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Dynamics of a model colloidal suspension from dilute to freezing
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Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions
from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled
the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified
interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the
model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual
diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering
function to study the change in dynamics leading up to the freezing point, and to determine whether the current
model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the
intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which
is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of
the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing
point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased
as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at
the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segrè
and Pusey [Phys. Rev. Lett. 77, 771 (1996)]. It was found that the ratio was not constant, but instead was wave
vector dependent.
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I. INTRODUCTION

Colloidal systems are ideal for studies of solidification
mechanisms. An understanding of crystallization processes in
colloidal systems aids in the understanding of phase transitions
in other soft matter systems [1,2], with application to materials
design [3] and to biology [4]. Crystallization in colloidal
suspensions can be studied via light scattering experiments,
often using dynamic light scattering (DLS) or x-ray photon
correlation spectroscopy (XPCS) [5].

Typical model systems used in light scattering experiments
consist of suspensions of spherical particles which are stabi-
lized against aggregation by coating the surface with a short-
chained polymer (steric stabilization) or with a charged ionic
layer (charge stabilization). The computational model used in
this work does not include electrostatic interactions. Therefore,
it aims to replicate the dynamics of sterically stabilized sus-
pensions where the interaction is steeply repulsive and is often
modeled with hard-sphere interactions. The pioneering work
using DLS to study the dynamics of dense colloidal suspen-
sions was done by Pusey, van Megen, and collaborators [6–11].

Computational models are a useful complement to ex-
perimental investigations. But, although the computer power
available is ever increasing, a full molecular dynamics (MD)
treatment of all the interactions present in the system is still
computationally unattainable. Because of the complexity of
experimental systems, most simulations resort to idealized
descriptions, often modeling the systems as single component
hard spheres using event driven MD [12] which completely
ignores the presence of the solvent. This means the particles
in these models move with ballistic dynamics, rather than
diffusing through a solvent. These models neglect effects such
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as the viscoelasticity of the solvent and the momentum transfer
that occurs via the solvent [13].

To implicitly take into account the solvent, Brownian
dynamics (BD) treats the fluid as a continuum represented
by frictional and random forces. This introduces an effective
drag on the hard spheres, but usually does not include
multibody hydrodynamic interactions (HIs) from the solvent
[14,15]. Incorporating two-body HIs in BD in a simplified
way requires the use of hydrodynamic tensors such as the
Yamakawa-Rotne-Prager (YRP) tensors [16–18]. However,
BD-YRP hydrodynamics is only valid for relatively dilute
suspensions and can be quite computationally expensive.
Alternative techniques that have been developed to include
HIs include lattice-Boltzmann [19,20], dissipative particle
dynamics [21], and stochastic rotation dynamics [22,23], all
of which involve coarse graining the solvent.

Few attempts have been made to include solvent explicitly
into the simulation by calculating the equations of motion
for both the colloidal particles and the solvent directly. This
is simply because in order to match the size and mass ratio
of experimental colloidal suspensions, the simulation would
require in the order of tens of millions of solvent molecules
for every colloidal particle. This is clearly beyond the reach of
current computational capabilities, so smaller size and mass
ratios have to be used. Vrabecz and Toth [24] studied the effect
of explicitly adding a second smaller HS particle ( 1

5 th and 1
10 th

the diameter of the larger particle) on the structural properties
of the fluid. They found that including the second smaller
species caused a change in the radial distribution function
of the larger particles in the fluid. This was evident through
sharpening in the main peak, showing that the presence of
the smaller particles causes a very strong depletion attraction
between the larger particles.

Previous work done by the authors expanded on the explicit
solvent model by including a second species with a smaller
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mass ( 1
50 th the mass of the larger particles) and smaller size

( 1
4 th the diameter) to represent the solvent [25]. In this model,

the colloidal particles were modeled using a Weeks-Chandler-
Anderson (WCA) potential which was modified to include
a hard core, while the solvent was modeled using a simple
WCA potential. In agreement with previous work, it was found
that introduction of the second smaller species caused strong
depletion attractions between the larger species [24]. These
strong depletion forces are not present in experimental HS
colloidal suspensions, and are purely due to the relatively small
size ratio that had to be employed in the simulations due to
computational limitations. Because the diameter of the two
particles is of the same order, there is an excluded volume
around the colloidal particles that gives rise to significant
depletion effects.

Since the depletion effects were caused by the large ex-
cluded volume, it could be effectively eliminated by reducing
the hard-core parameter in the colloidal-solvent pair interac-
tion [25]. This allowed the solvent to effectively penetrate the
colloid, which can be seen as unphysical, but the model was
found to replicate the properties of an experimental colloidal
suspension. The static structure factor, phase behavior, and
crystal structure were all found to agree with experimental
results. With the apparent success of this model in replicating
the behavior of real colloidal suspensions for these few key
features, it remains to be seen how well it matches the
dynamical behavior as represented by other properties (such as
diffusion coefficients and the intermediate scattering function)
and whether the model can be used as a complement to light
scattering experiments.

Therefore, one of the aims of this work is to expand on
the previous work by calculating a number of key transport
coefficients over a wide range of colloid packing fractions (also
referred to as volume fractions) from the dilute fluid up to the
freezing point. Then, we compare the calculations of the model
with available experimental results to determine the level of
agreement. The other goal of this paper is to use this model
to obtain accurate calculations for the intermediate scattering
function at packing fractions approaching the freezing point.

In the liquid state, the empirical fit to the intermediate
scattering function usually takes the form of a single or
double exponential [26,27]. In extremely dilute systems at
low wave vector, DLS yields a single exponential decay with
a wave vector independent diffusion coefficient. This is in line
with what was found in previous work using this model [25].
As the packing fraction increases, the diffusion coefficient
becomes wave vector dependent, but the decay is still well
approximated by a single exponential.

At moderate packing fractions, a second decay mode is
observed and the data are fitted with two exponentials with
different effective diffusion coefficients [9,27]. These two
empirical modes are often associated with short-time and
long-time diffusion coefficients, where the former is associated
with movement of the colloidal particles in its local cage while
the latter is associated with diffusion over larger length scales
[9]. This interpretation of the two modes has not been verified,
and an exact relationship between the decay coefficients and
transport or thermodynamic properties has not been made.
Even so, Segrè and Pusey [28] proposed an empirical scaling

law where the ratio of the two effective diffusion coefficients
is approximately constant for highly concentrated colloidal
suspensions over a broad range of wave vectors around the
structure factor peak.

The validity of this scaling law has been called into
question, with Lurio et al. [29] failing to observe the scaling
in XPCS experiments on a charge-stabilized colloidal suspen-
sion. This was thought to be either because the colloids were
charge stabilized (rather than sterically stabilized) or because
XPCS gives different results to DLS. Martinez et al. [5] showed
that the results of XPCS and DLS experiments are consistent,
ruling out the latter explanation. They were able to see the
scaling behavior over several decades in time but not in the
long-time limit. More recent work by Orsi et al. [27] studied
a system very similar to that used by Martinez and Segrè,
and found that the scaling law did hold for high concentration
sterically stabilized colloids.

A systematic study of the individual decay modes over a
large range of packing fractions and wave vectors is difficult
to do experimentally. In particular, it is difficult to access low
wave vectors using existing techniques. Therefore, we choose
to use MD to calculate the intermediate scattering function
and use a multiexponential analysis to decompose its indi-
vidual contributions in order to complement the experimental
investigation.

The outline of this paper is as follows: First, we give
a summary of the computational model used, and describe
how we calculated the self- and mutual diffusion coefficients
in equilibrium MD using time correlation functions. Then,
we systematically study the behavior of the correlation
functions and the self- and mutual diffusion coefficient from
an extremely dilute state up to packing fractions just below
the freezing point in order to observe any major changes that
occur in the approach to freezing. Finally, a multiexponential
analysis is carried out on the colloidal particle intermediate
scattering function from small wave vectors to just past
the structure factor peak. This is done for higher packing
fractions approaching the freezing point. We discuss the
individual decay modes that are observed and their wave vector
and packing fraction dependence. We then test the scaling
relationship proposed by Segrè and Pusey [28] to see if we
also find a constant ratio of the short- and long-time diffusion
coefficients.

II. THEORY

A. Thermodynamic and transport coefficients

Transport coefficients can be determined by calculating
time correlation functions (TCFs) and using Green-Kubo
relations [30]. In general, the time correlation function of a
Fourier component of the microscopic property A takes the
form

C(k,τ ) = 〈A(k,τ )A∗(k,0)〉, (1)

where A(k,τ ) is now the spatial Fourier transform of the
microscopic variable A(r,τ ) and * indicates the complex
conjugate. The angular brackets represent an ensemble average
and τ represents the delay time in the correlation function.
The wave vector k being studied in MD simulations must
be consistent with the periodic boundary conditions of the
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simulation box:

k = 2π

L
(n1,n2,n3), (2)

where ni is an integer and L is the length of the simulation
box (in this work the box is cubic so Lx = Ly = Lz).
The correlation function C(k,τ ) only depends on the mag-
nitude k = |k| as the average is done over all k of equal
magnitude (as the fluid is isotropic). Also, from Eq. (2) we
see that the lowest k value that can be measured in an MD
simulation is k = 2π/L.

In this work, we study correlation functions of particular
microscopic variables that give useful information on proper-
ties of the colloidal suspension. The self-diffusion coefficient
of the colloidal particles Ds can be calculated from the integral
of the velocity autocorrelation function C(τ ) by [31]

Ds =
∫ ∞

0
C(τ )dτ = 1

3

∫ ∞

0
〈vi(τ ) · vi(0)〉dτ, (3)

where vi is the velocity of colloidal particle i and the average
is done over all colloidal particles. Self-diffusion is related to
the diffusion of a particle in the absence of temperature and/or
concentration gradients. But, in the presence of such gradients
other transport coefficients are defined. The linearized macro-
scopic diffusion equation for species 1 (which represents the
colloidal particles) in a binary fluid is [32]

∂c1

∂t
= Dm∇2c1 + D′∇2T , (4)

where ci refers to the mass fraction of species i, Dm is
the mutual diffusion coefficient, D′ is the thermal-diffusion
coefficient, and T is the temperature. The coefficients Dm and
D′ can be calculated from nonequilibrium MD simulation by
setting up a system with a concentration/temperature gradient.
They can also be calculated from equilibrium MD by relating
them to the phenomenological coefficients Lαβ which can be
calculated from TCFs using Green-Kubo relations. As we will
see later, the mutual diffusion coefficient Dm governs the decay
of the intermediate scattering functions in the low wave vector
limit.

A well known expression for the mutual diffusion coeffi-
cient Dm is given by [32]

Dm = L11

ρc2T

(
∂μ1

∂c1

)
p,T

, (5)

where ρ is the total mass density of the fluid and μ1 is the
chemical potential per unit mass of the colloidal particles. L11

is the phenomenological coefficient given in the Green-Kubo
relations as

L11 = lim
τ→∞

∫ τ

0
A11(τ )dτ (6)

and

A11(τ ) = V

3kBT
〈J1(τ ) · J1(0)〉, (7)

where kB is Boltzmann’s constant and V the volume of the
system. The microscopic expression for the diffusive mass

flux J1 of the colloidal particles takes the form

J1 = 1

V

N1∑
i=1

m1(vi − v), (8)

where m1 is the mass of a colloidal particle and v is the average
streaming velocity (v = 0 for an equilibrium fluid).

Apart from the usual transport coefficients, we also cal-
culated the intermediate scattering function Fαβ(k,τ ) which is
also measured in light scattering experiments. This can be done
in equilibrium MD simulation by calculating the correlation
function of the Fourier transform of the number density:

nα(k,t) = 1√
N

Nα∑
i=1

exp[−ik · ri(t)], (9)

where N is the total number of particles, Nα is the number of
particles of species α, and Fαβ(k,τ ) is given as

Fαβ(k,τ ) = 〈nα(k,τ )n∗
β(k,0)〉

Sαβ (k)
, (10)

where the static structure factor Sαβ (k) is defined as

Sαβ(k) = 〈nα(k,0)n∗
β(k,0)〉. (11)

From the calculations of the Fαβ(k,τ ) we are able to make
comparisons with experimental data.

The decay of F11(k,τ ) can be related to the mutual diffusion
coefficient Dm in the macroscopic diffusive limit. From the
thermodynamic point of view, Dm relates the diffusive mass
flux to the gradient in the concentration. From the microscopic
point of view, such gradients arise in an equilibrium suspension
from local fluctuations, and the decay of these fluctuations is
governed by the same equation as the decay of macroscopic
gradients.

Therefore, starting with the balance equation for the mass
fraction of species 1 we can Fourier transform Eq. (4) into k

space which gives

∂c1(k,t)

∂t
= −Dmk2c1(k,t), (12)

where we have neglected thermal diffusion as this effect is
small in comparison to mutual diffusion. After multiplying
both sides of Eq. (12) by the complex conjugate of the
initial time value c∗

1(k,0) and ensemble averaging, the solution
becomes

F11(k,τ ) = 〈c1(k,τ )c∗
1(k,0)〉

〈|c1(k,0)|2〉 = exp(−k2Dmτ ), (13)

which corresponds to the intermediate scattering function of
the colloidal particles. This macroscopic relationship is only
expected to hold in the macroscopic diffusive limit. Therefore,
the mutual diffusion coefficient governs the decay of the
intermediate scattering function in the k → 0 limit.

B. Calculation of the thermodynamic factor

In order to calculate the mutual diffusion coefficient Dm

[defined in Eq. (5)], accurate values are needed for both
the thermodynamic factor ∂μ1/∂c1 and phenomenological
coefficient L11. L11 can be calculated from Green-Kubo theory,
but ∂μ1/∂c1 is more difficult to calculate. One of the best
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ways to calculate it is using the theory presented by Kirkwood
and Buff (KB) which relates the thermodynamic factor to
the integral of the radial distribution functions Gαβ [33]. A
conversion of the original KB relations to the mass fraction
units was done by Zhou and Miller [34] and is given for a
binary fluid as (

∂μ1

∂c1

)
p,T

= V 2

ρ〈|c|2〉 , (14)

where

〈|c|2〉 = m2
1m

2
2x1x2n

2N

ρ4
[1 + x1x2n(G11 + G22 − 2G12)].

(15)

Here, mα and xα are the mass and number fraction of species
α, respectively, and n is the total number density of the fluid.
The volume integrals of the radial distribution functions Gαβ

are calculated from

Gαβ =
∫

[gαβ(r) − 1] dr = 4π

∫
r2[gαβ(r) − 1]dr, (16)

where gαβ(r) is the radial distribution function of species α

and β. These integrals can be difficult to calculate as statistical
error in gαβ at large r is magnified by the factor of r2, so the
numerical integrals may not converge. Therefore, calculation
of Gαβ usually requires very accurate data for gαβ(r) and fitting
a function to the tail to evaluate the integral [35,36].

Instead of calculating this integral, it can be simpler to
calculate the values of Gαβ through the static structure factors
Sαβ(k). It is well known that the partial structure factors are
related to the Fourier transforms of the radial distribution
functions through [31]

Sαβ (k) = xαδαβ + xαxβn

∫
gαβ(r) exp(ik · r)dr. (17)

Assuming that the fluid is isotropic and writing the constant
part of the radial distribution explicitly, this can be rewritten
as

Sαβ(k) = xaδαβ + 4πxαxβn

∫
r2[gαβ(r) − 1] exp(ik · r)dr

+ (2π )3xαxβnδ(k). (18)

Comparing this with the expression given for Gαβ in Eq. (16)
we see that, if we ignore the contribution of the delta function
at zero wave vector, we can write

Gαβ = 4π

∫
r2[gαβ(r) − 1]dr

= lim
k→0

4π

∫
r2[gαβ(r) − 1] exp(ik · r)dr, (19)

therefore,

Gαβ = 1

xαxβn

[
lim
k→0

Sαβ (k) − xαδαβ

]
. (20)

So, by calculating the low-k values of the partial structure
factors Sαβ(k), and extrapolating k → 0, the values of Gαβ

can be calculated in a much simpler way. This method offers
a much easier method of calculation Gαβ than through the
integral given in Eq. (16) directly. An alternate derivation

of a relationship between the thermodynamic factors and the
Sαβ(k → 0) values was previously done by Nichols and co-
workers [37], although their definition of the thermodynamic
factor differs.

C. Multiexponential analysis

As stated earlier, the intermediate scattering function is
defined as the autocorrelation function of a Fourier component
of the number density. Barocchi and coauthors [38–40] showed
that the complete behavior of any normalized autocorrelation
function of a classical many-body system can be described by
a generalized Langevin equation, the exact solution of which
can be written as an infinite sum of exponential functions

C(t) =
∞∑

j=1

Aj exp(zj t), (21)

where Aj and zj are mode amplitudes and decay coefficients,
respectively. Such modes can be associated with relaxation
channels in the system. If Aj and zj are complex quantities,
the corresponding mode and its complex conjugate are both
present in the series and, taken together, they represent an
exponentially damped oscillation. Otherwise, real Aj and zj

define a purely exponential decay.
An approximate solution to the generalized Langevin

equation can be found by truncating Eq. (21) at a finite number
of terms. The behavior of the coefficients can then be studied
by fitting the resulting function to experimental and simulation
data. This procedure can be difficult, due to the large number
of free fitting parameters.

Barocchi and coauthors found that the number of free fitting
parameters can be reduced by constraining the solution. They
showed that the zero time properties of the solution given in
Eq. (21) must obey the relation

[
dmC(t)

dtm

]
t=0

= 0, (22)

where m is an odd integer. When a finite number of exponential
terms are retained, Eqs. (21) and (22) can only be valid for m up
to a certain value depending on the approximation level and
the model assumed. The combination of Eqs. (21) and (22)
allows the number of free fitting parameters to be reduced.

As we shall show later in this work, the decay of the
intermediate scattering function F (k,τ ) at a particular wave
vector can be accurately described by the superposition of
two real exponentials (for the two diffusive decay modes)
and one complex conjugate pair exponential (for the short-
time nondiffusive behavior). Therefore, in this work we will
approximate the solution by retaining the first three terms in
Eq. (21); this results in

F (k,t) ≈ A1 exp(z1t) + A2 exp(z2t)

+ (A′
3 ± iA′′

3) exp[(z′
3 ± iz′′

3)t]. (23)

In line with usual experimental analysis, we can refer to the
first two decay modes as the short-time and long-time diffusion
modes with effective short-time Ds and long-time DL diffusion
coefficients. The complex exponential can also be simplified
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into a damped cosine form. Doing this results in

F (k,t) ≈ As exp(−k2Dst) + AL exp(−k2DLt)

+Ad exp(αt) cos(−βt + φ), (24)

where all coefficients are wave vector dependent and we have
included a factor of k2 in the real exponentials. Equation (24)
is the final form that is fitted to the simulation data.

Fitting Eq. (24) to simulation data requires optimization of
eight free fitting parameters. But, this number can be reduced
by constraining the solution using the relationship given in
Eq. (22) for m = 1 and 3. Also, the normalization condition of
F (k,t = 0) = 1 allows an additional variable to be eliminated,
resulting in the total elimination of three free parameters,
thus reducing the computational complexity of the problem.

The fitting of the multiexponential model was performed
by means of a program run in the MATLAB [41] environment,
carried out by a built-in nonlinear least squares algorithm. The
implementation of the three constraints was done by using
the inbuilt solve function to give expressions for the chosen
dependent parameters in terms of the independent ones.

III. SIMULATION METHODS

The pair potential and parameters for our simulations
are identical to previous work [25] but we will include a
brief explanation here. We modeled the colloidal particle and
solvent using a Weeks-Chandler-Andersen (WCA) potential
(a shifted and truncated Lennard-Jones potential) which is
modified to include a hard core. The potential takes the form

φ(rij ) =

⎧⎪⎨
⎪⎩

∞ if rij � cab,

4ε
[(

σ
rij −cab

)12− (
σ

rij −cab

)6]+ ε if cab < rij < cab + 21/6,

0 otherwise,

where rij is the center-to-center distance between the particles
i and j , ε is the depth of the potential well, σ is the nominal
length scale of the potential (in this work ε = σ = 1 and
therefore all results are given in reduced units). The cab

parameter introduces a hard core to the potential where a and
b denote the two interacting species. This creates an excluded
region which is used to increase the size of the colloidal particle
relative to the solvent. A diagram of the potential is shown in
Fig. 1.

In this work, we keep the values of the cab fixed for
the colloid-colloid (c11) and solvent-solvent (c22) interactions
at 3.03 and 0.000, respectively. The c12 parameter for the
colloid-solvent interaction is also set to 0.000 to remove the
depletion effects that are inherent in systems with different
sized particles. In usual hard-sphere simulations the diameter
of the particle is clear, but in this work we are using a hard core
plus a WCA repulsive potential. This WCA repulsive potential
adds an extra diameter that is not clearly defined.

Previous work has been done by Hess et al. to determine
expressions for the effective diameter of WCA particles as
a function of temperature [42]. These authors found that
the method which gave the best agreement with the MD

0 2 4 6 8
r
ij

0

0.5

1

1.5

2

Φ
W

C
A

c
ab

Potential

FIG. 1. Diagram of pair potential between colloidal particles with
ε = σ = 1.00 and cab = 3.03.

results was to define the effective diameter d to be when the
interaction potential is equal to Boltzmann’s constant times
the temperature φ(d) = kBT . At the reduced temperature of
1.0 used in this work, this gives an extra diameter of σ to the
particles due to the WCA repulsion. This gives the colloidal
particles an effective diameter of 4.03 times the diameter of
the solvent particles.

The mass of the colloidal particle was set with the goal
of making it approximately neutrally buoyant in the solvent.
The mass needed to do this was calculated in the same way as
McPhie [43], which for a size ratio d1/d2 of 4.03 gave a mass
ratio m1/m2 of 50. Therefore, we used a mass of 1.0 for the
solvent particles and a mass of 50.0 for the larger particles.
This size and mass ratio has been shown to be large enough
for the larger particle to behave as a Brownian particle in the
solvent [44].

All simulations were run using the MD package LAMMPS

[45] and the results were post-processed using in-house code.
Simulations at each packing fraction were done under NPT
conditions at a reduced temperature of 1.00 and reduced
pressure of 7.85. The time integration scheme used follows the
time-reversible measure-preserving Verlet integrator derived
by Tuckerman et al. [46] with a time step of 0.005. The
temperature is held fixed using a Nose-Hoover thermostat
while the pressure is held fixed using a Nose-Hoover type
barostat, both used a damping parameter of 10. This was done
in order to better replicate the experimental conditions of a
real colloidal suspension. All simulations were done with a
total of 108 000 particles, except for one larger system which
was done in order to calculate data for small-k values of the
intermediate scattering function at the packing fraction of 0.49.
This simulation had 864 000 particles. Table I gives the exact
number of particles used in the simulations, along with the
average volume and calculated packing fraction. The packing
fraction � was calculated from

� = πNcd
3

6V
, (25)
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TABLE I. Number of solvent particles Ns , colloidal particles Nc,
average volume 〈V 〉, and packing fraction � for the systems studied.

System No. Ns Nc 〈V 〉 �

1 107,967 33 128,606 0.01
2 107,652 348 128,550 0.09
3 107,325 675 128,597 0.18
4 106,988 1012 128,600 0.27
5 106,650 1350 128,887 0.36
6 106,313 1687 129,085 0.44
7 106,145 1855 129,315 0.49
8 849,160 14,840 1,028,848 0.49

where d is the diameter of the colloidal particles (d = 4.03
for all colloidal particles). In our previous work, we showed
that calculating � for this system based on Eq. (25) resulted
in a phase behavior that matched closely to that of a single
component HS system [25].

In the following sections, we will be mostly calculating
properties of the larger particles (meant to represent the
colloidal particles). Because of this, subscripts designating
species will be dropped and unless otherwise stated the
properties being measured are for the colloidal particles only
(i.e., the colloidal particle intermediate scattering function
F11(k,τ ) will just be represented as F (k,τ ), etc).

IV. RESULTS

A. Velocity autocorrelation function and self-diffusion
coefficient

Figure 2 displays results for the absolute value of the
colloidal particle velocity autocorrelation function |C(τ )|. It
is displayed on a log-log scale as the decay of C(τ ) covers
multiple orders of magnitude across a number of decades in
time. The curves shown cover a large range of packing fractions
from a dilute system (� = 0.09) to a system at a packing

100 101 102

τ

10-6

10-4

10-2

|C
(τ

)|

Φ = 0.09
Φ = 0.18
Φ = 0.27
Φ = 0.36
Φ = 0.44
Φ = 0.49

FIG. 2. Plot of the colloidal particle velocity autocorrelation
function C(τ ) at packing fractions leading up to the freezing point.
The points where C(τ ) cross zero may be seen as a sharp spike
downward in this log-log graph.

fractions slightly lower than the freezing point (� = 0.49).
C(τ ) has been calculated previously for this model [25], but
we include it here again as the quality of the data has been
greatly improved which allows a more thorough comparison
with pure HS simulation results, as well as experimental data.

The most thorough study to date on the velocity autocorre-
lation function for a pure HS system (no solvent) was done by
Williams and co-workers [47,48]. They were able to observe
the − 3

2 power-law long-time tail (which is the manifestation
of diffusing transverse modes) and velocity reversals (which
are the result of damped compression modes [49]). For stable
fluids, velocity reversals were only observed for high packing
fractions (� � 0.44). In Fig. 2, we also observe velocity
reversals {indicated by the spike downward on the log[|C(τ )|]
plot where C(τ ) becomes negative}. The reversals are seen for
all � shown (0.09 � � � 0.49), with the time it takes for the
reversals to occur decreasing as � increases.

Both the pure HS (without solvent) and our model (with
solvent) can be compared with available experimental data.
It is very difficult to determine experimentally the complete
behavior of C(τ ). The initial decay of C(τ ) (which gives the
initial crossing through zero) is difficult to obtain accurately.
Even so, reversals in C(τ ) are observed at packing fractions as
low as � = 0.289 in experimental colloidal suspensions [50]
where the long-time decay of C(τ ) occurs from below zero.
This is consistent with the results from our model, but disagrees
with the results from the pure HS system. The mismatch
between the sign of C(τ ) at low to moderate � for the single
component HS fluid was pointed out in our previous work [25],
indicating that the current model possesses dynamics which
better resemble that of an experimental colloidal suspension.
A possible reason why the pure HS model fails to predict
the reversals at low to moderate packing fractions is because
it neglects the solvent, and therefore ignores hydrodynamic
effects and momentum transfer via the solvent, both of which
could cause velocity reversals.

However, current data for this model suffer from the same
limitations as experiment, in that the power-law long-time
decay of C(τ ) falls within the noise and cannot be observed.
This is due to the smaller number of colloidal particles and the
much larger mass, which results in smaller velocities.

The colloidal particle self-diffusion coefficient Ds is related
to the ability of an individual colloidal particle to diffuse
through the liquid. This property was calculated from Eq. (3)
and is shown in Fig. 3. We have normalized the data by
dividing by the dilute limit value of (5.93 ± 0.05) × 10−2. The
maximum value of Ds occurs in the dilute limit as the motion
is not hindered by direct interactions with other colloidal
particles.

As the packing fraction increases, the ability of a single
colloidal particle to diffuse through the fluid is hindered. This
results in a decrease of the self-diffusion coefficient. In Fig. 3
it can be seen that results from previous Brownian dynamics
simulations by Moriguchi [51] overpredict Ds when compared
to experimental systems [52,53]. Banchio et al. [54] were able
to show that an inclusion of a hydrodynamic correction brought
BD and experiment into agreement.

The current model also overestimates Ds (as seen in Fig. 3)
even though the solvent (and therefore hydrodynamic) effects
are included. This disagreement could be due to the modified
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FIG. 3. Plot of the normalized colloidal particle self-diffusion
coefficient Ds/D0 against packing fraction. Filled circles: our MD
data; open circles: BD data of Moriguchi [51]; triangles: experimental
data of van Megen and Underwood [52]; squares: experimental data
of van Blaaderen et al. [53]. Quadratic line of best fit to MD data with
the numerical value of x intercept (at 0.544) also shown.

interaction parameters used to reduce the depletion effects
(c12 = 0). By reducing the c12 parameter, the volume of the
colloid as seen by the solvent is much lower than the volume
used in the calculation of the packing fraction. This may have
the effect of diluting the hydrodynamic interactions.

To see where Ds extrapolates to zero (where the free
movement of the colloidal particles is completely removed),
a quadratic function was fitted to the data and the x intercept
was calculated. This is found to occur at φ = 0.544 ± 0.010
which is within the uncertainty of the melting point φ = 0.545
where the hard spheres fully crystallize. This indicates that the
diffusive motion of the colloids is frozen out at this point.

The self-diffusion coefficient of real colloidal suspensions
can be measured in DLS via the self-intermediate scattering
function [55]. From the self-intermediate scattering function
the mean squared displacement can be determined, which is
related to the so called short- and long-time self-diffusion coef-
ficients. Interestingly, the normalized self-diffusion coefficient
of an experimental glass forming system has been shown to
go to zero at its glass transition [55], rather than the melting
point.

B. Mutual diffusion coefficient

In this model (as in real colloidal suspensions) the solvent
is explicitly present and so we have a binary fluid with a
single mutual diffusion coefficient [32]. Calculation of Dm

[definition given in Eq. (5)] requires accurate values of the
phenomenological coefficient L11 and the thermodynamic
factor ∂μ1/∂c1. We will outline here how these two quantities
were calculated.

The phenomenological coefficient L11 was calculated from
the mass flux correlation function of the colloidal particles
defined in Eqs. (6), (7), and (8). The mass flux correlation
function was calculated every 5 time steps out to a maximum
delay time of 25 000 time steps. Numerical integration with
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L 11

FIG. 4. Plot of the phenomenological coefficient L11 calculated
from the integral of the colloidal particle mass flux autocorrelation
function.

the trapezoid rule was performed on the correlation function
and the integrals were found to converge. The values of the
integral for each packing fraction are shown in Fig. 4. L11

is shown to increase as � increases, but the rate of increase
(given by the slope of the plot) decreases as the freezing point
is approached. At the freezing point, the slope is observed to
almost go to zero, and L11 appears to plateau.

The second quantity that needs to be calculated is the
thermodynamic factor ∂μ1/∂c1 which is related to the integrals
of the radial distribution functions Gαβ . There are a number
of different methods available to calculate the thermodynamic
factors from MD simulation, such as through the numerical
integration of the radial distribution functions [35], the Widom
test particle insertion method [56], from density fluctuations
of a smaller subsystem embedded in simulation box [57],
or through the static structure factors [37]. In this work, we
obtained the thermodynamic factor through the static structure
factors by using Eq. (20). It is important to note that Eq. (20)
differs from the expression given by Nichols and Wheeler [58]
who previously proposed a similar method. This is because the
definition of the thermodynamic factors is different, but both
methods produce the same value for Dm when combined with
their complete expression.

As an example of how the Sαβ(k → 0) values were calcu-
lated for each packing fraction, Fig. 5 shows a plot of the static
structure factors S11 (colloid-colloid), S12 (colloid-solvent),
and S22 (solvent-solvent) of the system at a packing fraction
of 0.49. The data were plotted against k2 as the S(k) should be
an even function of k, and fifth order polynomials in k2 were
fitted to the low-k data. Although it is possible that S(k) could
be a nonanalytic function of k, and could therefore also depend
on odd or fractional powers of |k|, we saw no evidence of this
in our data. By extrapolating the polynomial in k2 back to zero
k we were able to accurately determine Sαβ(k → 0) values.

This was done for a range of packing fractions from an
extremely dilute fluid (� = 0.01) up to a high density fluid
(� = 0.49). The highest density fluid is slightly below the
freezing point that occurs at �F = 0.494. The values of Sαβ
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FIG. 5. Plot of the low-k behavior of the static structure factors:
S11 (colloid-colloid), S12 (colloid-solvent), and S22 (solvent-solvent)
of a system at a packing fraction of 0.49. A fifth order polynomial
line of best fit was used to obtain Sαβ (k → 0) values.

calculated for each packing fraction were used in (20) to
calculate Gαβ , which are shown in Fig. 6. The quantities G12

and G22 have almost negligible contribution to the calculation
of the thermodynamic factor ∂μ/∂c1 as they are two orders of
magnitude smaller than G11. The magnitude of G11 decreases
as � increases, and this results in an increase in ∂μ/∂c1 as the
two are inversely related [from Eqs. (14) and (15)]. The values
of Gα,β were used in Eqs. (14) and (15) to calculate ∂μ/∂c1 for
each �; these are plotted in Fig. 7. The thermodynamic factor
shows a decrease at low concentration, but increases greatly
on the approach to the freezing point.

Using the values given for L11 and ∂μ1/∂c1, the mutual
diffusion coefficient Dm was calculated and is shown in Fig. 8.
The mutual diffusion coefficient Dm shows an increase on
the approach to the freezing point. From the contributions of
L11 and ∂μ/∂c1 in Figs. 4 and 7 we see that this increase in
Dm results mainly from the ∂μ/∂c1 contribution rather than
from L11, as the latter quantity approaches a plateau near the
freezing point.

Equation (13) predicts that the low-k values of the inter-
mediate scattering function will decay faster at higher packing
fractions, even as the ability of the individual colloidal particles
to diffuse through the liquid decreases on the approach to the
freezing point. This results in a broadening of the decay times
between the small wave vector and large wave vector decay,
which will be shown later.
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FIG. 6. Plot of the radial distribution function integrals of G11

(colloid-colloid), G12 (colloid-solvent), and G22 (solvent-solvent) at
packing fractions � leading up to the freezing point.

C. Intermediate scattering function

In this section, calculations of the colloidal particle in-
termediate scattering function F (k,τ ) will be shown for the
higher packing fractions � leading up to the freezing point.
The systems studied are described in Table I. The wave vectors
studied were those consistent with the periodic boundaries of
the simulation box [given in Eq. (2)] up to n1 = n2 = n3 = 15.
In this section, we will report wave vectors in the dimensionless
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FIG. 7. Plot of the thermodynamic factor ∂μ/∂c1 at packing
fractions � leading up to the freezing point.
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FIG. 8. Plot of the mutual diffusion coefficient Dm at packing
fractions � leading up to the freezing point.

form kd where d is the diameter of the colloidal particles.
This allows direct comparison with corresponding kd values
measured in light scattering experiments.

To show the change in behavior of F (k,τ ) leading up
to the freezing point, we have displayed the calculations of
F (k,τ ) at the packing fractions of 0.27, 0.36, and 0.49 in
Fig. 9 (data given as symbols). The wave vectors shown have
been chosen to cover a range from the lowest wave vector
allowed (consistent with periodic boundary conditions) to just
above the colloidal particle static structure factor peak. Plots
of ln[F (k,τ )] against k2τ which exhibit regions of constant
slope imply exponential decays in time, or simple Brownian
diffusion. The fits of the form given in Eq. (24) are also shown
in Fig. 9 (lines).

For an extremely dilute colloidal suspension, the effects of
direct colloidal particle interactions are negligible due to the
large average distances between neighboring particles. This
means their dynamics are governed by random collisions with
the surrounding solvent, so they effectively move as Brownian
particles. The F (k,t) in these dilute suspensions (� ≈ 0.01)
decay as a single exponential with a k-independent diffusion
coefficient. This is also seen in light scattering experiments
[7] (although there is a small k dependence in the diffusion
coefficient which is associated with polydispersity) and in our
previous work using the current computer simulation model
[25].

Calculations for F (k,t) of a system at � = 0.27 are shown
in Fig. 9(a). The decay for all wave vectors is (almost)
linear, just as in a dilute system, but the slope of the decay
changes with each new k. This implies the existence of
time-independent diffusion with a wave vector dependent
diffusion coefficient D(k). With the plot displayed in this way,
the lowest-k value has the largest slope, indicating it has the
largest effective diffusion coefficient.

As the wave vector is increased, the slope decreases up to
the structure factor peak of (kd)max = 6.24 (circles). At wave
vectors above the structure factor peak, we see a reversal in the
trend, where the slope is seen to have increased at kd = 7.27
(triangles) showing a minimum in the diffusion coefficient at
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FIG. 9. Plot of the ln[F (k,τ )] against k2τ for packing fractions of
(a) 0.27, (b) 0.36, and (c) 0.49 for the kd values given in the legend.
The data for the lowest kd (dots) correspond to the lowest kd possible
to calculate based on the box dimensions, and the second largest value
(circles) corresponds to the colloidal particle static structure factor
peak.

the structure factor peak. It is well verified that in concentrated
colloidal suspensions the effective diffusion coefficient has a
minimum at the peak in S(k) [7,9]. This minimum reflects
the fact that the strong fluctuations that occur at the peak will
decay slower than the weak fluctuations away from the peak.
It should be noted though that in order to properly fit the
data for � = 0.27, the second diffusive mode was still needed
(although it was very weak).

Figure 9 also reveals the change in behavior of F (k,t) as
the packing fraction increases towards the freezing point. At
� = 0.36 [Fig. 9(b)], the slope is also seen to decrease as the
wave vector increases, and has a minimum at the structure
factor peak. Interestingly, the spread in the slopes has been
greatly increased compared to � = 0.27. The slope at the
lowest wave vector (kd = 0.50) has increased compared to
� = 0.27 at the same wave vector (note the change in scale on
the x axis), while the slope at the structure factor peak (kd =
6.56) has decreased. The increasing slope at low wave vectors
is the result of the increase in the mutual diffusion coefficient
(shown in Fig. 8) as it is this coefficient that governs the decay
of F (k,t) in the low wave vector limit. The decay of ln[F (k,t)]
for all wave vectors at � = 0.36 is also not quite linear, with
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FIG. 10. Plot of F (k,t) data (symbols) for the three indicated packing fractions � together with the multiexponential fit described in the
text (red solid line through the data points). The left frames [(a)–(c)] are at a low wave vector (kd = 0.5), the middle frames [(d)–(f)] are at
a wave vector halfway to the structure factor peak (kd = 3.5), and the right frames [(g)–(i)] are at the wave vector that corresponds to the
structure factor peak (kd ≈ 7). The various components of the fit function are also displayed separately according to the legend. Short and long
time denote the real exponential terms ordered by increasing decay time. Complex denotes the sum of the two complex conjugate exponentials,
amounting to a damped oscillatory function. For graphical clarity, not all available data points have been displayed.

a slight nonlinearity of the line of best fit most clearly seen
at kd = 4.94 (diamonds). This is indicative that the effective
diffusion coefficient is becoming time dependent. Just below
freezing at � = 0.49 [Fig. 9(c)], the two decay modes are
clearly seen, with a significant nonlinearity occurring at wave
vectors between zero and the structure factor peak.

This method of fitting Eq. (24) to find the behavior of the
short-time and long-time diffusion coefficients is similar to
that done to experimental results by Orsi et al. [27]. The
multiexponential analysis procedure that we performed on
our data allows the contributions from the individual terms
in Eq. (24) to be separated and studied. To better quantify the
behavior of the modes and their wave vector and packing
fraction dependence, we have plotted the total fit and the
individual contributions in Fig. 10. This was done for the three
highest � values 0.36, 0.44, and 0.49 as all lower � exhibit
mostly single exponential decay.

The third term in Eq. (24) is the sum of two complex
conjugate exponentials, which gives a damped cosine function.

This mode is labeled complex in Fig. 10, and is seen to be
strongly damped and characterized by a very low amplitude.
This mode mainly determines the behavior of F (k,τ ) at
very short times where nonexponential decay is observed.
We observe nonexponential behavior at short times as the
dynamics transitions from atomic to Brownian motion. The
size and mass ratio compared to the solvent is 4.03:1 and 50:1,
respectively, rather than being effectively infinite as it would
be for a real Brownian particle. Therefore, at very short delay
times the behavior is not diffusive, though this nondiffusive
mode quickly decays to zero leaving the two diffusive modes
to dominate.

The two diffusive modes [the two real exponential terms
in Eq. (24)] show interesting and complex dependence on
packing fraction and wave vector. The left frames [(a)–(c)]
of Fig. 10 show the decay at a very low wave vector
(kd = 0.5). In this low wave vector limit, F (k,τ ) is expected
to approach a single exponential as the wavelengths being
probed approach the macroscopic diffusive limit (infinite
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wavelength). This behavior is observed in the low-k results
for the packing fraction of � = 0.36 [Fig. 10(a)] where the
dominant contribution comes from the long-time diffusive
mode, and the short-time mode has an amplitude that is near
zero.

For the higher packing fractions in the low-k region
[Figs. 10(b) and 10(c)], the long-time mode still dominates, but
the short-time mode is nonzero and has a greater contribution.
The second mode has a larger contribution because the
wave vector being studied is not low enough to be in the
macroscopic diffusive limit at these packing fractions. As the
freezing point is approached, the maximum wave vector at
which macroscopic diffusive behavior was observed decreases.
This maximum wave vector may even be unattainable when
the fluid crystallizes, as the system would no longer be
homogeneous. This may be an important indicator of the onset
of crystallization in a system.

The middle frames [(d)–(f)] of Fig. 10 show the decay at
kd = 3.5 (which is roughly halfway to the peak in the structure
factor). A comparison between data at these wave vectors and
those at lower wave vectors shows there is a large decrease in
the decay rate (note the expanded scale). This indicates that
the effective short- and long-time diffusion coefficients have
greatly decreased as the wave vector has increased. We also
see an increase in the amplitude of the faster decay mode,
showing that it has a larger contribution to the total fit.

Just as we observed at low wave vectors, the contribution
of the short-time mode again increases as the packing fraction
is increased. This can be seen by comparing the amplitude of
the short-time mode in Figs. 10(d) and 10(f). At the larger
packing fractions of φ = 0.44 and 0.49, the amplitude of the
short-time mode is actually larger than the long-time mode
[seen in Figs. 10(e) and 10(f)].

The right frames [(g)–(i)] of Fig. 10 show the decay of
F (k,τ ) at kd values that correspond to the main peak in the
colloidal component structure factor. The effective diffusion
coefficients continue to show a monotonic decrease as the
packing fraction increases, shown by the increased decay time.
As mentioned earlier, this is consistent with experimental
results which show a minimum in the diffusion coefficients
at the structure factor peak [7,9]. The amplitudes of the
modes, however, do not show monotonic dependence on the
wave vector. The long-time diffusive mode amplitude has
increased in the approach to the structure factor peak, while
the short-time one has decreased.

To display in more detail the complete behavior of the
amplitudes and their dependence on packing fraction and wave
vector, Fig. 11 shows the amplitudes of the two diffusive decay
modes at the same packing fractions. As previously observed,
at low wave vectors the amplitude of the long-time diffusive
mode is almost unity, while the short-time one is almost zero.
This indicates that the decay of F (k,τ ) is close to a single
exponential (as expected in the macroscopic diffusive limit).

Because the long-time mode still has a nonzero amplitude
in the k → 0 limit, it can be identified as a thermodynamic
mode, where its decay rate in the macroscopic diffusive limit
can be related to a thermodynamic quantity (later we show this
to be the mutual diffusion coefficient). The short-time mode
only exists for nonzero k, so can be identified as a kinetic mode
which can not be related to any bulk property of the fluid. It can
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FIG. 11. Plot of the amplitudes of the long-time DL (top)
and short-time DS (bottom) exponential decay modes for packing
fractions of 0.36 (dots), 0.44 (circles), and 0.49 (triangles). Shifted
exponential lines of best fit of the low-k data for DL are also shown
(dashed lines).

also be seen that the wave vector where the long-time diffusive
mode amplitude goes to unity (or the short-time amplitude goes
to zero) decreases as the freezing point is approached, and will
most likely disappear when crystallization occurs.

To better quantify the packing fraction where the macro-
scopic diffusive limit can not be reached, a simple shifted
exponential fit was done to the small wave vectors values of
AL as shown in Fig. 11 (dashed lines). The kd values where the
exponential fits equal unity (when the macroscopic diffusive
limit is reached) are displayed in Fig. 12 and are denoted by
(kd)M . These three (kd)M values are shown to have a linear
dependence on �, and an extrapolation of the linear fit to the
� axis identifies the packing fraction of � ≈ 0.546 as when
the diffusive limit disappears. This is extremely close to the
melting point of � = 0.545 where HS systems completely
crystallize and macroscopic diffusion is no longer possible.

The nonzero wave vector behavior of the amplitudes shows
complex dependence. As seen in Fig. 11, the short-time mode
amplitude decreases to zero as kd → 0, has a local maximum
at kd ≈ 3, and then a local minimum at the structure factor
peak. It is interesting to note that although the local minimum
at the structure factor peak depends on the packing fraction, the
local maximum at kd ≈ 3 does not. A complete explanation of
the interesting nonmonotonic behavior of the mode amplitudes
is currently not known.

Unlike the amplitudes, the effective long- and short-time
diffusion coefficients show a monotonic dependence on the
wave vector between kd = 0 and (kd)max. Previous DLS
results [28] showed that the inverse of the effective diffusion
coefficients correlate well with the static structure factor. To

012619-11



S. D. W. HANNAM, P. J. DAIVIS, AND G. BRYANT PHYSICAL REVIEW E 94, 012619 (2016)

0.546

0.35 0.4 0.45 0.5 0.55
Φ

0

0.2

0.4

0.6

0.8

(k
d)

M

FIG. 12. Plot of the maximum wave vector (kd)M when single
exponential decay of the intermediate scattering function is observed
at each packing fraction �. Error bars calculated based on the standard
errors of fit coefficients in Fig. 11. Unweighted linear fit also shown
with x intercept of 0.546.

check that this is also true for this model colloid, the inverse
of the short- and long-time diffusion coefficients are plotted in
Fig. 13, along with the scaled static structure factors.

In line with what is seen in experimental studies, the
inverses of the diffusion coefficients roughly follow the static
structure factor. Both have peaks at (kd)max, which corresponds
to the value of the structure factor peak. Also, both approach
zero in the k → 0 limit. From this we can deduce that the
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FIG. 13. Inverse diffusion coefficients of the long-time DL and
short-time DS exponential decay modes for packing fractions of 0.36
(dots), 0.44 (circles), and 0.49 (triangles). Static structure factor data
are also plotted (dashed lines) where the data have been scaled to
match at the peaks.

diffusion coefficients (inverse of data in Fig. 13) have maxima
at k → 0 and minima at the structure factor peak (as expected).

The similarity of the shapes of DL and Ds implies that
they may be directly proportional, which would confirm the
scaling law proposed by Segrè and Pusey [28]. In order to
see if this scaling is observed with the current model, Fig. 14
shows the calculated ratio Ds/DL for all available k vectors at
the packing fractions of 0.36, 0.44, and 0.49.

Segrè and Pusey [28] studied the intermediate scattering
function of an experimental colloidal suspension over the wave
vector range 2 � kd � 7.8 and found the ratio Ds/DL was
constant for 5 � kd � 7.8 (around the structure factor peak).
They found that by dividing ln[F (k,τ )] by Dsk

2, the decays
at the wave vectors around the structure factor peak fell onto
(roughly) a single master curve. Their work was done for a
packing fraction of 0.465.

Data for � = 0.44 (which is the closest � to that studied
by Segrè and Pusey) is shown in Fig. 14. We see that the ratio
is not constant, but has a wave vector dependence. Even in the
region studied by Segrè and Pusey (5 � kd � 7.8), the ratio
is not constant, showing a local maximum in this region.

The data for all packing fractions in Fig. 14 exhibit the
same general shape, but the uncertainties are larger where the
second diffusive mode is weak. Each packing fraction shows
a slight peak around the position of the structure factor peak.

At kd < 5, there is a slight increase in the ratio with a local
maximum occurring at ≈2.6kd. This is around the range where
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FIG. 14. Plot of the ratio Ds/DL for packing fractions of (a) 0.36,
(b) 0.44, and (c) 0.49.
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FIG. 15. Plot of low-k values of the long-time diffusion coeffi-
cient DL for packing fractions of 0.27 (dots), 0.36 (circles), 0.44
(triangles), and 0.49 (squares). Arrows on y axis indicate the value
of the mutual diffusion coefficients calculated for the corresponding
packing fractions. Fits of the form given in Eq. (26) are also shown.
Corresponding plots have been shifted up by increments of 0.5 for
clarity.

nonlinearity of ln[F (k,τ )] is most noticeable. This is partly due
to the increase in the ratio, but also due to the increase in the
amplitude of the faster mode in this region. At extremely small
wave vectors (kd < 1.5), there is a rapid decrease in the ratio.
This ratio could possibly extrapolate to 2 at zero wave vector,
but this is impossible to determine from the current data. The
average ratio over the whole range of wave vectors increases
with packing fraction, showing the divergence of the two decay
modes as the freezing point is approached.

Since the k → 0 behavior of F (k,t) should be given by the
solution to the hydrodynamic equation (13), the decay should
be a single exponential with a decay coefficient equal to the
mutual diffusion coefficient Dm. To check this, we have plotted
the low-k values of DL in Fig. 15 (symbols) along with the
mutual diffusion coefficients calculated from equilibrium MD
using the Green-Kubo and Kirkwood-Buff theory (arrows).
The data for each � given in Fig. 15 have been shifted up by
increments of 0.5 for clarity.

Previous work done by Hansen et al. [59] showed that the
wave vector dependence of the viscosity for a simple fluid
could be fitted well with a Lorentzian type function with a
variable wave vector exponent. To see if this is also true for the
wave vector dependent diffusion coefficient, we have followed
the same procedure and fitted the low-k data with a similar
functional form given as

DL(k) = Dm

1 + α|k|β , (26)

where the coefficients α and β are free fitting parameters
that are not wave vector dependent. Figure 15 shows that this
functional form fits the data quite well over the range of wave
vectors investigated at each packing fraction.

The packing fraction dependence of the parameters α

and β are shown in Fig. 16. From this figure it is seen
that the exponent β is fairly constant over the range of
packing fractions studied. Its value is very close to 2, which

0.25 0.3 0.35 0.4 0.45 0.5
Φ

0

1

2

3

4

5

6

α
, 
β

α

β

FIG. 16. Packing fraction dependence of fit coefficients α and β

from Eq. (26). Error bars calculated based on the standard errors of
fit coefficients in Fig. 15.

indicates that the fitting function is in fact a Lorentzian. The
α coefficient, however, shows a strong dependence on the
packing fraction. As the packing fraction increases towards
the freezing point, α increases by a factor of 18 over the range
studied. The increasing value of α reinforces the idea that the
wave vector needed to achieve the macroscopic diffusive limit
decreases as the packing fraction increases. This arises because
as α increases, lower values of k are needed before the term
α|k|β in Eq. (26) is effectively zero.

V. CONCLUSION

Molecular dynamics simulations were conducted on a
model colloidal suspension with explicit solvent. In this study,
we extended previous work and further tested the validity of the
model. This was done by studying dynamical properties such
as the velocity autocorrelation function, diffusion coefficients,
and the intermediate scattering function which were then
compared with available experimental data.

The velocity autocorrelation function was found to have
velocity reversals for all moderate to high packing fractions
(� � 0.09). This behavior is also seen in experimental systems
at � � 0.289, but is only observed in single component
HS systems at much higher packing fractions (� � 0.44).
This indicates that inclusion of a solvent is needed in order
to get dynamics which best match experimental colloidal
suspensions.

The self-diffusion coefficient was found to decrease as
the packing fraction increased, showing that interactions with
other colloidal particles inhibit motion through the solvent.
This model overpredicted the value of the normalized self-
diffusion coefficient, possibly due to the modified interac-
tion parameters used to reduce depletion effects. The self-
diffusion coefficient extrapolates to zero near the melting point
(� = 0.544 compared to �m = 0.545) where the diffusive
motion of the colloidal particles is completely inhibited and
the system crystallizes.

Unlike the self-diffusion coefficient, the mutual diffusion
coefficient was found to increase as the packing fraction
increased. This was due almost entirely to the increase in
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the thermodynamic factor on the approach to the freezing
point. The mutual diffusion coefficient was shown to govern
the low-k decay of the intermediate scattering function, and
so an increase in the coefficient corresponded to the increase
in the decay rate of the intermediate scattering function at low
wave vectors.

Lastly, after performing a multiexponential analysis of the
intermediate scattering function we found that the decay can
be accurately modeled with two real exponentials (for the two
diffusive decay modes) and one complex conjugate pair of
exponentials (for the short-time nondiffusive behavior). The
two real exponential decay modes are similar to what is seen
in experimental systems, and are usually associated with long-
and short-time diffusion coefficients.

Both the short- and long-time diffusion coefficients de-
creased monotonically with increasing wave vector, while
their corresponding mode amplitudes showed a nonmonotonic
dependence. The amplitude of the short-time exponential
mode decreased to zero in the k → 0 macroscopic diffusive
limit, indicating that this is a kinetic mode which only exists
for nonzero k. The long-time mode remained in the low-k
limit, leading to a single exponential decay of the intermediate
scattering function. The decay rate of this thermodynamic
mode in the k → 0 limit was found to be equal to the macro-
scopic mutual diffusion coefficient calculated independently
from Green-Kubo and Kirkwood-Buff theory.

We found that the maximum wave vector for which
macroscopic diffusive behaviour could be observed (single ex-
ponential decay) decreased as the packing fraction increased,
and a simple extrapolation shows the maximum wave vector
going to zero at the melting point where macroscopic diffusion
can no longer occur. This indicates that the packing fraction
where the fluid completely crystallizes may be predicted by
studying the decay of the density fluctuations of the fluid well
below the melting point.

By studying the two diffusive modes we were also able to
test the scaling law proposed by Segrè and Pusey. We found
that the ratio of the long- and short-time diffusion coefficients
around the structure factor peak was not constant, but had wave
vector dependent behavior, in disagreement with the proposed
scaling law.
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[42] S. Hess, M. Kröger, and H. Voigt, Phys. A (Amsterdam) 250,
58 (1998).

[43] M. McPhie, Ph.D. thesis, RMIT University, 2003.
[44] I. Snook, B. O’Malley, M. McPhie, and P. Daivis, J. Mol. Liq.

103-104, 405 (2003).
[45] S. Plimpton, J. Comput. Phys. 117, 1 (1995)
[46] M. E. Tuckerman, J. Alejandre, R. López-Rendón, A. L.
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