
rs obtained from PFC simulation (symbols and dashed line). The solid
line indicates the classical nucleation barrier πrsγ∞(rs).

γ∞(rs) is again the fitting parameter of Eq. (54) for the radius
of surface tension.

In summary, the simulation results presented in Figs. 10
and 11 confirm that the nucleation barrier for small nuclei can
be evaluated by using the minimum interfacial energy which
is defined based on the minimum radius rs .

VI. CONCLUSION

In this article, we investigated the effect of the dividing
surface on the interfacial energy and the nucleation barrier
by means of a binary PFC model in two dimensions. For the
chosen set of model parameters, a part of the equilibrium phase
diagram was calculated, which we used in further numerical

investigations. We have employed the method of stabilizing
the solid clusters in the liquid matrix in finite systems [24]. To
define the dividing surface and the corresponding radius of a
cluster, we have used the concept of the equimolar dividing
surface and the concept of the minimization of the interfacial
energy.

The simulation results show that for both concepts the
interfacial energies γ (rs) and γ (re) increase monotonically
with cluster radius and go to their specific limits γ∞(rs)
and γ∞(re), respectively, which are the interfacial energies
for slab configurations. The resulting values of the interfacial
energies calculated for various system sizes follow the master
curves, and the curvature effect on interfacial energy can
be accurately described by a fitting equation which is a
little different from the nonclassical Tolman formula. The
comparison of simulation results shows that the minimum
interfacial energy is smaller than the interfacial energy
calculated from the equimolar surface, and the radius of the
minimum interfacial energy rs is smaller than the equimolar
radius re. Furthermore, the difference re − rs is comparable to
the Tolman length δT. The resulting difference re − rs is found
to be positive for all radii, and this differs from the finding
of previous investigations [13,27] for a liquid-vapor system,
where rs can be larger than re and the Tolman length can be
negative.

Finally, the dependence of the interfacial energy on the
cluster radius was used to analyze the dependency of the
nucleation barrier on the critical radius. It was justified that
the real nucleation barrier can be evaluated only by using
the concept of the minimum interfacial energy with the
corresponding radius rs .
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[32] H. Assadi and J. Schröders, Acta Mater. 50, 89 (2002).

012801-12

http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1103/PhysRevC.86.024304
http://dx.doi.org/10.1103/PhysRevC.86.024304
http://dx.doi.org/10.1103/PhysRevC.86.024304
http://dx.doi.org/10.1103/PhysRevC.86.024304
http://dx.doi.org/10.1103/PhysRevC.88.044316
http://dx.doi.org/10.1103/PhysRevC.88.044316
http://dx.doi.org/10.1103/PhysRevC.88.044316
http://dx.doi.org/10.1103/PhysRevC.88.044316
http://dx.doi.org/10.1063/1.2752505
http://dx.doi.org/10.1063/1.2752505
http://dx.doi.org/10.1063/1.2752505
http://dx.doi.org/10.1063/1.2752505
http://dx.doi.org/10.1140/epjst/e2014-02110-6
http://dx.doi.org/10.1140/epjst/e2014-02110-6
http://dx.doi.org/10.1140/epjst/e2014-02110-6
http://dx.doi.org/10.1140/epjst/e2014-02110-6
http://dx.doi.org/10.1016/S1359-6454(01)00319-6
http://dx.doi.org/10.1016/S1359-6454(01)00319-6
http://dx.doi.org/10.1016/S1359-6454(01)00319-6
http://dx.doi.org/10.1016/S1359-6454(01)00319-6



