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We determine the impact of the Friedel oscillations on the phase behavior, critical properties, and
thermodynamic contours in films [two dimensions (2D)] and bulk phases [three dimensions (3D)]. Using expanded
Wang-Landau simulations, we calculate the grand-canonical partition function and, in turn, the thermodynamic
properties of systems modeled with a linear combination of the Lennard-Jones and Dzugutov potentials, weighted
by a parameter X (0 < X < 1). Varying X allows us to control the height of the first Friedel oscillation and to
provide a complete characterization of the effect of the metal-like character in the potential on the thermodynamic
properties over a wide range of conditions. For 3D systems, we are able to show that the critical parameters
exhibit a linear dependence on X and that the loci for the thermodynamic state points, for which the system
shows the same compressibility factor or enthalpy as an ideal gas, are two straight lines spanning the subcritical
and supercritical regions of the phase diagram for all X values. Reducing the dimensionality to 2D results in a
loss of impact of the Friedel oscillation on the critical properties, as evidenced by the virtually constant critical
density across the range of X values. Furthermore, our results establish that the straightness of the two ideality
lines is retained in 2D and is independent from the height of the first Friedel oscillation in the potential.
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I. INTRODUCTION

In recent years, the existence of remarkable contours in the
phase diagram, where fluids exhibit properties similar of ideal
gases, has drawn considerable interest [1–4] and has emerged
as a new way to rationalize the properties of supercritical
fluids [5–8]. This has also provided the basis for new similarity
relations and new ways to determine the critical properties for
a wide range of fluids [9,10]. Such contours include the Zeno
line [11–15] for which the fluid has the same compressibility
factor as an ideal gas. Recent work on metals [9,10,16]
has focused on leveraging the apparent straightness of the
Zeno line in the low-temperature range to determine the
critical properties of metals, which are particularly difficult
to determine experimentally and exhibit large variations with
estimates, for example, for the critical temperature [17] of Al
ranging from 5500K to 9600K. Other remarkable contours
include the H line, which is the curve of ideal enthalpy. Two
other contours, underlying the Zeno and H lines, have also
been studied in recent work, namely the S0 line, i.e., the curve
of maxima for the isothermal compressibility (or, alternatively,
the line where the structure factor at zero wave vector S0),
and the Hmin line, i.e., the curve of minima for the enthalpy.
These contours exhibit fascinating properties, as the Zeno and
H lines remain straight over a wide range of temperatures
(typically several hundred of degrees for Argon [2]). The
S0 and Hmin contours can also be accurately modeled by
simple power laws of the density for Argon [2] as well as for
nonpolar and quadrupolar molecules [18] like SF6 and CO2,
paving the way for establishing a correspondence between the
supercritical properties of different fluids. However, the shape
of the thermodynamic contours is known to be very sensitive to
the interaction potential between the fluid particles [4,14,18],
and it is currently not known how the emergence of a metal-like
character in the effective pair potential, characterized by
the onset of the Friedel oscillations, impacts these contours.

Furthermore, there is no information, to our knowledge, on the
effect of the dimension of the system [two dimensions (2D) or
three dimensions (3D)] on these contours.

The aim of this work is to provide a full picture of the
impact of the onset of the metal-like character in the pair
potential on the thermodynamics at the liquid-vapor phase
boundaries and in the supercritical regime, both for bulk
phases (3D) and in films (2D). More specifically, we model
here the onset of this metal-like character through a term that
mimics the first Friedel oscillation found in the effective pair
potential used for metal interactions [19–21]. This is achieved
by taking as the interparticle potential a linear combination
of the Dzugutov potential, weighted by a parameter X (0 <

X < 1), and of the Lennard-Jones potential, weighted by the
factor (1 − X). We focus here on the effect of the Friedel
oscillations on the thermodynamic contours at relatively short
range (for distances below 3 particle diameters) and use the
same potential form for all fluid densities. By varying X,
we gradually increase the magnitude of this oscillation and
assess its effect on the grand-canonical partition function of the
system both in 2D and 3D and, in turn, on all thermodynamic
properties. In particular, we focus on elucidating the impact
of the metal-like character on the behavior of fluids along the
Zeno line, the H line, the S0 line, and the Hmin line.

The paper is organized as follows. In Sec. II we present
the pair potentials as well as the simulation method used
in this work. In particular, we discuss how the recently
developed expanded Wang-Landau simulations [22–25] are
applied to determine the grand-canonical partition function
in 2D and 3D and the loci for the coexistence curve and
for the thermodynamic contours in the supercritical region
of the phase diagram. We then determine the properties of
supercritical fluids both for the bulk and for films and assess
the impact of the extent of the metal-like character on the
phase diagram in both 2D and 3D, before drawing the main
conclusion of this work in the last section.
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II. SIMULATION METHOD

A. Formalism

We determine the fluid properties at coexistence and in
the supercritical domain of the phase diagram using the re-
cently developed expanded Wang-Landau (EWL) simulations
[22–25]. EWL simulations are based on a flat histogram
sampling approach, known as Wang-Landau sampling [26–
36]. They are carried out in the grand-canonical ensemble,
within an expanded ensemble approach [37–50]. This means
that the steps for the insertion or deletion of a full particle are
achieved according to a staged process by varying the size of a
fractional particle. Therefore, the EWL method samples with
the same frequency all possible (N,l) values, where N is the
number of particles and l is an integer denoting the current
stage, or size, of the fractional particle with 0 < l < M − 1,
where M is the maximum number of stages.

In the EWL method [22], we consider a simplified expanded
grand-canonical (SEGC) ensemble with the following partition
function:

�SEGC(μ,V,T ) =
∞∑

N=0

M−1∑
l=0

Q(N,V,T ,l) exp(βμN), (1)

with, for 0 < l < M ,

Q(N,V,T ,l) = V N+1

N !�3(N+1)

∫
exp [−βU (�)]d� (2)

The Metropolis criterion used in the EWL method to
determine the acceptance probability (acc(o → n)) from an
old configuration (�o,No,lo) to a new configuration (�n,Nn,ln)
is

acc(o → n) = min

[
1,

pbias(�n,Nn,ln)

pbias(�o,No,lo)

]
, (3)

with the following choice for the biased distribution pbias that
ensures the uniform sampling of all (N,l) values,

pbias(�,N,l) = p(�,N,l)

p(N,l)
, (4)

where p(�,N,l) and p(N,l) are joint Boltzmann distributions
for (�,N,l) and (N,l), respectively.

This provides a direct connexion between the biased
distribution and Q(N,V,T ,l), since the Metropolis criterion
becomes

acc(o → n)

= min

{
1,

Q(No,V,T ,lo)V NnNo!�3No exp[−βU (�n)]

Q(Nn,V,T ,ln)V NoNn!�3Nn exp[−βU (�o)]

}
,

(5)

when lo and ln are either both equal to 0 or strictly larger than 0.
Finally, keeping the results for only the cases where (N,l = 0)
(i.e., systems of N full, “regular,” particles only) allows us to
calculate the grand-canonical partition function �(μ,V,T ) as

�(μ,V,T ) =
∞∑

N=0

Q(N,V,T ,l = 0) exp(βμN). (6)

B. Models

In this work, particles interact through a pair potential that is
the combination of the Dzugutov (DZ) potential [20,51,52] and
of the Lennard-Jones (LJ) potential. The DZ potential exhibits
a minimum for first nearest neighbors and a maximum between
the first and second nearest neighbors. This potential mimics
the first Friedel oscillation observed in effective pair potentials
used to model metals. It has been extensively studied around
the fluid-solid transition due to the fact that this potential
favors the formation of quasicrystalline phases [21,53–60] and
crystalline σ -phases [61]. The DZ potential, however, does not
exhibit a liquid phase [20], and it has been proposed to combine
the LJ potential and the DZ potential to design a pair potential
that resembles the effective potential of a metal and leads to
the existence of a liquid phase.

The resulting pair potential between two particles, separated
by a distance r , is given by

u(r) = XφLJ(r) + (1 − X)φDZ(r), (7)

where

φLJ(r) = 4

[(
1

r

)12

−
(

1

r

)6]
(8)

and

φDZ(r) = φ1(r) + φ2(r),

φ1(r) = A(rm − B) exp

[
c

r − a

]
r < a,

= 0 r > a,

φ2(r) = B exp

[
d

r − b

]
r < b,

= 0 r > b, (9)

where X is a weight factor and the potential parame-
ters take the following values m = 16, A = 5.82, C = 1.1,
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FIG. 1. Mixed pair potential used in this work for X = 1,
X = 0.9, X = 0.8, and X = 0.7.
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a = 1.87, B = 1.28, d = 0.27, and b = 1.94. Figure 1 shows
the impact of the weight factor X on the overall potential
energy.

During the course of the EWL simulations, the interaction
between a fractional particle and a full particle is obtained by
scaling the parameters of the same dimension as an energy by
(l/M)1/3 and the parameters of the same dimension as a length
by (l/M)1/4. We finally add that the same functional forms for
the potential are used both in 2D and 3D.

C. Simulation details

EWL simulations consist of the two types of MC steps,
that are attempted with the following rates: 75% of the
attempted MC moves are translations of a single particle (full
or fractional) and 25% of the remaining moves are changes
in (N,l) values. For all systems, the maximum number of
stages M is set to 100, the starting value for the convergence
factor f in the iterative Wang-Landau scheme is equal to e,
its final value to 10−8, with each (N,l) being visited at least
1000 times for a given value of f . Simulations are carried
out on systems of up to 500 particles for all systems, and the
interactions are calculated using a spherical cutoff (rc = 3),
with the usual tail corrections applied beyond the cutoff
distance [62].

III. RESULTS AND DISCUSSION

We start by discussing the results on 3D systems. The first
result we examine is the output from the EWL simulations,
i.e., the grand-canonical partition function �(μ,V,T ) and the
underlying Q(N,V,T ) [see Eq. (6)]. Figure 2(a) shows the
grand-canonical partition function for decreasing values of X

at a temperature of T = 0.85. For all systems, ln �(μ,V,T )
exhibits a steep increase associated with the transition from
the low-density (vapor) to the high-density (liquid) phase.
The steep increase occurs for increasing value of μ as X

decreases, and the transition on the curve for ln �(μ,V,T )
becomes less and less sharp as X decreases. This behavior
can be understood from the plot of ln Q(N,V,T ) [inset of
Fig. 2(a)] as the partition function � is the sum of Q(N,V,T )
over all possible N values, weighted by the factor exp(βμN).
The slope of ln Q(N,V,T ) is shown to decrease with X, and
since this slope is equal to −μ, it results in a shift in the liquid
to vapor transition towards larger value of μ as X decreases.
Figure 2(b) shows the behavior of the partition function at
a higher temperature (T = 2). In this plot, the variations of
ln �(μ,V,T ) with μ are dramatically different from those
observed at lower temperature. Specifically, ln �(μ,V,T )
does not exhibit a steep increase but rather a steady and
smooth increase with μ. The absence of a sharp transition
point is characteristic of a supercritical fluid, state, which is
achieved for all values of X considered here. The behavior for
ln Q(N,V,T ) is also found to be similar for all X values with
a lower maximum observed for ln Q(N,V,T ) as X decreases.
This results in the slower rate at which ln �(μ,V,T ) increases
as a function of μ.

Once the partition function has been determined, the num-
ber distribution corresponding to the conditions of coexistence
or to the locus of a specific thermodynamic contour, is
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FIG. 2. Logarithm of the grand-canonical partition function
�(μ,V,T ) and of Q(N,V,T ) for 3D systems: (a) Subcritical fluids
(T = 0.85) and (b) Supercritical fluids (T = 2). Same legend as in
Fig. 1.

evaluated as

p(N ) = Q(N,V,T ) exp(βμN)

�(μ,V,T )
. (10)

To determine μ at the vapor-liquid coexistence, we numer-
ically solve the following equation:

Nb∑
N=0

p(N ) =
∞∑
Nb

p(N ), (11)

where Nb is the point at which the function p(N ) reaches its
minimum, and the left-hand side and the right-hand side of
the equation correspond to the probability of the vapor and
of the liquid phase, respectively. The number distribution so
obtained at T = 1.1 is shown for X = 1 on the left-hand side
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FIG. 3. Examples of number distribution for X = 1. (Left)
Subcritical fluid (T = 1.1): vapor and liquid peaks at coexistence
and peak for the Zeno line. (Right) Supercritical fluid (T = 2.5):
Peak corresponding to the S0 contour, Zeno line, Hmin contour, and
H line.

of Fig. 3. The loci for the other contours can be determined as
follows. For the Zeno line, we numerically solve the following
equation:

P V̄ /RT = ln �(μ,V,T )/N̄ = 1, (12)

where V̄ is the reciprocal density and N̄ = ∑
Np(N ) is the

average number of particles in the system.
The resulting peak corresponding to the Zeno line at low

temperature T = 1.1 is also shown on the left-hand side of
Fig. 3. The two contours involving the enthalpy can be found
by solving two equations for the enthalpy defined as

H = U + PV =
∑(

Epot(N ) + 3
2kBT

)
p(N )∑

p(N )

+ kBT ln �(μ,V,T ), (13)

where Epot(N ) is the potential energy per particle of a
system containing N particles and is collected during the
EWL simulation. The H line is then obtained by solving
H̄ = 5/2RT and the Hmin contour is obtained by calculating
the locus where H reaches its minimum. Finally, the S0 contour
is obtained by successive numerical differentiations of P with
respect to the number density to achieve (∂2P/∂ρ2)T = 0. The
number distributions obtained at high temperature (T = 2.5)
are shown on the right-hand side of Fig. 3 and exhibit the
expected order with the following contours ranging (in the
order of increasing N values) S0, Zeno, Hmin, and H lines.
We add that some of these contours can only be seen at high
(supercritical) temperatures as, e.g., the S0 line starts with the
critical point and the H line is hidden in the solid domain of
the phase diagram at low temperatures.

The phase diagram and thermodynamic contours for the
system X = 1 are shown in Fig. 4(a). Linear regression fits
allow us to determine the Boyle parameters as well as the H
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FIG. 4. (a) Thermodynamic contours in 3D for X = 1 (same
legend as in Fig. 2), with the critical point shown as a filled circle. The
same qualitative behavior is observed for all X values. (b) Coexistence
curves and critical points (filled circles) for increasing X values in 3D
(same legend as in Fig. 1). The critical temperature and the critical
density exhibit a linear dependence on X.

parameters (given in Table I). The Boyle and H parameters
we find from EWL simulations are in good agreement with
those obtained from density power expansions carried out
by Apfelbaum and Vorob’ev [2]. Specifically, we find a
value for the Boyle temperature TB = 3.47 (close to the

TABLE I. Boyle, H , and critical parameters in 3D.

X TB ρB TH ρH Tc ρc

1 3.47 1.10 6.48 1.17 1.29 0.33
0.9 3.05 1.12 5.74 1.17 1.16 0.32
0.8 2.58 1.15 4.94 1.18 1.03 0.31
0.7 2.21 1.18 4.14 1.21 0.91 0.30
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estimate of 3.42 from prior work [2]), while the EWL Boyle
density is of 1.10 (close to 1.14 as found previously [2]).
Similarly we find a H temperature of 6.48 (slightly above the
estimate [2] of 6.43) and a H density of 1.17 (reasonably
close to the value of 1.24 by Apfelbaum and Vorob’Ev).
We also find a behavior for the S0 and Hmin lines that is
consistent with that observed in other work on the van der
Waals equation and on Argon. More specifically, we find
that the Hmin line is accurately modeled by the following
quadratic law: T (Hmin) = TH (1 − ρ(Hmin)/ρH )2. Similarly,
the following cubic law, function of the Boyle parameters,
T (S0) = TB(1 − ρ(S0)/ρB)3, performs very well on the S0

line. We finally determine the critical point from a scaling law
for the temperature (with the 3D Ising exponent of 0.325). Our
results are in excellent agreement with previous work, with an
estimate of 1.29 in this work compared to the estimate of 1.291
using the transition matrix Monte Carlo method [63,64] or to
the estimates obtained through Gibbs ensemble Monte Carlo
simulations [65,66] of 1.281 and 1.294, respectively.

The critical density is then obtained from the following
similarity law [10]:

Tc/TB + ρc/ρB = 0.67. (14)

We now move on to the impact of the Friedel oscillation on
the phase behavior. We show in Fig. 4(b) the vapor-liquid
coexistence curve for increasing values of X. We find that
the phase envelope is shifted toward the lower temperatures
as X decreases (for X values below 0.6, no vapor-liquid
coexistence can be observed). The presence of the Friedel
oscillation notably affects the locus for the phase envelope in
terms of temperature, but it also has a significant impact on
the symmetry of the coexistence curve (characterized by the
different values taken by the two ratios Tc/TB and ρc/ρB).
More specifically, when using the similarity law of Eq. (14),
the Tc/TB ratio goes from 0.37 (X = 1) to 0.38 (X = 0.9),
0.40 (X = 0.8) and 0.41 (X = 0.7). Conversely, the ρc/ρB

ratio decreases from 0.30 (X = 1) to 0.29 (X = 0.9), 0.27
(X = 0.8), and 0.26 (X = 0.7). This change in behavior
can be best seen by looking at the variations of the critical
temperatures and densities as a function of X, which both
exhibit an almost perfect linear law. We find that for a
given value of X, the critical temperature can be modeled as
Tc(X) = 1.27X + 0.018, while the critical density gives the
following linear law ρc(X) = 0.1X + 0.23.

The Friedel oscillation also impacts the thermodynamic
regularity lines as shown for the Zeno line in Fig. 5(a) and
for the H line in Fig. 5(b). Continuing our analysis of the
effect of the parameter X on the critical and supercritical
properties for the model, we carry out linear fits for the
Boyle and H parameters as a function of X. We find that the
Boyle temperature can be fitted to TB(X) = 4.25X − 0.79,
while the Boyle density gives the following linear law:
ρB(X) = −0.27X + 1.37. Similarly, we obtain the following
linear fit for the H temperature: TH (X) = 7.82X − 3.322, and
for the H density: ρH (X) = −0.13X + 1.29. In line with the
trends observed for the vapor-liquid coexistence curve, the
increase in the height of the first Friedel oscillation leads to
a decrease in the Boyle and H temperatures. However, unlike
for the critical densities, we find that decreasing X actually
leads to an increase in the Boyle and H densities. This is
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FIG. 5. Zeno lines (a) and H lines (b) for different X values in
3D (same legend as in Fig. 1).

shown by the crossover point that can be seen on Fig. 5 for
the Boyle and H contours. This means that to achieve ideal
gas-like properties, a low-temperature metallic system needs
to be at a higher density than the corresponding nonmetallic
system.

We now examine the results obtained in 2D, for films
with increasing heights of the first Friedel oscillation in the
potential. Starting with the output from the EWL simulations,
we observe the following behaviors. At low temperature
[Fig. 6(a)], the partition function, plotted as a function of the
chemical potential, exhibits a steep increase corresponding
to a vapor-liquid transition. In line with 3D systems, the
transition point is shifted toward the larger values for the
chemical potential as a result of the increase in the height
of the first Friedel oscillation [see, e.g., the results shown for
T = 0.41 in Fig. 6(a)]. This directly stems from the order in
which the slopes obtained for ln Q(N,V,T ) are for decreasing
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FIG. 6. Logarithm of the partition function �(μ,V,T ) and of the
Q(N,V,T ) functions for 2D systems: (a) subcritical fluids (T = 0.41)
and (b) supercritical fluids (T = 1.5). Same legend as in Fig. 1.

values of X. As for 3D systems, this slope is directly related to
−μ, and the magnitude of the slopes for ln Q(N,V,T ) (X =
1 > . . . > X = 0.7) leads to the order found for the transition
points (X = 1 before X = 0.9, X = 0.8, and finally X = 0.7).
At high temperature, we observe a behavior consistent with
that found for supercritical 3D systems, with the absence
of a sharp transition in ln �(μ,V,T ) and the presence of a
maximum in ln Q(N,V,T ) as a function of N . We also find
that the maximum reached by ln Q(N,V,T ) as a function of N

decreases and is reached for lower values of N as X decreases,
leading to an earlier increase (in terms of μ) in ln �(μ,V,T )
for larger values of X.

The phase diagram for X = 1 in 2D, together with the
thermodynamic contours, is shown in Fig. 7(a). The properties
at coexistence as well as the loci for the various contours were
determined using the same method as for 3D systems, with
the exception of the critical temperature that was evaluated
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FIG. 7. (a) Thermodynamic contours for X = 1 in 2D (same
legend as in Fig. 2), with the critical point shown as a filled circle. The
same qualitative behavior is observed for all X values. (b) Coexistence
curves and critical points (filled circles) for increasing X values in
2D (same legend as in Fig. 1). The critical temperature exhibit a
linear dependence on X, while the critical density remains essentially
constant.

through a scaling law with the 2D Ising exponent of 1/8. This
scaling law yields a critical temperature (0.51) in very good
agreement with the estimate of 0.515 obtained in previous
work on 2D LJ systems by Smit and Frenkel [67]. Overall,
we find a much narrower range (than in 3D) of temperature
where the liquid vapor coexistence is observed. This is also,
to our knowledge, the first example of the calculation of the
Zeno and H line for 2D systems. Our results show that the
straightness of the Zeno and H lines is indeed conserved in
2D as evidenced by the fits presented in Fig. 7(a) (with the
corresponding Boyle and H parameters given in Table II).
The other two contours (S0 and Hmin contours) also exhibit
a behavior that is consistent with that found for 3D systems
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TABLE II. Boyle, H , and critical parameters in 2D.

X TB ρB TH ρH Tc ρc

1 1.57 1.12 3.02 1.12 0.51 0.39
0.9 1.42 1.17 2.85 1.11 0.47 0.40
0.8 1.28 1.20 2.44 1.19 0.44 0.39
0.7 1.10 1.34 2.15 1.21 0.41 0.40

and are accurately modeled by the simple polynomial laws,
function of the Boyle parameters (for S0), and H parameters
(for Hmin), as observed for 3D systems. Increasing the height
of the first Friedel oscillation results in a decrease of the
temperature range over which vapor liquid coexistence is
observed. This, in turn, results in a steady decrease in the
critical temperature [see Fig. 7(b)], as evidenced by a linear fit

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Number density

0

0.5

1

1.5

2

Te
m

pe
ra

tu
re

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Number density

0

0.5

1

1.5

2

2.5

3

3.5

Te
m

pe
ra

tu
re

(b)

FIG. 8. Zeno lines (a) and H lines (b) for different X values in
2D (same legend as in Fig. 1).

to the EWL data for the critical temperature, which gives the
following result: Tc(X) = 0.31X + 0.19. On the other hand,
and, unlike for 3D systems, the presence of a first Friedel
oscillation in metallic films does not seem to impact the critical
density as shown by the virtually constant value of ρc obtained
for all 2D systems.

The Zeno lines and H lines for 2D systems are shown in
Figs. 8(a) and 8(b), respectively. Both sets of contours show
that the straightness of these two lines is neither impacted by
the reduced dimension of the system (3D to 2D) nor by the
onset of the first Friedel oscillation (with X decreasing from
1 to 0.7). We then carry out linear regression fits to the EWL
data for the Boyle and H parameters. For the Boyle parameters,
we obtain the following linear laws: TB(X) = 1.55X + 0.03
and ρB(X) = −0.69X + 1.79. Figure 8(a) shows that the
increase in metallic character has qualitatively the same effect
as in 3D with a steady decrease in the Boyle temperature and
an increase in the Boyle density as X becomes smaller. This
results in a crossover point for the Zeno lines at a temperature
of approximately 0.75. A similar analysis for the H parameters
leads to the following results: TH (X) = 3.02X + 0.05 and
ρH (X) = −0.35X + 1.46. The decrease in TH observed in
Fig. 8(b) is again in line with the results obtained in 3D, as is the
increase in ρH as X takes smaller values. Overall, the reduced
dimensionality of the system when considering films (2D)
rather than bulk systems (3D) does not dramatically change
the thermodynamics of phase coexistence and thermodynamic
regularities. However, it mitigates the impact of the Friedel
oscillation on the critical and supercritical properties, with
much reduced dependence of the critical densities on the X

parameter.

IV. CONCLUSION

In this work, we carry out EWL simulations to determine
the effect of the first Friedel oscillation on the phase behavior,
critical properties, and thermodynamic regularity contours
for films (2D) and for bulk phases (3D). The onset of the
first Friedel oscillation is modeled by superimposing two
pair potentials, the Lennard-Jones potential and the Dzugutov
potential, weighted by a parameter X (0 < X < 1). The
results show that moving away from the LJ system (X = 1)
toward systems with a more pronounced metal-like character
(X < 1) leads to a narrowing of the range of temperature
showing vapor-liquid coexistence for both 2D and 3D systems.
For 3D systems, increasing the height of the first Friedel
oscillation results in a qualitative change in the coexistence
curve, with increased asymmetry, as shown by the ratio
of the critical parameters to the Boyle parameters, when
the metal-like character is increased. This feature is best
captured by the almost perfect linear fits exhibited both by
the critical temperature and critical density as a function of X.
Changing the interparticle potential and making the potential
more metal-like does not lead to dramatic changes in the
thermodynamic contours, as evidenced by the straightness of
the Zeno and H lines that is retained upon decreasing X.
The results on 2D systems are the first, to our knowledge, to
examine the behavior of the thermodynamic regularity lines in
films and to show that the straightness of the Zeno and H lines
is indeed retained upon reducing the dimension of the system.
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Increasing the height of the first Friedel oscillation in films also
leads to the narrowing of the vapor-liquid coexistence curve
with decreasing critical temperatures as a consequence of
the increase height of the first Friedel oscillation. The
loss of a dimension, however, attenuates the impact of the
metallic character in the potential as shown by the almost

constant critical densities across the range of values of the X

parameter.
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