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Active cage model of glassy dynamics
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We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage
experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits
scale invariance properties for the small-displacement distribution that echo experimental observations. We predict
the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that
the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring
during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.
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I. INTRODUCTION

Time-dependent density correlations in an atomic or col-
loidal glass former exhibit, as temperature is decreased (or
as density is increased), a two-step relaxation. The short-
time B relaxation is associated with localized motion of the
particles while the longer-time « relaxation is associated with
cooperatively rearranging regions (CRR). This behavior of
the dynamic structure factor is well accounted for [1], at
sufficiently high temperatures, by the mode-coupling theory
(MCT) [2]. MCT being an approximate theory it does have
its share of pitfalls, but these are well-documented, and it
is fair to say that they are not fully understood, let alone
on intuitive grounds. One such prediction is the existence
of a critical temperature below which the «-relaxation stage
extends to arbitrary large times. This is often connected to the
difficulty of capturing the dynamics of the CRRs, which is
built from rare and intermittent events. One recent research
direction has been to brute-force improve the theoretical
basis of the MCT, and recent promising results [3] seem
to indicate that this may pay off to eliminate some of its
unpleasant features. Regarding the dynamics (diffusive versus
arrested) of an individual tracer [4,5], similar efforts are being
made at looking beyond the existing MCT. The most recent
experiments, instead of focusing on the relaxation of collective
density modes, are based on the observation of individual
tracers. Tracking experiments have been conducted by many
different groups, both in actual colloidal systems [6—11] as well
as in silico [12,13]. The increasing accuracy of these methods
allows one to measure the probability distribution function of
the tracer displacement with unprecedented statistics [14].

To analyze and interpret tracking experiments, minimal
phenomenological models have been developed. By using a
continuous-time random walk (CTRW) description, glassy
systems have been studied numerically [15,16], and exact an-
alytic results have been obtained for the Van Hove correlation
function [13]. The CTRW considers instantaneous transitions
between locally stable positions, thus decoupling the diffusion
in a confined environment from the cage jumps [17]. Some
model variations include the existence of a multiplicity of
timescales in the cage dynamics [18-21], whereas others,
which include a single waiting timescale, successfully re-
produce many features of the dynamics of tracers in glassy
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systems [13,22]. Despite the success of these minimal models,
the existence of a scale invariant regime for the displacement
distribution, as observed experimentally [6,8,10], is still an
open issue. The main purpose of this work is to show that this
scale invariance feature can emerge from a phenomenological
description.

Note that systems other than glasses fall within the scope
of our study, such as sheared fluids [23-26] or interacting self-
propelled particles [27-31]. For these systems glassy behavior
is generally investigated through the self-intermediate scat-
tering function (SISF). In the case of self-propelled particles
it has been observed that the onset of glassy behavior is
progressively shifted when self-propulsion increases. Even
though a direct extension of MCT is enough to account for
this phenomenon [32-34], an effective one-body dynamics
that clearly determines how self propulsion affects the glassy
behavior is still missing. We present here a minimal model
that describes such one-body dynamics. By investigating the
displacement distribution, we show that it displays scale
invariance for small displacement, and we determine how the
onset of glassy behavior is linked to self propulsion. Finally,
we introduce an effective mean-field potential to bridge over
back to a system of interacting particles.

II. MODEL

Our model is based on a common picture that has emerged
for glassy and granular systems connecting the slowing down
of the dynamics to the cage effect [13,18,20,36,37]. The
escape of the particle from the local confinement stems from
structural rearrangements of the system. The activation of such
sudden and irreversible reorganization can be of three types:
spontaneous thermal fluctuations, external shear, or internal
self-propulsion. In what follows, we refer to such a process
as a directed event, by contrast to the passive diffusion of the
particle within the cage, whose precise structure is given by
collective many-body effects of the global system.

We consider a particle confined within a harmonic cage
of typical size o. We introduce the timescale tr quantifying
the time needed by the particle to explore the cage. The
fluctuations of the particle in the cage are driven by a
noise of amplitude D = o2/7z. To account for structural
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rearrangements, we assume that the central position of the
cage is subjected to random shifts. This is to mimic the mod-
ification of the metastable state explored by the particle. The
cage hops instantaneously by a random distance, which is
exponentially distributed with a characteristic hopping length
. The time between two consecutive hops is also exponentially
distributed, with a mean value 7. After a cage rearrangement,
the particle relaxes toward the new cage position. We regard
such relaxation as an equilibrium process. The fluctuation-
dissipation theorem enforces that the relaxation time should
equal the typical time of exploration tg. We end up describing
the one-dimensional dynamics of the particle position x as

dx x(t) — xo(1) dxg

o + &6(1), e En(®), (D
where &g is a zero-mean Gaussian white noise with cor-
relations (£g(¢)&g(¢")) = 2D8(t — t'). More realistic higher-
dimensional generalizations do not induce any physical differ-
ence with the one-dimensional modeling we adopt here.

Our motivations for the explicit form of the noise &y acting
on the cage are twofold. One the one hand, we expect the rare
intermittent events behind the o relaxation to be unable to
build up uncorrelated Gaussian statistics. On the other hand,
we choose a specific form that has the advantage of allowing for
a closed-form analytic solution that will ease the subsequent
analysis. It leads us to consider a zero-mean non-Gaussian
white noise with cumulants,

2n
(éng(t1) . . . Eng(t2n))c = (2n)!8T—082,1(t1, b)), (@)

We decouple caging and hopping dynamics, so that &g and &xg
are uncorrelated processes. For symmetry reasons, only the
2n-time correlation functions of &y are nonzero. Additional
arguments on the robustness of our results with a generic-time
symmetric non-Gaussian white noise is given in Appendix A.
We will explicitly demonstrate that the scale invariance of
the small-displacement distribution is indeed insensitive to the
specifics of the hop distribution, but the exponential crossover
regime to a Gaussian rests on a typical exponential distribution
of cage hops.

We distinguish the passive and active fluctuations of the
particle. The former are associated with the confined motion
of the particle in a steady cage, as measured by D. The latter
are induced by the cage hops, thus describing the motion
in a nonconfined environment characterized by the diffusion
coefficient Dp = 52/10. The coexistence of both Gaussian
and non-Gaussian noises is crucially important to enhance
non-Gaussian nature [38].

III. STATISTICS OF DISPLACEMENT

A. Fourier distribution of displacement

We are interested in the fluctuations of the displacement
Ax(t,t;) = x(t +t;) — x(¢;), which no longer depends on the
initial time of measurement #; in the limit ; — oo. We define
the probability distribution of displacement in the Fourier
domain as

P(g,t) = lim (! 14501y, 3)

t;—00

PHYSICAL REVIEW E 94, 012610 (2016)

Since the passive and active processes are uncorrelated, we
separate the displacement distribution as P = PpP,, where
the subscripts P and A refer, respectively, to passive and active
contributions. The passive distribution is Gaussian, thus being
entirely determined by the passive mean-square displacement,

Po(q,t) = e*(qa)zfr’ )

where f; = 1 — e™"/™, We express the active distribution as

Pa(g.1) = lim <CXP [iCI/ dSh(S)ENG(S)D, (5
i—> 00 0

where
h(s) = [1 — e WH=/®1Q(t; + 1 — 5)O(s — 1;)
e IR — TRt — ), (6)

with ® being the Heaviside step function. We evaluate the
average in Eq. (5) with the expression of the characteristic
functional of the white non-Gaussian noise &g [39-41],

0 . 2n o0
Pa(g.t) = lim exp{z%/ ds[h(s)]z”} @)
0

f;—00
n=1

L L[®  lgehs)P
_t,.li“(}oe"p{_?o /0 d31+[qsh(s)]2}’ ®)

where we have used the explicit form of the noise cumulants
in Eq. (2). We compute the integral in Eq. (8) by using the
explicit expression of 4 in Eq. (6), and we take the limit of
large ¢; after the integration. From this, we arrive at the result:

. wRqgE/T0 | get
P(g,t) = expy ————— | — — arctan(qge
- p{ 1+<qe>2[rR “ f’)“
_ R (ge)?
X 1+ (qefi)] 70 T =07, ©)

This result contains all the statistical information related to the
displacement Ax(¢). In particular, all the moments are defined
as

"B

(Ax"(D)) = lim (Ax"(1,1)) = (10)

00 aiqy

q=0

B. Mean-square displacement and non-Gaussianity

As a first insight into the dynamics of our model, we
study the time evolution of the second moment (Ax?2(t)), i.e.,
the mean-square displacement (MSD). Its expression can be
computed from Eq. (10):

MSD = 2(D — Dp)tr fi + 2Dat, an

The behavior of the MSD is controlled by three independent
parameters {D, D, tr}. It is diffusive at short and long times
with diffusion coefficients D and Da, respectively [Fig. 1(a)].
The predictions for a steady and a hopping cage coincide at
times shorter than t* = Ty D/Da = 1o(0/¢)?, referred to as
the passive regime. This shows that the effect of the active
fluctuations is hidden as long as the typical distance covered
by the cage €4/t/7y is smaller than the cage size 0. Between
the two diffusions, a plateau regime appears when Dy < D,
as an evidence of the cage effect, and we observe a transient
superdiffusion if Da >> D. The time when the MSD deviates
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FIG. 1. Time-evolution of (a) the mean-square displacement (MSD), and (b) the non-Gaussian parameter (NGP). The MSD saturates
for a steady cage (solid black line), corresponding to a vanishing NGP. (c) Comparison of the theoretical prediction of the distribution of
displacement with that of colloidal particles at density ¢ = 0.429 taken from Ref. [10]. (d) Theoretical distribution of displacement scaled by
the standard deviation of the central Gaussian part corresponding to a binary Lennard-Jones glass-forming mixture for different temperatures

at the o relaxation time [35]. See the details in Appendix B.

from the plateau, equal to #*, can be shifted to an arbitrary
large value. Conversely, the time when superdiffusion arises,
also equal to #*, can be arbitrarily short [30]. Our model
contains the existence of ballistic directed events, as assessed
by the superdiffusion, even if there is no persistence time in
its formulation. The asymptotic behaviors of the MSD are
summarized in Table I.

Beyond MSD, the fourth moment is generally investigated
to identify non-Gaussian features of the displacement
statistics. More precisely, the deviation of the displacement
distribution from Gaussian is quantified by the non-Gaussian
parameter:

(Ax*)

NGP= ——-> -1

3(Ax2)2 (12)

In our model, deviations from Gaussian behavior are governed
by atypical events in which rare but important excursions
occur. In that respect, the NGP characterizes the amount of
directed events in the particle trajectory, probing the structural
rearrangements of the system. Again using Eq. (10), its
calculation is straightforward:

7o 2¢7% —9¢ i 4 18¢ ® — 114 &
NGP = -* S
[(D/Da — 1) ft +1/tR]

3‘L'R
Its evolution is determined by {Da/D,tr, 79}, Where 7y only
affects the amplitude. The NGP vanishes at short and long time,
corresponding to the passive and active Gaussian regimes,

13)

TABLE I. Different regimes in the time evolution of the MSD
and the NGP.

Dy« D LR R Kt K ra/D/Dy  wD/Dp Kt
MSD 2Dt 2Dt 2Dt
NoP () am(g) "
Dyx>»D t KwD/Dy RD/Dy <t K TR R L1
MSD 2Dt 2ar” 2Dt
NGP 2 (Laty? x m

respectively. It takes positive values in the transient regime,
for which the distribution is broader than Gaussian [Fig. 1(b)].
When Dp < D, the peak time equals #*, namely the time
when the MSD deviates from the transient plateau, as observed
in colloidal systems [6,8,10,42,43], and the peak value reads
(e/0)*/2. When Da > D, there is a plateau regime around
the peak value, equal to 27y/tr. In both cases, the NGP starts
to decrease when the long-time diffusive regime sets in. These
asymptotic behaviors are also summarized in Table 1.

C. Distribution of displacement

To characterize further the non-Gaussian behavior of the
displacement fluctuations, we have to deal with the complete
form of the spatial Fourier transform Eq. (9). Even though
a complete Fourier inversion is not possible analytically, we
can deduce several useful informations by looking at limiting
cases, where approximations make calculations easier.

First, we observe that the active part of distribution in Eq. (9)
can be simplified in the small and large g limits:

Palgu) ~ exp [—(qe)”—“(i—ﬁﬂ, (14)
qekl 70 \ TR

Pa(g,t) ~ e '™(glef,) /™. (15)
gex>1

Taking ¢ = 1/o, it follows that the total distribution P is
Gaussian at all times when ¢ < o, whereas the non-Gaussian
features affect the large-time relaxation when ¢ 2 o, as
reported in Table II.

TABLEII. Different regimes in the time evolution of the Fourier-
displacement distribution at ¢ = 1/o. It is always Gaussian at times
shorter than the terminal relaxation time t* = g D/Dj,, and some
non-Gaussian features appear at later times if ¢ 2 o.

P(1/o,1) Ko £>0
t Lt e’ fi e’ fi
£>> e~ Dat ef(qo)zﬁ*t/ro(m|8f[)*rR/ro
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The displacement distribution is also always Gaussian at
asymptotically short and long times, corresponding, respec-
tively, to the passive and active diffusions. In the intermediate
transient regime, it is Gaussian for small and large displace-
ments, with a non-Gaussian crossover in between.

The active distribution Py has a Gaussian behavior for
large displacements and large times, as a signature of the
central limit theorem. It behaves like a power law for
small displacements with an exponential cutoff of the form
e~ 14x1/¢f) Mathematically, the exponential tails are due from
the pole in the last term of Eq. (9). Therefore, the total
distribution P is Gaussian at short and large displacement
with exponential tails in between. The power-law behavior is
only observed in the deviation from the central Gaussian part,
as discussed below. To determine the deviation from the large
Gaussian part, we expand In P for small ¢ as

<Ax22<r>>q2 N (Ax*()) —43<Ax2(r)>2q4
+0(g). (16)

In Bg,1) = —

It follows that the transition between the large Gaus-

sian part and non-Gaussian features appears at Ax ~
1/2

[((Ax* (1) /(AX* (1)) — 3(Ax>(1)))/2] "

The accessible range of displacements for experimental and
simulated systems does not always allow one to observe the
large Gaussian part of the distribution (they can clearly be
seen, though, in Ref. [10]). The existence of directed events is
quantified through the deviation from the central Gaussian, that
is via the crossover between the two Gaussian parts. Within our
model, it is given by exponential tails, as commonly reported in
glassy systems [13], of the form e~ !2*/¢/) To quantitatively
test the predictions of our model with experiments and
computer simulations, we have compared our results with
existing data for a dense suspension of colloidal particles [10]
and a binary Lennard-Jones mixture [13,35]. Our model
perfectly fits these results, as shown in Figs. 1(c) and 1(d). For
the colloidal system, we reproduce the time evolution of the
distribution with parameters {ty/tr,&/0} = {25,6} [Fig. 1(c)].
In the Lennard-Jones mixture, the measurements are taken for
four temperatures at the o relaxation time, corresponding to
t* within our model (see below). The central Gaussian part
barely varies, whereas the tails decrease with temperature.
We identify the temperature with the diffusion coefficient
D of the confined motion, and we adjust the corresponding
exponential tails with ¢ = {0.2,0.25,0.29,0.33} from left to
right in Fig. 1(d). Available data supporting our choice
of an exponential cage-hop distribution, however, extend
over a single decade, and it is likely that other choices of
distribution could fit the data. More detail on the analysis on the
experimental and numerical data is provided in Appendix B.

To further characterize the departure from the central
Gaussian, we investigate the transition between the central
Gaussian part and the tails by looking at the intermediate-
displacement part of the distribution Py, which does not
include the exponential tails. We focus on the case 1y >
TR, namely when the time needed for the particle to relax
within the cage is shorter than two successive cage hops. We
start considering the Fourier distribution of displacement at
large wave number. From Egs. (4) and (15), we deduce the
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expression of this distribution in the limit ge > 1:

Plq.t) ~ e it (glefyT/m )
gex>1

We perform the inverse Fourier transform of Eq. (17) to obtain

To — TR 1' (x/a)2
20 20 4f,

P(xvt) ~ IFI[ } = int(xat)’ (18)
xr<Le
where | F; is the confluent hypergeometric function of the
first kind. It depends on the hopping statistics only via the
typical waiting time 1, between two successive cage hops,
thus being independent of the hopping length ¢. Besides,
this result remains unchanged for any hopping distribution.
This suggests that the intermediate-displacement distribution
is an appropriate probe to reveal universal behavior in glassy
systems.
The asymptotic behaviors of Py, are given by

R\ (/0)?
—(1— 5)7

Pint(-xst) NO e 4 ) (19)
R\ (x/0)? L
Pin(x,1) i 1— o) a7 8r/m»  (20)
t

where

~ (i M (T 21
=z ( —Z>sm<g>. Q1)

Therefore, the central part is Gaussian with standard deviation
o+/2f:/(1 — 1r/79), and the departure from this Gaussian is
given by power-law tails with exponent tg/79 — 1 [Fig. 2].
Note that P;, only characterizes the deviation from the central
Gaussian part, so that it does contain the exponential tails
appearing for larger displacement. The typical length scale X
of the crossover between the Gaussian central part of this distri-
bution and the power-law tails can be obtained by considering
the small-displacement distribution for displacements scaled

by x*(t) = o4/2f;/(1 — tr/70). From Egs. (19) and (20), we
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FIG. 2. Distribution of small displacement scaled by x*(¢) =
o/2f;/(1 —r/70) in Eq. (18). The central part is Gaussian (solid
black line) with power-law tails (dashed lines). (Inset) Crossover
value X between the central Gaussian part and the tails of the
distribution as a function of 7/ tx.
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determine its expression as

1—u o
X(u) = \/TW[—2(gu)"'], (22)

where W is the principal branch of the Lambert W function
defined by

7= W(z)e"?. (23)

We plot X as a function of 7/ tR in the inset of Fig. 2.

IV. SCATTERING FUNCTION

The comparison with glassy dynamics can be extended
further by investigating the time evolution of the Fourier-
displacement distribution P (g,t) at some fixed wave number,
yet to be determined. To this end,we can regard P(g,?) as an
approximation for the sISF in a N-body system,

N
LN gt
Fs(g,t) = 5 D_el0=s ), (24)

i=1

In that case, the relevant choice for ¢ would be the value at
the first peak of the structure factor, which corresponds to
the inverse of the typical interparticle distance. Provided that
caging stems from the steric hindrance, the typical distance
between particles should be encoded in the cage size. This
leads us to choose 1/o as the appropriate wave number.
There is a transition from a single to a two-step relaxation
of the sISF as Da/D decreases [Fig. 3]. This is typical

Left

wall

| | | |
1072 Time 102 10~2 Time 102

FIG. 3. Flow curves of the Fourier-displacement distribution at
q = 1/o0. (a) The transition from a single to a two-step relaxation
as Da/D decreases is the hallmark of glassy systems. There is no
terminal relaxation for a steady cage (solid black line). The curves
are Gaussian at all times when ¢ < o (dotted lines). (Inset) For
the two-step dynamics, we scale the time by the terminal relaxation
time to reveal an exponential master curve (dot-dashed line). (b) The
non-Gaussian statistics affects the relaxation when ¢ 2 o (dashed
lines). (c) The curves such as & > o fall into the left wall e~'/™+/i
(dashed line), reflecting the dynamical slowing down as the cage hops
become less frequent.
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of the behavior observed in glasses, the two-step dynamics
being reminiscent of the § and « relaxations. The sISF for
a steady cage relaxes within a time g to a nonzero value,
equal to the transient plateau value of the sISF for a hopping
cage. Such behavior is similar to the kinetic arrest reported
in glasses, when the particle evolves in a metastable state
for an infinite long time. The plateau value reads e~ for
an arbitrary wave number. Cage rearrangements occur in the
active case; then the particle overcomes the local confinement.
The terminal relaxation for single and two-step dynamics
starts at time #*, namely when the passive regime ends. For
a two-step dynamics, the terminal relaxation occurs when the
NGP reaches its peak value [10,43—47], and it can be shifted
to an arbitrary long time [27].

The sISF is Gaussian at all times when ¢ < o, the structural
relaxation thus being entirely determined by the MSD. In
such a case, the long-time behavior is independent of Dj
when scaling the time by ¢*. For a two-step relaxation, the
corresponding master curve e~(+/!") is exponential [Inset of
Fig. 3(a)]. A stretched exponential is usually reported, with
an exponent close to one [24,25]. Our result suggests that
one would clearly observe exponential behavior when the
terminal relaxation time ¢* is large compared with the time
tr of the first relaxation. The non-Gaussian fluctuations play
a role in the dynamics if ¢ 2 o, the higher-order statistics of
the displacement thereby affecting the relaxation of the system
[Fig. 3(b)].

A left wall appears in the flow curves if g < 79, namely
all the flow curves such that ¢ 2 o fall onto a master curve
[Fig. 3(c)]. The expression of the left wall reads e~/ w—/i the
associated terminal relaxation time being 7y. The existence of
a left wall is reminiscent of the dynamics for in silico shear
glasses [26]. The sheared region close to the left wall reflects
the slowing down of the relaxation as the cage hops become
less frequent, that is when tj increases. On the opposite, the
particle does not relax toward the center of the cage between
two successive hops when tg 2 7o, in which case there is no
left wall because the transient caging does not lead to any
dynamical slowing down.

V. RELATION WITH MANY-BODY SYSTEMS

We now try to understand how our one-body approach
can be connected with multicomponent systems. Using the
expression of the Fourier-displacement distribution in Eq. (9),
we can deduce its time evolution:

~ D
9 P(g.1) = —q2[De"/’R 4 Dad

—1+(q8ﬁ)2}f’(q,l)- (25)

It follows that the displacement distribution obeys the follow-
ing master equation:

atP(xst) = %aix/dyveff(x _)’J)P(y,t)

+ Desr(1)32, P(x,1), (26)

where for later convenience we have introduced a reference
density prf and a friction coefficient ¢. The time-dependent
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diffusion coefficient D and effective potential Vg read

Des(t) = De /™, (27)

e x|
210ref.’:0 P <_ E_ff> ' (28)

Our aim is to establish that the one-body problem can be
mapped into a system of N particles with diffusion coefficient
D.¢ and interaction potential Vg, which are time-dependent.
The corresponding dynamics of a particle i reads

Verr(x,1) =

dxi

1 N
i D0, Veri(xi — x;(1),1) + V/2Derr(D& (1), (29)
j=1

where & is a zero-mean Gaussian noise with correlations
(Ei(1E;(t")) = 8;;6(t — t'). Note that Eq. (29) describes a
nonequilibrium dynamics since the correlations of the noise
are different from the prediction of the fluctuation-dissipation
theorem. The self-intermediate scattering function Fs(q,?) is
defined as

Fs(q.t) = i i(eiq(xl'(t)—xz'(o))) (30)

nE N i=l '

The inverse Fourier transform of Fs(q,?) is the self-part of the
Van Hove correlation function Gs(x,?)

| X
Gs(r,) == > 0lr +x(0) —x@)). G
i=1
The n-body correlation functions of the density are generally
connected via a hierarchy of equations. The simplest closure
scheme, referred to as the random phase approximation (RPA),
consists in truncating this hierarchy at the Gaussian order,

9 Gs(x,1) = %E&/dyVeff(x — ».0)Gs(y.1)

+ Desr(1)d2, Gs(x,1), (32)

where pp = N/L is defined in terms of the system size L. We
identify the density of particle py with the reference density
Pref introduced earlier, and we choose Deg and Vg to obey
Egs. (27) and (28), respectively. It follows that Egs. (32) and
(AS) describe the same dynamics, from which we deduce that
the distribution of displacement for the one-body dynamics
equals the Van Hove correlation function for interacting
particles within the RPA. Likely, the Fourier-displacement
distribution corresponds to the self-intermediate scattering
function. The effective potential arising from the non-Gaussian
statistics of the cage’s dynamics can be regarded as a mean-
field potential resulting from the interaction between many
particles. Such potential describes repulsive interactions with
a very soft core, thus allowing the overlap of the particles
with a finite cost of energy [48]. The range of interaction
increases with time as f;, namely it saturates within a time tg
to . Therefore, there is a transition between: (i) a diffusive
dynamics with very short interaction, (ii) a dynamics with a
very small diffusion coefficient and a larger interaction range,
corresponding, respectively, to times shorter and longer than
tr. The existence of interactions is a direct consequence of
the cage rearrangements within our model. The explicit form
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of the potential is determined by the statistics of the cage
hops, which are exponentially distributed in the present case.
This suggests that the non-Gaussian properties of the particle
dynamics hold information about the details of interaction
between the particles.

VI. DISCUSSION

We have presented a minimal model of a particle immersed
in a glassy system, based on an active cage with non-
Gaussian dynamics. By focusing on a single particle we
are able to decouple complex phenomena that arise from
collective effects from the sole dynamics of the particle. Of
course, this approach is not intended in understanding how
collective phenomena emerge but rather to provide a vivid
picture explaining experiments on glassy systems. Despite
the simplicity of this model, we have demonstrated that
its dynamics encompasses the complex behaviors arising
in glassy systems and that the onset of glassy behavior is
shifted by the active component of the dynamics, in line
with numerical evidence [27,28,30,31]. Moreover, we have
highlighted the scale invariance of the small-displacement
distribution. The dynamics of tracers in living systems shares
common features with the glassy dynamics [49,50]. The
tracers can be either attached or embedded in a network of
filaments, whose rearrangement is induced by nonequilibrium
processes, thus monitoring transitions between locally stable
configurations [51,52]. The minimal approach of intermittent
dynamics that we offer in the present paper should also be
relevant for a large variety of biological systems [53—60], as
a useful tool to understand the existence of a scale-invariant
regime in the tracer displacement [49,61,62].
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APPENDIX A: GENERALIZATION TO AN ARBITRARY
HOPPING DISTRIBUTION

We introduce the distribution W/, which prescribes the
distance of the instantaneous hops experienced by the cage.
We assume that the waiting time between two consecutive
jumps remains exponentially distributed with mean value 1.
Hence, the cumulants of &yg read

(gNG(tl) .o gNG(tn))C = ansn(tla o atn)s (Al)

where
1
K, = t—/deW(xo)x(')’. (A2)
0

Note that we recover Eq. (2) for an exponential distribu-
tion W(xg) = e 10l/¢ /g, as expected. We express the active
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distribution in terms of the cumulant coefficients K,, as

ﬁA<q,r>=exp[Z(quz (S oo )}

n=1
We deduce the time-derivative of the total distribution,

(lq)”K d
dt

(A3)

8 P(g,1) = —q* Deir(t) P(g,1) + Z

<f’ /dSﬁ S>P(q 1),
where

f —t/tR pn— n n—
dt(t /dsft v)zet/ =

By using Egs. (A2) and (AS5), we write the second term in the
righthand side of Eq. (A4) in terms of the hopping distribution
W as

(A4)

(AS5)

[0; + ¢° Dext] P

1 > (igxo)" ., &
?ﬁ/deW(xo); - P
(A6)

f dxgW(xo)[e' 1™/ —1]P (A7)

ofz

W(qf) - 11P (A8)

sz
where we have used f dxoW(x9) = 1. Our aim lies in deriving
the distribution for small displacements. To this end, we
consider Eq. (A8) in the large-g limit. Provided that the
hopping distribution W is not a § function, its Fourier
transform should decay to zero for wave numbers sufficiently
large compared with the inverse typical hopping length 1/¢.
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In this limit, we express Eq. (AS8) as

3 Pq.t) ~ —[qu t 1 ]Pw,t). (A9)
ge>1 ft

The solution of the above equation is consistent with Eq. (17).

However, the power-law prefactor in g in Eq. (17) can only be

obtained after a careful analysis of the asymptotics of W(q f;)

(and it shows up only if WW decays exponentially or slower at

large distances).

APPENDIX B: DATA ANALYSIS

We present in this appendix the analysis of the distribution
of displacement obtained from two different systems: (i) a
binary Lennard-Jones glass-forming mixture [13,35] and (ii) a
dense suspension of colloid particles [10]. In the two systems,
we can reproduce both the central Gaussian part and the
exponential tails as reported in Figs. 1(c) and 1(d).

For the Lennard-Jones mixture, we scale the displacement
distribution by the standard deviation of the Gaussian central
part. The measurements are taken for four temperatures at
the o relaxation time, corresponding to t* = g D/ D within
our model. We identify the temperature with the diffusion
coefficient D of the confined motion, leaving us with three free
parameters {tg,7o,€}. The timescales {tr,79} = {0.05,1.05}
are taken as the same for all temperatures, and we adjust the
corresponding exponential tails with ¢.

For the colloidal system, the measurements are taken at
five different times. We fix the ratio 7r /7o from the deviation
of the central Gaussian part, and we determine {o,tg, 7T} =
{0.05 um, 105,25 x 10° s} by fitting the central Gaussian
parts of the distribution. Eventually, we adjust the exponential
tails with ¢ = 0.3 um. The time evolution of the distribution
is reproduced with the same set of parameters.
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