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Dependence of the dielectric constant of electrolyte solutions on ionic concentration:
A microfield approach
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We present a microfield approach for studying the dependence of the orientational polarization of the water
in aqueous electrolyte solutions upon the salt concentration and temperature. The model takes into account the
orientation of the solvent dipoles due to the electric field created by ions, and the effect of thermal fluctuations.
The model predicts a dielectric functional dependence of the form ε(c) = εw − βL(3αc/β), β = εw − εms,
where L is the Langevin function, c is the salt concentration, εw is the dielectric of pure water, εms is the dielectric
of the electrolyte solution at the molten salt limit, and α is the total excess polarization of the ions. The functional
form gives a remarkably accurate description of the dielectric constant for a variety of salts and a wide range of
concentrations.
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I. INTRODUCTION

It is difficult to overstate the importance of aqueous elec-
trolyte solutions in biological and electrochemical systems.
There has been extensive study of physical properties of
such solutions over the past 120 years. The century-old
Poisson-Boltzmann (PB) theory gives a simple and powerful
description of low-molarity solutions, taking into account
only Coulombic interactions on a mean-field level, while
treating the aqueous solution as a continuous and homoge-
neous dielectric medium with a dielectric constant εs . The
dielectric constant, however, is typically heterogenous and
depends, among other factors, on the local concentration of
ions. Heterogeneity of the dielectric constant significantly
influences the structure of the electric double-layer region
[1–6], and effects electrokinetic phenomena, including electro-
osmosis and electrophoresis [7], as well as charge transfer
[8]. Furthermore, a good understanding of the dielectric
properties of a solvent is essential for an accurate description
of molecular-level studies of macrobiomolecules. For exam-
ple, some models of globular protein solutions employing
a continuum solvent model arbitrarily ascribe a uniformly
dielectric value, typically to a value that reflects a pure water
solution [9,10]. In reality, however, the solvent phase typically
contains both an electrolyte and a pH buffer, which change the
overall ionic strength, yielding a dielectric layer surrounding
the immersed macromolecule. The incorporation of variable
ionic densities near a macromolecule, and their impact on
the local dielectric value, are an important enhancement of
implicit-solvent models [11,12].

The first systematic experimental study of the dielectric
properties of salt-water solutions was conducted in 1948 by
Hasted et al. [13]. In this work, the static dielectric constant of a
solution was observed to decrease with the salt concentration, a
phenomena called dielectric decrement. Intuitively, the dielec-
tric decrement stems from the fact that the local electric field
generated by each ion inhibits the external applied field. The
polar water molecules tend to align with the local ionic field,
creating a hydration shell around the ion, lowering the response

of the water molecules to the external field and hence lowering
the dielectric constant. In dilute solutions (typically salt con-
centrations less than 1.5M) the dielectric decrement is linear,

ε = εw − α c, (1)

where εw is the dielectric constant of pure water, c is the
salt concentration, and α is a phenomenological ion-specific
parameter, known as the total excess polarization of the ionic
species. At higher salt concentrations significant deviations
from linearity are observed and the dielectric decrement is
observed to saturate [13].

Haggis et al. [14] modeled the observed linear dielectric
decrement by considering the hydration shells as small
spherical regions with a low dielectric constant, immersed
in pure water medium with a high dielectric constant. The
macroscopic dielectric constant of the solution was then
computed by homogenization. The model was later refined
by considering the variation of the local dielectric constant
near the ions [15] and finite-size effects [16]. The treatment
of hydration shells as spheres, however, is justifiable only
for dilute solutions (typically less than 1M) for which the
hydration shells do not overlap.

To go beyond dilute solutions, Levy, Andelman, and Orland
[17] used a field-theory approach to calculate the average
dielectric constant around each ion at the mean-field level
and accounted for hydration shell overlap via a one-loop
correction. The resulting prediction of the dielectric constant
affords a good fit to data from a large range of concentrations
of different salts using a single fit parameter related to the
effective size of the ions.

In this work, we develop a model for the dielectric response
of water molecules in electrolytes with high salt concentrations
(in excess of 1.5M) in which the solvation shells of the ions
strongly overlap. The model is not based upon the field around
a single ion. Rather, it assumes the water dipoles are influenced
by an aggregate of ions: the local microfield acting on a water
dipole arises from a surrounding configuration of ions. Linking
the acquired analytic prediction for the dielectric constant
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at the high-concentration regime to the known theory for
the dilute case, yields an analytic prediction for the solution
dielectric constant as a function of salt concentration c,

ε(c) = εw − βL

(
3α

β
c

)
, β = εw − εms, (2)

where L is the Langevin function,

L(v) = coth(v) − 1

v
,

εw is the dielectric of the pure solvent, εms is the limiting
dielectric constant of the highly concentrated electrolyte
solution, a.k.a., the molten salt dielectric, and α is the total
excess polarization of the ions. This functional form gives a
remarkably accurate prediction of the static dielectric constant
over a large range of concentrations of 1:1 salts using only a
single fitting parameter εms

1.
The static dielectric constant in the high-concentration

regime takes the functional form

ε(c) = εms + 1

ε0

∂Pwater(c,Eex)

∂Eex

∣∣∣∣
Eex = 0

, (3)

where Eex is external field intensity, Pwater is the orientational
polarization due to orientation of water dipoles in the direction
of applied field, ε0 is the vacuum permittivity, and εms

is the contribution to the dielectric arising from molecular
polarization and orientational polarization of ion-pairs. The
aim of this work is to derive a mechanism for the dependence of
the orientational polarization Pwater upon c via the dependence
of the ionic microfield upon salt concentration.

II. THE IONIC MICROFIELD

We consider a system of 1:1 ions that is globally charge-
neutral and aim to find the distribution of the intensity of
electric field created by the ions, the ionic microfield. Such
a distribution is influenced by correlations between anions
and cations. Roughly speaking, each ion is surrounded by
an oppositely charged “ionic atmosphere.” An expression for
the probability density function f (Eion; c) of the ionic field
intensity was derived by Rozental [18] by treating each ion
and its oppositely charged “ionic atmosphere” as a dipole and
analyzing the microfield statistics of the dipole configuration
to derive the probability density function,

f (Eion; c) = 4

π

1

E∗
ion

(Eion/E
∗
ion)2

[1 + (Eion/E∗
ion)2]2

, (4a)

where E∗
ion is the most probable ionic field intensity, satisfying,

p

kT
E∗

ion = α∗c. (4b)

Here p is the electric dipole moment of water, and α∗, with
units of M−1, is proportional to the electric field screening

1We distinguish between fit parameters, e.g., effective ion size,
which are model-dependent and empirical parameters, such as crystal
ion radius, which are model-independent and can be measured
experimentally. Accordingly, the parameter εms is effectively regarded
as a fit parameter.

length, and serves as a dimensional constant of proportionality
between the normalized ionic field intensity and the ionic
concentration. Notably, the relation E∗

ion ∝ c stems from the
correlation between the positive and negative ions. Indeed,
the microfield distribution due to uncorrelated positive and
negative ions is given by the Holtzmark distribution with
E∗

ion ∼ c2/3 [19].
The effect of water molecules on the ionic field intensity is

neglected in these calculations, i.e., the ionic field is considered
as if the ions were in vacuum. The justification for this
simplification is that at high concentrations, the water–ion ratio
does not allow for efficient screening by water molecules. For
example, at 1M concentration, the average distance between
ions and their counter-ions cannot exceed 1.2 nm. At this
separation, at most three water molecules can reside along the
line segment connecting the ionic centers, hence the screening
of electric field by the water is limited. In contrast, at 1 mM
solutions, ion separation distances average around 12 nm, with
50–100 water molecules engaged in screening.

A key feature of the model is that α∗, which relates
ionic concentrations to screening length, particularly ionic
screening, is independent of ionic concentrations above
1.5–2M. At these concentrations interionic distances relate
weakly to the concentration, and the ability of ions to
redistribute to improve effective screening becomes limited
due to finite-size effects and thermal fluctuations. As a result,
the effective screening length saturates.

III. ORIENTATIONAL POLARIZATION Pwater DUE
TO WATER DIPOLES

We first determine the contribution of a single water dipole
to the orientational (dipolar) polarization by introducing an
ionic field to the standard Langevin dipole analysis; see Ref.
[20, sect. 4.6] or Ref. [21, p. 214] for details. Consider a water
dipole p surrounded by pointlike ions under an applied external
field Eex. The electric field due to the ions, in the absence of
water dipoles, is denoted by Eion. The potential energy W of
the dipole p is given by

W = −p · (Eion + Eex).

The energy W is minimized when the dipole is aligned with
the field Eion + Eex, hence the dipole orientation is a tradeoff
between the tendency of the dipole to align with the field
Eion + Eex and thermal fluctuations that disrupt this ordering.
The contribution of a given dipole p to the polarization due to
the external field Eex is ProjEex

(p − p0), where p0 is the average
orientation of the dipole p in the absence of an external field,
i.e., in the direction of Eion,

p0 = Eion

|Eion| |p|.

The expectation of the contribution of the dipole p to the
external field Eex is given by the Boltzmann average,

P local
water =

∫
e− W

kT ProjEex
(p − p0)∫

e− W
kT

, (5)
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where Eion = |Eion| and Eex = |Eex|. This integral can be
explicitly evaluated [22],

P local
water = pL

(
pEex

kT

)[
1 − L

(
pEion

kT

)]
, (6)

where p = |p|; see Appendix A for details.
Equation (6) quantifies the contribution of a single water

dipole influenced by an ionic field with intensity Eion to the
orientational polarization. The second stage of the derivation
considers the aggregate contribution Pwater of all water dipoles
to the orientational polarization by considering the statistics
of the ionic field intensity experienced by the water dipoles.
Under the assumption that the water dipoles are uniformly
distributed in space, the local ionic field intensity influencing
the water dipoles is distributed according to f (Eion; c).
Deviations from uniform distribution, however, do occur.
Indeed, there is a minimal water dipole-ion separation, and
this effect serves to exclude water dipoles from regions where
the microfield intensity is the highest. To account for this
phenomena, we assume there is a bound αME∗

ion on the ionic
field intensity felt by water molecules, which is proportional
to the most probable ionic field intensity E∗

ion. Incorporating
this limit, Pwater is given by

Pwater(c) = Nw

∫ αME∗
ion

0
f (Eion; c)P local

water(Eion)dEion, (7)

where P local
water is given by Eq. (6), f (Eion; c) is given by Eq. (4),

and Nw is the number of water molecules per unit volume. The
Langevin function can be approximated by

L(v) ≈ 1 − 1/v (8)

for v > vL = 3. Using Eqs. (4b) and (8) to simplify Eq. (6) in
the integral Eq. (7), see Appendix B for details, yields

Pwater(c) ≈ pL

(
pEex

kT

)
μ

α∗c
, μ = 2Nwα2

M

π
(
1 + α2

M

) . (9)

Equation (9) quantifies the aggregate contribution of all water
dipoles to the orientational polarization Pwater. As expected,
Pwater → 0 as c → ∞ (or Eion → ∞), since the water dipoles

become “immobilized” by the strong ionic field. Substituting
Eq. (9) into Eq. (3) gives the functional form

ε(c) = εms + p2

3kT ε0

μ

α∗c
. (10)

Equation (10) is derived in the high concentration regime
α∗c � 1, in which the electric field screening length, α∗,
may be taken independent of ionic concentration. For more
dilute regimes the electric field screening length agrees with
the Debye length and scales like 1/

√
c. Although the primary

goal of this derivation is to obtain a prediction for ε(c) in the
high-concentration regime, there is utility in developing an
approximation that is compatible with known results in the
dilute regime. To do so, we develop a composite expansion

ε(c) = εw − βL

(
3α

β
c

)
, (11a)

where the two parameters α and β are determined by
a matching condition with the high-concentration limit of
Eq. (11a),

ε(c) = εw − βL

(
3α

β
c

)
≈ εw − β + β2

3αc
, c � 1,

yielding the relation

β = εw − εms, α∗ = 2 μp2

πkBT ε0

α

β2
. (11b)

The composite expansion Eq. (11) is compatible with the
prediction Eq. (10) for ε(c) in the high-concentration regime,
see Eq. (8), as well as with the prediction Eq. (1) in the
dilute regime. In the sequel, we show that the composite
expansion Eq. (11) yields a uniformly valid and highly accurate
approximation of ε(c). An artifact of the composite expansion
Eq. (11), however, is that the excess polarization parameter
α, which is related to ion-water interactions, is described in
terms of parameters related to ion-ion interactions. Namely,
α = α(α∗,εms); see Eq. (11b).
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FIG. 1. Comparison of the predicted dielectric constant Eq. (2), with experimental data as function of ionic concentration c for various
salts. Here α is extracted directly from the slope of ε(c) at c 
 1 for each experimental dataset, and εms is fitted separately for each type of
electrolyte. (a) Data for NaCl salt from Ref. [13], compared to Eq. (2) with α = 11.5 and εms = 51.42. (b) Data from Ref. [23], where the
parameters for RbCl and CsCl salts (−−) are α = 11 and εms = 26.48 and for LiCl (−) the parameters are α = 14 and εms = 12.5. (c) Figure
2(b) from Ref. [17] where parameters are α = 15 and εms = 4.7 for KF ( −−) and α = 14 and εms = 19.70 for KCl ( .−). Solid black curve is
the prediction obtained using the field-theory approach [17].
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FIG. 2. Comparison of the predicted dielectric constant Eq. (2),
with experimental data from Ref. [24] as a function of ionic
concentration c for NaCl at various temperatures. Data for T = 5◦C
fit with α = 13.7 and εms = 15.67 (- -), for T = 20◦C with α = 12
and εms = 27.27 (–), for T = 25◦C with α = 11.5 and εms = 30.08
(.-), and for T = 35◦C with α = 10.7 and εms = 34.07 (x-).

IV. AGREEMENT WITH EXPERIMENTAL DATA

The functional relation Eq. (2) is validated against six dif-
ferent sets of experimental data, where εms is fitted separately
for type of electrolyte, and α is extracted directly from the data
from the slope of ε(c)2. Figure 1(a) presents the experimental
data of Hasted et al. [13] for an NaCl solution at 21◦. Prediction
Eq. (2) agrees very well with the experimental data over the full
range of 0 � c � 6M . Figure 1(b) presents the experimental
data of Wei et al. [23] for LiCl, RbCl, and CsCl solutions at
25◦. The predicted dielectric Eq. (2) remains accurate for LiCl
data at concentrations as high as 13M. Finally, Fig. 1(c) shows
data taken from Ref. [23], which were compiled and presented
in Ref. [17], together with the prediction obtained using the
field-theory approach [17] (solid black).

The model readily incorporates the dependence of the
dielectric constant upon temperature T through functional
relations of the parameters α and εms upon temperature. The
functional relation Eq. (2) is validated against four different
sets of experimental data, obtained from Buchner et al. [24],
for NaCl at various temperatures. Here εms is fitted separately
for each temperature, and α is extracted directly from each
experimental dataset; see Fig. 2.

V. CONCLUSIONS

We have presented a model that gives a remarkably accurate
fit for the static dielectric constant of aqueous electrolyte
solutions. Modeling the contribution of orientational polar-
ization of water molecules to the dielectric constant requires a
description of the ionic field effecting the water molecules
in the solution. In contrast to the classic approach, which

2The extracted values are in agreement with the literature values for
α in the cases they are available [13], except the literature value for
KF [13] (α = 10 ± 2), which does not describe later experimental
measurements presented in Ref. [23].

assumes that the ionic field at a point is due to a dominant
ion, the model derivation uses statistics of the ionic microfield
to characterize the ionic configuration affecting the water
molecules in the solution. This approach is naturally suited for
concentrated solutions for which the local electric field arises
from a configuration of several ions. Microfield statistics are
widely used to describe strongly coupled Coulomb systems in
plasma physics; see Ref. [25] and references within, as well
as in astronomy [19] and astrophysics [26,27]. To the best
of our knowledge, however, this is the first work to utilize a
microfield approach in electrolyte solutions.

Electrolyte solutions are highly complex mixtures, and the
model neglects numerous structural elements: water–water
interactions, water–ion-pair interactions, finite-size effects,
reaction-field effects, influence of the hydrogen bond network,
and the decrease in water molarity as ionic concentration
increases. While a systematic study of these effects is clearly
important, it is plausible that they will contribute perturba-
tively. In addition, the model accounts for possible contribution
to the static dielectric constant due to orientational polarization
of ion pairs via a fitting parameter εms, which corresponds
to the limiting dielectric constant of highly concentrated
electrolyte solutions. It is interesting to note that the fitted
parameter εms does not seem to follow a clear trend, e.g.,
within a series of alkali chloride. Recent studies have focused
on development of a theory for the value of εms in ionic liquids
[28,29]. Extension of such a theory to concentrated electrolyte
solutions and providing and recovery of the dependence of
ionic orientational polarization upon ionic concentration is the
subject of future work.

ACKNOWLEDGMENTS

The first author acknowledges support from the Technion
VPR fund and from EU Marie Curie CIG Grant No. 2018620,
while the second author acknowledges support from the
U.S. National Science Foundation through Grant No. DMS-
1409940.

p

p

Eion

Eion

Eex

Eex

ion

FIG. 3. The spherical triangle created by the unit vectors in the
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APPENDIX A: EXPLICIT EVALUATION OF THE INTEGRAL FOR Eq. (5)

Using a spherical coordinate system (r,θ,φ) for the three vectors,

Eex = (Eex,0,0), Eion = (Eion,θion,φion), p = (p,θ,φ),

the integral Eq. (5) takes the form

Plocal = p

∫
e− W

kT (cos θ − cos θion) sin θ sin θiondθdθiondφdφion∫
e− W

kT sin θ sin θiondθdθiondφdφion

, (A1a)

where

W = −pEion[cos θion cos θ + sin θion sin θ cos(φ − φion)] − pEex cos θ. (A1b)

This integral is evaluated by making the following change of variables:

(θion,θ,φ − φion) → (γ,θ,
),

where γ is the angle between Eion and p, and 
 is the vertex angle opposed to θion in the spherical triangle created by the unit
vectors in the directions of Eion, Eex, and p [22]; see Fig. 3.

The new variables satisfy

cos γ = cos θ cos θion + sin θ sin θion cos(φ − φion), (A2)

cos θion = cos θ cos γ + sin θ sin γ cos 
, (A3)

where identity Eq. (A3) follows from the law of cosines for spherical triangles.
The integral Eq. (A1), therefore, reduces to

p

∫ 2π


=0

∫ 2π

γ=0

∫ π

θ=0 e− W
kT (cos θ − cos θ cos γ − sin θ sin γ cos 
)J (θ,γ,
) sin θ sin θiondθdγ d
∫ 2π


=0

∫ 2π

γ=0

∫ π

θ=0 e− W
kT J (θ,γ,
) sin θ sin θiondθdγ d


, (A4a)

where

e− W
kT = exp

[ p

kT
(Eion cos γ + Eex cos θ )

]
. (A4b)

The Jacobian J (θ,γ,
) is computed as follows: Direct differentiation of Eq. (A2) yields

∂φ

∂γ
= sin γ

sin θ sin θion sin φ
+ sin θ cos θion cos φ − cos θ sin θion

sin θ sin θion sin φ

∂θion

∂γ
,

∂φ

∂

= sin θ cos θion cos φ − cos θ sin θion

sin θ sin θion sin φ

∂θion

∂

.

Direct differentiation of Eq. (A3) yields

∂θion

∂γ
= cos θ sin γ − sin θ cos γ cos 


sin θion
,

∂θion

∂

= sin θ sin γ sin 


sin θion
.

Thus,

J (θ,γ,
) := ∂φ

∂γ

∂θion

∂

− ∂φ

∂


∂θion

∂γ
= sin γ

sin θ sin θion sin φ

∂θion

∂

= sin γ

sin θ sin θion sin φ

sin θ sin γ sin 


sin θion
= sin2 γ

sin2 θion

sin 


sin φ
.

By the law of sines for spherical triangles,

sin θion

sin 

= sin γ

sin φ
,

Hence, the Jacobian further reduces to

J (θ,γ,
) = sin γ

sin θion
.

Substitution of the Jacobian in the integral Eq. (A4) yields

Plocal = p

∫ 2π


=0

∫ 2π

γ=0

∫ π

θ=0 exp
[

p

kT
(Eion cos γ + Eex cos θ )

](
cos θ − cos θ cos γ −�������

sin θ sin γ cos 

)

sin θ sin γ dθdγ d
∫ 2π


=0

∫ 2π

γ=0

∫ π

θ=0 exp
[

p

kT
(Eion cos γ + Eex cos θ )

]
sin θ sin γ dθdγ d


.
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This integral can be evaluated directly as is done with the standard evaluation of the integral for the Langevin function; see, e.g.,
Ref. [21, p. 215] for details.

APPENDIX B: ASYMPTOTIC EXPANSION OF Pwater(c) AT HIGH-CONCENTRATION REGIME

The expression for Pwater(c), see Eq. (7), reads as

Pwater(c) = μc

∫ αME∗
ion

0

(Eion/E
∗
ion)2

[
1 + (Eion/E∗

ion)2
]2

[
1 − L

(
pE∗

ion

kT

Eion

E∗
ion

)]
dEion

E∗
ion

, μc = 4Nw

π
L

(
pEex

kT

)
p.

Making the change of variables x = Eion/E
∗
ion under the integral yields

Pwater(c) = μc

∫ αM

0

x2

(x2 + 1)2
[1 − L(α∗cx)] dx.

To evaluate the integral, we split it into two regimes, from 0 to x∗ and x∗ to αM , where x∗ = γ

α∗c with γ chosen so that

1
2 | log γ | 
 γ 
 αM.

The choice of γ , and hence of x∗, is made so that for any x∗ � x � αM , the Langevin function can be asymptotically approximated
up to an exponentially small error,

1 − L(α∗cx) = 1

α∗cx
+ O(e−2α∗cx).

Therefore, ∫ αM

x∗

x2

(x2 + 1)2
[1 − L(α∗cx)]dx =

∫ αM

x∗

x2

(x2 + 1)2

[
1

α∗cx
+ O(e−2α∗cx)

]
dx = α2

M

1 + α2
M

1

2α∗c
+ O

(
1

c3

)
.

On the other end, 1 − L(α∗cx) � 1. Thus,∫ x∗

0

x2

(x2 + 1)2
[1 − L(α∗cx)]dx �

∫ x∗

0

x2

(x2 + 1)2
dx = (x∗)3

3
+ O((x∗)5) = O

(
1

c3

)
.

Overall, we find that for c � 1,

Pwater(c) = α2
M μc

1 + α2
M

1

2α∗c
+ O

(
1

c3

)
.
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