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We study the growth kinetics of glassy correlations in a structural glass by monitoring the evolution, within
mode-coupling theory, of a suitably defined three-point function χC(t,tw) with time t and waiting time tw . From
the complete wave-vector-dependent equations of motion for domain growth, we pass to a schematic limit to
obtain a numerically tractable form. We find that the peak value χP

C of χC(t,tw), which can be viewed as a
correlation volume, grows as t0.5

w , and the relaxation time as t0.8
w , following a quench to a point deep in the glassy

state. These results constitute a theoretical explanation of the simulation findings of Parisi [J. Phys. Chem. B 103,
4128 (1999)] and Kob and Barrat [Phys. Rev. Lett. 78, 4581 (1997)], and they are also in qualitative agreement
with Parsaeian and Castillo [Phys. Rev. E 78, 060105(R) (2008)]. On the other hand, if the quench is to a point
on the liquid side, the correlation volume grows to saturation. We present a similar calculation for the growth
kinetics in a p-spin spin glass mean-field model where we find a slower growth, χP

C ∼ t0.13
w . Further, we show

that a shear rate γ̇ cuts off the growth of glassy correlations when tw ∼ 1/γ̇ for quench in the glassy regime and
tw = min(tr ,1/γ̇ ) in the liquid, where tr is the relaxation time of the unsheared liquid. The relaxation time of the
steady-state fluid in this case is ∝γ̇ −0.8.

DOI: 10.1103/PhysRevE.94.012607

I. INTRODUCTION

A. Background

In systems in which the formation of the equilibrium
crystalline phase is easily evaded, and a glass forms without
rapid cooling, the liquid-glass transition can usefully be viewed
as a thermodynamic transition. The order parameter that
distinguishes a glass from a liquid, as established many years
ago [1–3] by analogy with the case of a spin glass, is the
time-persistent part of the density autocorrelation function.
The corresponding susceptibility, which measures correlations
of glassiness, must involve four densities [4]. An intense search
using such higher-order correlators has established in theories
[5–9], “equilibrium” experiments [10,11], and simulations
[12,13] the existence of a dynamic length scale that grows
upon approaching the glass transition. In conventional critical
phenomena, a single diverging correlation length governs
the critical-point singularities in various quantities such as
order parameter, susceptibility, and specific heat [14,15]. For
glass, several length scales have been defined [4,7,13,16–24]
whose interrelations or independence are a subject of active
discussion [25]. Our analysis in this paper concerns the
extension of the dynamic length scale, extracted from three- or
four-density correlators, to the nonstationary regime following
quench. By equilibrium in this paper, we mean without a
quench. We shall assume we are working with good glass
formers that display a glass transition independent of cooling
rate.

If we treat glass as a phase, with an order parameter, we
can then ask how glassiness grows following a quench. The
theory of the domain growth of an ordered phase after sudden
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quench from the disordered phase is one of the landmark
achievements of nonequilibrium statistical mechanics [26].
Analogously, if there exists a length scale describing the spatial
extent of glassy correlations, it too must grow as one waits
longer in the final quenched state. The issue for glass was first
explored by Parisi in the context of a Monte Carlo simulation
of a binary mixture of soft spheres [27]. Such growth of a
length scale was also found by Parsaeian et al. [28] in their
study of the domain growth dynamics of glassy order within
the molecular-dynamics simulation of a binary Lennard-Jones
system. Aging has also been observed in a simulation study
of polymer dynamics [29]. However, a detailed theoretical
understanding of these findings, that is, a theory of the growth
kinetics of a glass, emerged only recently [30] in an MCT
framework.

Aging in structural glasses has been investigated through
the study of the two-point correlator in experiments [31–33],
simulations [28,34,35], within mode-coupling theories
[36–41], and within random first-order transition (RFOT)
theory [42,43]. Related studies for spin glasses include
Refs. [20,44–48]. Franz and Hertz [49] showed that the
out-of-equilibrium dynamics of the Amit-Roginsky φ3 model
[50] contains the aging dynamics observed in structural glasses
and in many spin glasses.

Mode-coupling theory (MCT) has been remarkably suc-
cessful in describing glassy dynamics, notwithstanding the
fact that the “MCT glass transition” to a nonergodic state
is ultimately avoided in real systems as a result of activated
processes. Taking the input of the static structure factor alone,
MCT offers parameter-free predictions of the dynamics and
growth of the relaxation time of dense liquids at equilibrium.
Therefore, it becomes imperative to extend MCT to the case
of an aging system as the first step toward a theory of the
coarsening of glassiness. However, obtaining the equations
of motion for the aging regime poses challenges, as time
translation invariance is lost. Most conventional approaches
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[36,51–54] to derive MCT use the fluctuation-dissipation
relation (FDR) at some point, explicitly or implicitly. The
field-theoretical technique [36–38,55,56] is especially well
suited for this purpose as it does not assume the FDR. We use
this technique to obtain the final equations for correlation and
response functions starting with the hydrodynamic equations
of motion. The problem of satisfying the equilibrium FDR
within this approach at one-loop order has been extensively
discussed [57–60]. However, we are interested in the schematic
version of the theory, within which there is no problem.
Moreover, if we replace the response function in the final
equation by the correlation function using the FDR, the
equilibrium results are reproduced.

As the theoretical system size is infinite, the dynamics
following a quench in our theory will be characterized by
a correlation length and total susceptibility that will grow
forever, as is familiar from the domain growth of a conventional
ordered phase [26]. Within our calculation, of course, the phase
in question is the “MCT glass.” However, if we apply a small
shear on the system, it will reach a steady state as the waiting
time becomes of the order of the inverse shear rate. Thus
the dynamic length scale in a glassy system under shear is
restricted by the imposed shear rate. Shear enters MCT through
two important ways:

(i) In the the input quantity of the theory as shear reduces the
height of the static structure factor, which becomes anisotropic
under shear [61–63].

(ii) In the memory kernel due to advection of the wave
vector as the strength of the memory kernel diminishes when
the time scale becomes of the order of the waiting time
[55,63–65].

In principle, both contributions should be taken into
account. However, the first contribution makes a numerical
solution of the final equations exceedingly difficult, since
anisotropy increases the number of variables to be evaluated,
and the solution becomes hugely time consuming. We render
the problem tractable by making an isotropic approximation
[63,64,66] within which only the reduction in the memory
kernel enters.

The natural quantity to look at in order to obtain information
about a length scale is a certain four-point correlation function
[4] because, as we remarked, the order parameter is a two-point
quantity; however, it has been demonstrated for the equilibrium
case [7] that certain three-point correlation functions contain
similar information [7], and they are tractable to evaluate. In
practice, as was done in [7], we obtain the desired quantity
through a suitably defined susceptibility.

B. Results

The main results of this work are as follows:
(i) If the quench is from the liquid state to deep in the

glassy regime, the peak value χP
C (tw) of χC(t,tw), which has the

interpretation of a correlation volume, grows without bound as
we wait longer in the final state (Fig. 3), whereas this growth
saturates when the quench is to the liquid side (Fig. 4).

(ii) The correlation volume χP
C (tw) grows as t0.5

w , and
the relaxation time tpeak, defined as the time when χC(t,tw)
attains its peak, goes as t0.8

w when the quench is to the glassy
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FIG. 1. The correlation function C(t,tw) is shown as a function
of t − tw for various waiting times tw shown in the legend. The
decay with (t − tw) becomes progressively slower with increasing tw .
The final parameter values are T = 1.0 and λ = 2.01. Inset: Scaling
t − tw by tr (see the text for the definition) yields a data collapse in the
α-relaxation regime; we have defined this as “bare aging.” The waiting
times for various curves are same as in the main figure. However, no
such data collapse is seen in the behavior of the three-point function,
Fig. 6.

regime (Figs. 6 and 2). These results rationalize the numerical
experiments on domain growth [27] and aging [34].

(iii) If the quench is to a temperature still on the liquid side,
the growth saturates for tw beyond the equilibrium relaxation
time tpeak. The resulting finite value χP

C of the correlation
volume goes as ε−1, where ε is the distance from the critical
point, and as t0.56

peak (Fig. 5) when expressed in terms of the
relaxation time.

(iv) From the two-point function C(t,tw) we can extract a
relaxation time tr where C(t,tw) becomes 1/e. If we scale time
by tr , C(t,tw) shows data collapse, which we define as “bare
aging” (inset of Fig. 1) [67]. However, no such data collapse
is seen when χC(t,tw) is scaled with χP

C and time with tpeak

(Fig. 6). This suggests that describing an aging system in terms
of an evolving effective temperature misses some essential
physics.

(v) The mean-field model of the p-spin spherical spin glass
is amenable to a similar treatment, and it displays a much
slower growth of the correlation volume, χP

C ∼ t0.13
w .

(vi) Imposing a nonzero shear rate γ̇ cuts off the growth
of the correlation volume when tw ∼ 1/γ̇ for quench to the
glassy regime and tw = min(tr ,1/γ̇ ) for quench in the liquid
side (Figs. 8 and 9). The relaxation time tr is independent of γ̇

when γ̇ tr � 1, and that of the steady-state fluid goes as γ̇ −0.8.
A short account, presenting some of these results, appeared

in [30]. The rest of the paper is organized as follows: In Sec. II
we show the calculation for the two- and three-point correlation
functions for an aging system through the field-theoretic
method starting from the hydrodynamic equations of motion.
In Sec. III we show how to obtain the aging equations for
the two-point correlator, and the corresponding susceptibilities
within a completely schematic treatment that can also be
viewed as the MCT equations for a toy Hamiltonian. Some
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details of the numerical method to solve these equations
are presented in Sec. IV. We present the resulting detailed
predictions of the theory in Sec. V. In Sec. VI we outline the
calculation and the corresponding results for the three-point
correlator for the mean-field p-spin spherical spin glass model.
Next, in Sec. VII, we incorporate shear into the theory of
coarsening of structural glasses to see its effect on an aging
system and how shear cuts off the growth of the glassy
length scale. Finally, we conclude the paper by discussing
achievements and prospects in Sec. VIII.

II. THE EQUATIONS OF MOTION
FOR AN AGING SYSTEM

To obtain the equations of motion governing the growth
kinetics of a glassy system upon quench past the transition
point, we first need to extend mode-coupling theory for the
description of the two-point correlator of an aging system. We
accomplish this using the field-theoretic method through the
hydrodynamic approach [53]. Let us start with the equations of
hydrodynamics for a fluid with velocity field v(r,t) and density
field ρ(r,t) = ρ0 + δρ(r,t), where ρ0 is the uniform average
density and δρ(r,t) is the fluctuating part of the density. The
continuity equation for the density field is given by

∂tρ + ∇ · (ρv) = 0, (1)

and the generalised Navier-Stokes equation is

ρ(∂t + v · ∇)v = η∇2v + (ζ + η/3)∇∇ · v − ρ∇ δF
δρ

+ f,

(2)

where η and ζ are the shear and bulk viscosities,F is a suitably
chosen density-wave free-energy functional, and the thermal
fluctuation is taken into the theory through the Gaussian white
noise with the statistics

〈f(0,0)f(r,t)〉 = −2kBT [ηI∇2 + (ζ + η/3)∇∇]δ(r)δ(t),

(3)

where I is the unit tensor, kB is the Boltzmann constant, and T

is the temperature. It has been shown in the literature [68] that
the Ramakrishnan-Yussouff (RY) free-energy functional [69]

βF=
∫

dr
(

ρ ln
ρ

ρ0
− δρ

)
−1

2

∫
dr dr′c(r−r′)δρ(r)δρ(r′)

(4)

gives a good description of ordered as well as amorphous local
minima, and the corresponding dynamics in simple liquids. In
Eq. (4), β = 1/kBT , and c(r) is the direct pair correlation
function that encodes the information of the intermolecular
interactions in a coarse-grained fashion.

We linearize Eqs. (1) and (2), take the divergence of (2),
and replace the divergence of the velocity field by using
Eq. (1). The resulting equation, after neglecting the convective
nonlinearity as appropriate for a highly viscous system, will
read in Fourier space as

∂2δρk(t)

∂t2
+ DLk2 ∂ρk(t)

∂t
=

[
∇ ·

(
ρ∇ δF

δρ

)]
k

− ik · fL
k (t),

(5)

where DL = (ζ + 4η/3)/ρ0, fL
k (t) is the longitudinal part of

the noise, and [· · · ]k means that the term is evaluated at
wave vector k. Ignoring the acceleration term, as we are
interested in the glassy regime, and using the explicit form
of the free-energy functional from Eq. (4), we find that the
density fluctuation δρk(t) obeys

∂δρk(t)

∂t
+ K1δρk(t) = K2

2

∫
q
Vk,qδρq(t)δρk−q(t) + f̂k(t),

(6)

with Vk,q = k · [qcq + (k − q)ck−q], K1 = kBT /SkDL, and
K2 = kBT /DLk2, Sk and ck are the equilibrium structure
factor and the direct correlation function, respectively, and
the modified noise f̂k(t) obeys

〈f̂k(t)f̂k′(t ′)〉 = 2kBT

DL

ρk(t)(2π )dδ(k + k′)δ(t − t ′). (7)

Equation (6) is our starting equation. We will use the
diagrammatic perturbation theory technique to obtain the
equations of motion for the correlation function, Ck(t,tw) =
〈δρk(t)δρ−k(tw)〉, and the response function, Rk(t,tw) =
〈∂δρk(t)/∂η−k(tw)〉, through the field-theoretic derivation of
mode-coupling theory starting from Eq. (6). The derivation
is quite standard [36–38], and as we stated earlier, we skip
the details. After a straightforward but tedious calculation,
it is possible to write down the equations of motion for the
correlation and response functions as

∂Rk(t,tw)

∂t
= δ(t − tw) − K1Rk(t,tw)

+
∫ t

tw

ds �k(t,s)Rk(s,tw), (8a)

∂Ck(t,tw)

∂t
= −K1Ck(t,tw) +

∫ tw

0
ds Dk(t,s)Rk(tw,s)

+
∫ t

0
ds �k(t,s)Ck(s,tw) (8b)

with the expressions of Dk and �k:

Dk(t,tw) = 2kBT

DL

ρk(t)δ(t − tw)

+ K2
2

2

∫
q
V2

k,qCq(t,tw)Ck−q(t,tw), (9a)

�k(t,tw) = K2
2

∫
q
V2

k,qRq(t,tw)Ck−q(t,tw). (9b)

The contribution from the first term in Dk vanishes due to
causality.

Defining the input quantities K1 and Vk,q in Eqs. (8a) and
(8b) for the case of a quench is nontrivial. To gain some insight
about these parameters, it is useful to compare the derivation
with the treatment of Zaccarelli et al. [51]. The vertex term
Vk,q in (6) and (8) involves the “residual interactions” in
[51]. Our definition of quench is an abrupt increase in the
interaction strength, implying that Vk,q should be evaluated
at the final parameter value. The variable K1 contains the
equal-time density correlator. For an aging system, this must
be evaluated at each instant of time since we are dealing with
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a nonstationary state due to the evolution of the system toward
the equilibrium state at final parameter values. To determine
K1, we insist, as in [44], that for τ = (t − tw) � tw, Eq. (8)
obeys time-translation invariance and the FDR. This leads,
after some algebra, to

K1(t)Sk = T Rk(0) + K2
2

∫ t

0

∫
q
V2

k,qCk−q(t,s)

×
[

1

2
Cq(t,s)Rk(t,s) + Rq(t,s)Ck(t,s)

]
ds. (10)

Having derived the equations of motion for the two-point
correlators, we now proceed to calculate the corresponding
susceptibilities for an aging structural glass. These suscep-
tibilities are not exactly the same as, but are related to, the
three-point density correlators. Instead of attempting a direct
calculation of the three-point correlators, the calculation of the
susceptibilities is much easier and gives similar information.
Let us impose an external potential uext(r) that couples to one
density; let the free-energy functional in the presence of the
potential be denoted by Fu. The equations of hydrodynamics
for the density and the momenta are

∂ρ

∂t
+ ∇ · (ρv) = 0 (11)

and
∂ρv
∂t

= η 	2 v + (ζ + η/3)∇(∇ · v) − ρ∇ δF u

δρ
+ ξ (r,t).

(12)

As before, we combine these two equations and write down
the equation of motion for the density fluctuation alone,

∂2δρ(t)

∂t2
= DL 	2 ∂δρ

∂t
+ ∇ ·

(
ρ∇ δF u

δρ

)
+ f̃ (r,t),

(13)

where DL = (ζ + 4/3η)/ρ0.

The modified RY free-energy functional in the presence of
the external potential will be [70]

βFu =
∫

r

[
ρ(r,t) ln

(
ρ(r,t)

ρ0

)
− δρ(r,t)

]

−1

2

∫
r,r′

c(r − r′)δρ(r,t)δρ(r′,t) +β

∫
r
uext(r)δρ(r,t),

(14)

where δρ(r,t) = ρ(r,t) − ρ0. Let us define the equilibrium
static density m(r), satisfying

β
δFu

δρ(r)

∣∣∣∣
ρ(r)=m(r)

= 0 (15)

and using Eq. (14) in (15), we will have

ln
m(r)

ρ0
−

∫
r′

c(r − r′)δρ(r′) + βuext(r) = 0, (16a)

ln
m(r)

ρ0
−

∫
r′

c(r − r′)[m(r′) − ρ0] + βuext(r) = 0. (16b)

Taking the gradient of Eq. (16b), remembering that ∇ ∫
r′ c(r −

r′)ρ0 is zero, since
∫

r′ c(r − r′)ρ0 is independent of r because
of the translational invariance of c(r − r′), will yield

∇m(r)

m(r)
− ∇

∫
r′

c(r − r′)m(r′) + β∇uext = 0. (17)

The static density in the presence of the external potential
becomes m(r), and, therefore, the fluctuating part of the density
becomes [71]

δρ(r,t) = ρ(r,t) − m(r) (18)

and the force density is given as

[m(r) + δρ(r,t)]∇ βδFu

δρ(r,t)
= ρ(r,t)∇

[
ln

(
ρ(r,t)

ρ0

)
−

∫
r′

c(r − r′)[ρ(r′,t) − ρ0] + β∇uext

]

= ∇ρ(r,t) − [m(r) + δρ(r,t)]∇
∫

r′
c(r − r′)[m(r′) + δρ(r′,t)] + [m(r) + δρ(r,t)]β∇uext(r)

= ∇m(r) + ∇δρ(r,t) − m(r)∇
∫

r′
c(r − r′)m(r′) − m(r)∇

∫
r′

c(r − r′)δρ(r′,t) − δρ(r,t)∇

×
∫

r′
c(r − r′)m(r′) − δρ(r,t)∇

∫
r′

c(r − r′)δρ(r′,t) + βm(r)∇uext(r) + βδρ(r,t)∇uext(r). (19)

Now, using Eq. (17), the first, third, and seventh terms in the final expression of Eq. (19) will get canceled. Also, from Eq. (17),

−δρ(r,t)∇
∫

r′
c(r − r′)m(r′) + δρ(r,t)β∇uext = −δρ(r,t)

∇m(r)

m(r)
. (20)

Using the above expression in Eq. (19), we obtain the force density as

ρ∇ δβFu

δρ(r,t)
= ∇

∫
r′

[δ(r − r′) − ρ0c(r − r ′)]δρ(r′,t) − ∇
∫

r′
δm(r)c(r − r ′)δρ(r′,t) − δρ(r,t)∇

∫
r′

c(r − r ′)δρ(r′,t)

− ∇m(r)

m(r)

∫
r′

[δ(r − r′) − m(r)c(r − r ′)]δρ(r′,t), (21)
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where we have written the static inhomogeneous density m(r) as the sum of two terms: ρ0, the homogeneous density in the absence
of the external potential, and δm(r,t), the inhomogeneous density due to the external potential. We consider the case of weak
perturbation by the external field: δm(r,t) is small. Then we can linearize the force density equation by neglecting higher-order
terms in δm(r,t). The fourth term on the right-hand side of Eq. (21) will be modified as ∇δm(r)

ρ0

∫
r′[δ(r − r′) − ρ0c(r − r ′)]δρ(r′,t).

Next we evaluate ∇ · ρ∇ δβFu

δρ(r,t) in k space as[
∇ · ρ∇ δβFu

δρ(r,t)

]
k

= −k2kBT (1 − ρ0ck)δρk(t) + k2kBT

∫
q
δmk−qcqδρq(t) + kBT

ρ0

∫
q

k · (k − q)

Sq

δmk−qδρq(t)

+ kBT

2

∫
q

k · [qcq + (k − q)ck−q]δρq(t)δρk−q(t). (22)

In the notation of Ref. [7], we are interested in the q → 0 limit [30]. Let us consider the limit of a constant external potential
that will produce a constant background density. Thus, δmk will be sharply localized at k = 0 with a strength δm0. Therefore,
for this particular choice of the external perturbing field, we will have[

∇ · ρ∇ δβFu

δρ(r,t)

]
k

= −k2kBT

Sk

δρk(t) + k2kBT δm0ckδρk(t) + kBT

2

∫
q

k · [qcq + (k − q)ck−q]δρq(t)δρk−q(t). (23)

Ignoring inertia and using the above expression in Eq. (13), the equation of motion for the density fluctuation in Fourier space is

DLk2 ∂δρk(t)

∂t
+ kBT k2

Sk

δρk(t) − k2kBT δm0ckδρk(t) = kBT

2

∫
q

k · [qcq + (k − q)ck−q]δρq(t)δρk−q(t) + f̃k(t). (24)

Let us divide the whole equation by DLk2 and write kBT /DLSk as K1 and kBT /DLk2 as K2. For capturing the aging dynamics,
however, we need to evaluate K1 at each time step, as we have explained in the calculation of the two-point correlator above
[72]. Therefore, we will have from the above equation

∂δρk(t)

∂t
+ K1(t)δρk(t) − kBT δm0ck

DL

δρk(t) = K2

2

∫
q
Vk,qδρq(t)δρk−q(t) + fk(t), (25)

where we have written the vertex as Vk,q = k · [qcq + (k − q)ck−q]. The noise statistics of the bare noise fk(t) is as before in
Eq. (3). Once we reach Eq. (25), we use the diagrammatic perturbation calculation to obtain the equations of motion for the
two-point correlators in the presence of the external field.

In this case, the bare propagator R0k is modified to

R−1
0k = ∂

∂t
+ K1(t) − kBT δm0ck

DL

, (26)

and the rest of the calculation is the same, leading to the equations of motion for the two-point correlators denoted with a tilde
on them to emphasize that they are evaluated in the presence of the external potential:

∂R̃k(t,tw)

∂t
= −K1(t)R̃k(t,tw) + kBT δm0ck

DL

R̃k(t,tw) + δ(t − tw) +
∫ t

tw

ds �̃k(t,s)R̃k(s,tw),

(27)
∂C̃k(t,tw)

∂t
= −K1(t)C̃k(t,tw) + kBT δm0ck

DL

C̃k(t,tw) +
∫ tw

0
ds D̃k(t,s)R̃k(tw,s) +

∫ t

0
ds �̃k(t,s)C̃k(s,tw),

where the expressions of D̃k and �̃k are given as

�̃k(t,t ′) =
(

kBT

DLk2

)2 ∫
q
V2

k,qR̃q(t,t ′)C̃k−q(t,t ′), (28)

D̃k(t,t ′) = 2kBT

DL

ρk(t)δ(t − t ′) + 1

2

(
kBT

DLk2

)2 ∫
q
V2

k,q C̃q(t,t ′)C̃k−q(t,t ′) = 2kBT

DL

ρk(t)δ(t − t ′) + M̃k(t,t ′). (29)

The equations of motion for the susceptibilities, χC
k (t,tw) = ∂C̃k(t,tw)/∂δm0|δm0→0 and χR

k (t,tw) = ∂R̃k(t,tw)/∂δm0|δm0→0,
are given as

∂χR
k (t,tw)

∂t
= − K1(t)χR

k (t,tw) +
∫ t

tw

ds �k(t,s)χR
k (s,tw) +

∫ t

tw

ds �̃′
k(t,s)Rk(s,tw) + SR

k (t,tw), (30)

∂χC
k (t,tw)

∂t
= − K1(t)χC

k (t,tw) +
∫ tw

0
ds Mk(t,s)χR

k (tw,s) +
∫ tw

0
ds M̃ ′

k(t,s)Rk(tw,s) +
∫ t

0
ds �k(t,s)χC

k (s,tw)

+
∫ t

0
ds �̃′

k(t,s)Ck(s,tw) + SC
k (t,tw), (31)
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where �̃′
k(t,s) = ∂�̃k(t,s)/∂δm0|δm0→0 and M̃ ′

k(t,s) = ∂M̃k(t,s)/∂δm0|δm0→0. The expressions for the source terms SR
k (t,tw)

and SC
k (t,tw) are

SR
k (t,tw) = kBT ck

DL

Rk(t,tw) − ωk(t)Rk(t,tw), SC
k (t,tw) = kBT ck

DL

Ck(t,tw) − ωk(t)Ck(t,tw), (32)

where

ωk(t) =K2
2

Sk

∫ t

0

∫
q
V2

k,q

[
χC

k−q(t,s)

{
1

2
Cq(t,s)Rk(t,s) + Rq(t,s)Ck(t,s)

}

+ Ck−q(t,s)

{
1

2
χC

q (t,s)Rk(t,s) + 1

2
Cq(t,s)χR

k (t,s) + χR
q (t,s)Ck(t,s) + Rq(t,s)χC

k (t,s)

}]
ds. (33)

Now we need to solve these equations numerically to extract the predictions of the theory. However, a detailed solution
of the full k-dependent equations requires huge computer time. Hence, we need to “schematicize” these equations to obtain
a numerically tractable form. Simplified integral equations, keeping track of the time dependence alone, have been extremely
useful in extracting meaningful results from mode-coupling theory [73–75] within a numerically manageable calculation. The
schematic forms of the two-point correlators in Eqs. (8) will be

∂R(t,tw)

∂t
= δ(t − tw) − μ(t)R(t,tw) + 4λ

∫ t

tw

R(t,s)C(t,s)R(s,tw)ds,

(34)
∂C(t,tw)

∂t
= −μ(t)C(t,tw) + 2λ

∫ tw

0
C2(t,s)R(tw,s)ds + 4λ

∫ t

0
C(t,s)R(t,s)C(s,tw)ds,

where λ is the interaction strength, C(t,tw) and R(t,tw) are the schematic forms of Ck(t,tw) and Rk(t,tw), respectively, and μ(t)
is the schematic version of K1(t):

μ(t) = T + 6λ

∫ t

0
C2(t,s)R(t,s)ds. (35)

The schematic versions of χC
k (t,tw) and χR

k (t,tw) are written as χC(t,tw) and χR(t,tw), respectively. The final schematic forms
of Eqs. (30) and (31) will be

∂χR(t,tw)

∂t
+ μ(t)χR(t,tw) = 4λ

∫ t

tw

R(t,s)C(t,s)χR(s,tw)ds + 4λ

∫ t

tw

R(t,s)χC(t,s)R(s,tw)ds

+ 4λ

∫ t

tw

χR(t,s)C(t,s)R(s,tw)ds + SR(t,tw), (36)

∂χC(t,tw)

∂t
+ μ(t)χC(t,tw) = 4λ

∫ tw

0
C(t,s)χC(t,s)R(tw,s)ds + 2λ

∫ tw

0
C2(t,s)χR(tw,s)ds + 4λ

∫ t

0
C(t,s)R(t,s)χC(s,tw)ds

+ 4λ

∫ t

0
χC(t,s)R(t,s)C(s,tw)ds + 4λ

∫ t

0
C(t,s)χR(t,s)C(s,tw)ds + SC(t,tw) (37)

with the source terms given as SR(t,tw) = [1 − ω(t)]R(t,tw) and SC(t,tw) = [1 − ω(t)]C(t,tw), where ω(t), the schematic form
of ωk(t), is given as

ω(t) = 12λ

∫ t

0
C(t,s)χC(t,s)R(t,s)ds + 6λ

∫ t

0
C2(t,s)χR(t,s)ds. (38)

It is also possible to obtain these wave-vector-free equations
of motion from a different approach, starting from a fully
schematic version of the Langevin equation for the density
fluctuation. We will outline the details of that calculation
below.

III. THE SCHEMATIC CALCULATION FOR THE
GROWTH KINETICS IN STRUCTURAL GLASSES

In a schematic description, one can throw away all the wave
vectors and write Eq. (6) as

∂tφ(t) + μ(t)φ(t) = −g

2
φ2(t) + f (t), (39)

where the information of the interaction strength goes into g

and we allow the frequency term μ(t) to be time-dependent,
which is appropriate for an aging system [72]. Such an
equation can also be obtained from a toy Hamiltonian
H = μ(t)

2 φ2(t) + g

3!φ
3(t). f (t) is a Gaussian white noise:

〈f (t)f (t ′)〉 = 2T δ(t − t ′). Once we have the Langevin equa-
tion for the density fluctuation, Eq. (39), we can write down
its perturbation expansion and obtain the equation of motion
for the correlation function C(t,tw) = 〈φ(t)φ(tw)〉 and the
response function R(t,tw) = 〈∂φ(t)/∂f (tw)〉 in the same way
as we did for the k-dependent case. Writing g2 = 4λ, we will
have the equations of motion for the response and correlation
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functions as

∂R(t,tw)

∂t
= −μ(t)R(t,tw) + δ(t − tw)

+ 4λ

∫ t

tw

R(t,s)C(t,s)R(s,tw)ds,

∂C(t,tw)

∂t
= −μ(t)C(t,tw) + 2T R(tw,t)

+ 2λ

∫ tw

0
C2(t,s)R(tw,s)ds

+ 4λ

∫ t

0
R(t,s)C(t,s)C(s,tw)ds. (40)

In the equations of motion for C(t,tw), the second term on
the right-hand side, 2T R(tw,t), will drop out because of the
boundary condition on the response function. Note that these
equations are exactly the same as the schematic form of the full
k-dependent equations for the two-point correlator Eqs. (34).
μ(t) can be obtained through a similar condition as was used
for the k-dependent case,

μ(t) = T + 6λ

∫ t

0
C2(t,s)

∂F (t,s)

∂s
ds. (41)

These equations were also obtained by Franz and Hertz [49]
for the Amit-Roginsky model [50].

For a derivation of the three-point correlation functions
through the schematic MCT approach, we need to impose an
external field that couples to two fields at the same time. In
the full k-dependent calculation of the equations, the presence
of the external field that couples to one field will contribute
a term

∫
ε(r)δρ(r) in the free-energy functional F . The force

density is given by −ρ∇[δF/δρ] and that will bring in a term

that is linear in the field, such as ε0δρ for a constant field. To
imitate this equation in the schematic approach, we must add
a term that is quadratic in φ in the Hamiltonian:

H = μ(t)

2
φ2(t) + g

3!
φ3(t) − ε

2
φ2(t). (42)

The ε term has the form of a shift in the frequency term
μ(t): the Hamiltonian retains its form, but μ → μ − ε. Then
the calculation of the two-point correlation functions becomes
the same as before, and the equations for the correlation and
response functions can be readily obtained from Eqs. (40),
with μ(t) being replaced by μ(t) − ε. We denote the response
and correlation functions with a tilde to emphasize that they
are evaluated in the presence of external field:

∂R̃(t,tw)

∂t
= − δ(t − tw) − μ(t)R̃(t,tw) + εR̃(t,tw)

+ 4λ

∫ t

tw

R̃(t,s)C̃(t,s)R̃(s,tw)ds,

∂C̃(t,tw)

∂t
= − μ(t)C̃(t,tw) + εC̃(t,tw)

+ 2λ

∫ tw

0
C̃2(t,s)R̃(tw,s)ds

+ 4λ

∫ t

0
C̃(t,s)R̃(t,s)C̃(s,tw)ds. (43)

As before, we define the susceptibilities for the schematic case
as

χC(t,tw) = ∂C(t,tw)

∂ε

∣∣∣∣
ε=0

,

χR(t,tw) = ∂R(t,tw)

∂ε

∣∣∣∣
ε=0

. (44)

Then the equations of motion for the susceptibilities will
be readily obtained from Eq. (43):

∂χR(t,tw)

∂t
+ μ(t)χR(t,tw) = 4λ

∫ t

tw

R(t,s)C(t,s)χR(s,tw)ds + 4λ

∫ t

tw

R(t,s)χC(t,s)R(s,tw)ds

+ 4λ

∫ t

tw

χR(t,s)C(t,s)R(s,tw)ds + SR(t,tw),

(45)
∂χC(t,tw)

∂t
+ μ(t)χC(t,tw) = 4λ

∫ tw

0
C(t,s)χC(t,s)R(tw,s)ds + 2λ

∫ tw

0
C2(t,s)χR(tw,s)ds + 4λ

∫ t

0
C(t,s)R(t,s)χC(s,tw)ds

+ 4λ

∫ t

0
χC(t,s)R(t,s)C(s,tw)ds + 4λ

∫ t

0
C(t,s)χR(t,s)C(s,tw)ds + SC(t,tw),

with

SR(t,tw) = [1 − ω(t)]R(t,tw) and SC(t,tw) = [1 − ω(t)]C(t,tw),

μ(t) = T + 6λ

∫ t

0
C2(t,s)R(t,s)ds,

ω(t) = 12λ

∫ t

0
C(t,s)χC(t,s)R(t,s)ds + 6λ

∫ t

0
C2(t,s)χR(t,s)ds. (46)

These equations are the same as the schematic version of the full k-dependent equations of motion for the susceptibilities derived
earlier. We solve these schematic equations (40) and (45) along with the definitions (46) to obtain the growth kinetics of glassy
correlations, as we will discuss below.
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IV. METHOD FOR NUMERICAL SOLUTION OF THE EQUATIONS

The complicated algebraic details of the numerical solution of the equations governing the growth kinetics of glassy correlations
can be found in [55]. The numerical algorithm that we use here was first developed by Kim and Latz [46,76] for the solution of
the aging equations of the p-spin spherical spin-glass model. Here we briefly describe the basic steps of this numerical algorithm,
and the interested reader is referred to [55,76] for the details.

The first step toward this solution is to write down the equations in terms of the correlation function and the integrated response
function F (t,tw), defined as

F (t,tw) = −
∫ t

tw

R(t,s)ds. (47)

This transformation is advantageous since variation of F is much smoother than that of the response function itself. Next we
parametrize the equations in terms of (t,τ = t − tw) instead of (t,tw) as in the original equations. This transformation is necessary
because the decay of the correlation function is fast when the time difference τ = (t − tw) is small and the decay is quite slow
when τ is large. Thus, we need to use the method of adaptive integration with a very small grid size at short τ and a large grid
size at large τ to resolve the full dynamics. If we use the (t,tw) parametrization, we will have a large time grid for large tw even
when τ = t − tw is small, and hence we cannot resolve the short-time dynamics. The equations of motion for F (t,τ ) and C(t,τ )
will be

(∂t + ∂τ )F (t,τ ) = − 1 − μ(t)F (t,τ ) − 4λ

∫ τ

0
ds

∂F (t,s)

∂s
C(t,s)F (t − s,τ − s),

(∂t + ∂τ )C(t,τ ) = − μ(t)C(t,τ ) + 2λ

∫ t

τ

∂C2(t,s)

∂s
F (t − τ,s − τ )ds − 2λC2(t,t)F (t − τ,t − τ )

− 4λ

∫ t

τ

C(t,s)
∂F (t,s)

∂s
C(t − τ,s − τ )ds − 4λ

∫ τ

0
C(t,s)

∂F (t,s)

∂s
C(t − s,τ − s)ds, (48)

with

μ(t) = T − 6λ

∫ t

0
C2(t,s)

∂F (t,s)

∂s
ds. (49)

The three-point correlators or the susceptibilities are also parametrized in a similar way. We define χF (t,tw) =
∂F̃ (t,tw)/∂δm0|δm0→0. Then the equations of motion for the susceptibilities corresponding to the integrated response function
and the correlation function in (t,τ ) parametrization will be

(∂t + ∂τ )χF (t,τ ) = −μ(t)χF (t,τ ) − 4λ

∫ τ

0

∂χF (t,s)

∂s
C(t,s)F (t − s,τ − s)ds − 4λ

∫ τ

0

∂F (t,s)

∂s
χC(t,s)F (t − s,τ − s)ds

− 4λ

∫ τ

0

∂F (t,s)

∂s
C(t,s)χF (t − s,τ − s)ds + [1 − ω(t)]F (t,τ ), (50)

(∂t + ∂τ )χC(t,τ ) = 1 − μ(t)χC(t,τ ) − 4λ

∫ t

τ

C(t,s)χC(t,s)
∂F (t − τ,s − τ )

∂s
ds − 2λ

∫ t

τ

C2(t,s)
∂χF (t − τ,s − τ )

∂s
ds

− 4λ

∫ t

τ

χC(t,s)
∂F (t,s)

∂s
C(t − τ,s − τ )ds − 4λ

∫ t

τ

C(t,s)
∂χF (t,s)

∂s
C(t − τ,s − τ )ds

− 4λ

∫ t

τ

C(t,s)
∂F (t,s)

∂s
χC(t − τ,s − τ )ds − 4λ

∫ τ

0
χC(t,s)

∂F (t,s)

∂s
C(t − s,τ − s)ds

− 4λ

∫ τ

0
C(t,s)

∂χF (t,s)

∂s
C(t − s,τ − s)ds − 4λ

∫ τ

0
C(t,s)

∂F (t,s)

∂s
χC(t − s,τ − s)ds + (1 − ω(t))C(t,τ )

(51)

with μ(t) and ω(t) being

μ(t) = T − 6λ

∫ t

0
C2(t,s)

∂F (t,s)

∂s
ds,

ω(t) = −12λ

∫ t

0
C(t,s)χC(t,s)

∂F (t,s)

∂s
ds − 6λ

∫ t

0
C2(t,s)

∂χF (t,s)

∂s
ds. (52)
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FIG. 2. The relaxation time tr , defined as the time when the
correlation function becomes 1/e, as a function of waiting time.
Inset: tr for large tw can be fitted with a power-law form tr ∼ tα

w with
α ≈ 0.8.

V. RESULTS

We set temperature T to unity and start with the initial con-
ditions corresponding to a low-density (or high-temperature)
liquid, quench the system into the glassy regime by setting
the value of λ to a large value, and solve the equations in
time. We see in Fig. 1 that the two-point correlation function
shows aging. The final value of λ in this case is 2.01. We can
define a relaxation time tr from the decay of the two-point
functions as the time when the function decays to 1/e. The
behavior of tr with tw, as shown in Fig. 2, agrees well with
the numerical experiment of Kob and Barrat [34]. The waiting
time dependence of the relaxation time tr deviates significantly
from a power law, which is quite clear in a log-log plot as in
Fig. 2 (a power law would give a straight line). The data in
Ref. [34] also show similar curvature. However, as was done
in [34], if we fit the data with a power law tr ∼ tαw, we obtain
α ≈ 0.8, which is similar to what was obtained in [34]. The
quality of the fit is shown in the inset of Fig. 2. The actual
functional dependence of tr (tw) will require a scaling analysis
that we did not carry out here. If we scale time by tr and the
two-point correlation function shows data collapse, we define
the aging of the system as “bare.” Such a data collapse is
indeed found (inset of Fig. 1). This collapse of data suggests
that we can associate the dynamics of the system with an
evolving effective temperature. However, as we will see from
the behavior of the three-point correlation function [Fig. 6(a)],
such an association is more nontrivial than suggested by the
decay of the two-point correlation function.

The characteristic nonmonotonic behavior of the three-
point correlator and its dependence on tw is shown in Fig. 3. For
a fixed initial condition that corresponds to high-temperature
liquid with negligible interactions, we examine how the three-
point correlator evolves when the quench is to the liquid state
or to the glassy state. The quench is defined by the value of
λ. Let us call χP

C (tw) the peak value of χC(t,tw) and tpeak the
time at which χC(t,tw) attains the peak. If λ is still in the liquid
phase, both χP

C and tpeak increase and then saturate to a certain
value depending on the quench (Fig. 4).
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FIG. 3. The characteristic nonmonotonic decay of the three-point
correlation function in an aging structural glassy system, within
schematic mode-coupling theory. χP

C (tw), the peak value of χC(t,tw),
grows and shifts to higher tpeak with increasing waiting time tw . The
final quenched parameter values are T = 1.0 and λ = 2.01.

If we take the value of λ that corresponds to a liquid state
and the limit of waiting time tw to infinity, the system will reach
equilibrium, and time-translational invariance will be restored.
Let us take Eqs. (34)–(38), take the limit of tw → ∞, and
impose FDR. The resulting equations of motion, describing an
equilibrium system, are

∂C(t)

∂t
+ T C(t) + 2λ

∫ t

0
C(t − s)

∂C(s)

∂s
ds = 0, (53a)

∂χC(t)

∂t
+ T χC(t) +

∫ t

0
�(t − s)

∂C(s)

∂s
ds

+
∫ t

0
m(t − s)

∂χC(s)

∂s
ds = C(t), (53b)
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FIG. 4. When the quench is to the liquid side, both the two- and
three-point correlators saturate. The two-point correlator C(t,tw) is
shown as a function of (t − tw) for various tw for λ = 1.70. Inset:
χC(t,tw) grows to saturation after a certain waiting time tw for a
quench in the liquid side (λ = 1.70 as in the main figure).
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FIG. 5. The three-point correlation function and correlation
volume in equilibrium. ε ≡ |λ − λc| defines the control parameter.
(a) The characteristic nonmonotonic behavior of χC(t) as a function
of t for various ε. (b) Data collapse is obtained in the α regime when
χC(t) is scaled with χP

C and time with tpeak. (c) Correlation volume
χP

C ∼ ε−1.0. (d) χP
C ∼ t0.56

peak. (Taken from Fig. 4 of Ref. [30].)

with the memory kernels �(t) = 4λC(t)χC(t) and m(t) =
2λC2(t). In obtaining these equations, we have neglected
C(t → ∞), but this is fine since we are in the liquid state.
The behavior of the equilibrium χC(t) as a function of t is
shown in Fig. 5(a). One obtains data collapse if time is scaled
by tpeak and χC(t) by χP

C . This should not be surprising since
the system is in equilibrium in this case. The peak value χP

C ,
which is a measure of correlation volume, grows as (λ − λc)−1

and χP
C ∼ t0.56

peak [Figs. 5(c) and 5(d)]. The equilibrium limit of
our theory corresponds to the q → 0 limit of Ref. [7], and the
results in these two limits of the corresponding theories do
agree precisely [30]. Our theory can also be compared in a
crude sense with [13], and the predictions of our theory match
with their findings. However, a more detailed comparison with
[7], or for that matter with [13], will require calculating the
susceptibilities with respect to a spatially varying potential, a
task we did not attempt in this work.

A completely different scenario arises for a quench into the
glassy regime, i.e., the aging continues uninterrupted. In our
notation, the mode-coupling transition occurs at λc = 2.0. Let
us now discuss two important characteristics of the dynamics.
First, is there any difference in the aging scenario if we quench
from two different high-temperature states, say λ1 and λ2 with
λ1 < λ2, to the same low-temperature state? After a certain
waiting time, the system loses the information of the initial
conditions and settles to steady aging. The aging dynamics
that started with the initial condition λ1 will start following
the aging dynamics that started with the initial condition
λ2 after a waiting time that depends on λ1 [34,35]. Thus,
although the initial aging dynamics depends on the initial
condition, after a suitable lapse of waiting time the dynamics
is characterized by the final quenched parameter. However,
the dynamics has a more complicated dependence on various
parameters, and it cannot be characterized by an evolving

effective temperature, as will be shown below. Second, within
MCT, is there any difference between two different quenches
characterized by λf 1 and λf 2 when both are greater than λc?
The answer is nontrivial. The final quench parameter acts
as the driving force of aging. Let us say λf 2 > λf 1; then after
the same waiting time, the second system will become more
sluggish than the first one. In Fig. 2 of [30] we presented
the growth dynamics for quench to λ = 2.00, and here we
present the growth dynamics for quench to λ = 2.01 in Fig. 3;
the initial conditions are the same in both cases. A careful
examination of these two figures reveals that for the same
tw, χP

C (λ = 2.00) > χP
C (2.01). It is important to note that the

system at various waiting times cannot be characterized by
an evolving effective temperature. If this had been so, the
system would not have been able to distinguish between λf 1

and λf 2 since the relaxation time becomes infinite once the
system reaches the states corresponding to λc. But during
the aging (or coarsening), the system seems to already have
the information of its final quench parameter value.

In Fig. 3 we show the behavior of χC(t,tw) as a function
of t for various tw for a quench corresponding to λ = 2.01.
In this case, χP

C (tw) grows without bound as the waiting time
increases with the growth law χP

C ∼ taw with the exponent
a � 0.5 [Fig. 6(b)], in agreement with numerical experiments
[27]. Since χP

C is the measure of an effective correlation
volume, our theory quantifies the idea of domain growth of
glassy correlations starting from a liquid background. tpeak is a
measure of the relaxation time of the system, and tpeak increases
with the waiting time as tpeak ∼ tbw with b � 0.8. This relation
seems consistent with some simulations [28,34]; however, our
own results (see the last paragraph in Sec. VI) show that the
exponent b will depend on the regime of phase space where
the quench takes place. We have discussed another relaxation
time tr , extracted from the two-point correlation function. It is
found that these two relaxation times are related as tpeak � 4t

β
r

with β ≈ 1.0. In this case, the exponent b is equivalent to the
“Struik shift factor,” which is nonuniversal [77–79]. Although
our MCT calculation is in a sense an analytical theory of the
growth laws, it leaves open the question of whether MCT
growth lies within the domain growth theory of Bray [26]. It is
important to note here that regardless of the detailed values of
the various parameters, it is significant that our theory and
also the simulations of [27,28] obtained a very sublinear
growth of the “domain size.”

As we have discussed in [30] and also shown in Fig. 6(a), we
do not see any data collapse when we scale χC(t,tw) by χP

C (tw)
and time by tpeak. We have also shown in [30] that we did not
find any data collapse following the scaling relations suggested
in [28]. As shown in Fig. 6(c), if we scale χC(t,tw) by χP

C and
plot them as a function of 1 − C(t,tw), we obtain data collapse
in the α-relaxation regime only and not the entire range, as is
also observed in [80]. Neither the scaling relation suggested in
[28] nor the one used in Fig. 6(c) emerges from our theory. The
simulation data presented in Ref. [81] seem closer to our results
on the scaling of the susceptibilities. The lack of scaling for
the three-point correlator as shown in Fig. 6(a) implies that we
cannot describe the dynamics in terms of an evolving effective
temperature, and the tw-dependent properties we extract do not
correspond to those of an equilibrium system at an evolving
λ or temperature. To understand this point, it helps to look at
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FIG. 6. (a) No data collapse is observed when χC(t,tw) is scaled by χP
C (tw) and time by tpeak: this implies that the behavior of the three-point

correlator at various tw cannot be seen as the equilibrium dynamics at an evolving effective temperature. The behavior of χC does not agree with
the expectation of “bare aging” that was suggested by the data collapse obtained for the two-point function in Fig. 1. (b) The peak height χP

C (tw)
that is a measure of the correlation volume is proportional to t1/2

w . (f) When we scale χC(t,tw) by χP
C and plot it as a function of 1 − C(t,tw),

data collapse is obtained in the α-relaxation regime.

Fig. 5, where scaling χC(t,tw) by χP
C (tw) and time by tpeak led

to data collapse for all the curves corresponding to a unique λ

or temperature. This appears to contradict what is suggested
by the behavior of the two-point correlation function, as shown
in the inset of Fig. 1 or in simulation [34] or mode-coupling
theory [47]. However, it is possible that the monotonic decay
of the two-point correlator masks the deviations, or, more
likely, the three-point function contains additional independent
information and the nonmonotonic nature of the later is more
sensitive to departures from “bare aging.” We have seen that
even if the quench is in the liquid state, the system does not
show any data collapse of the sort described in Fig. 6(a).

VI. GROWTH KINETICS OF THE p-SPIN SPIN-GLASS
MEAN-FIELD MODEL

There exists a deep connection between the dynamics of
certain spin-glass models and that of the structural glasses
[82,83]. Moreover, the dynamics of the mean-field p-spin spin-
glass models can be treated analytically, and that promises a
deeper understanding for the structural glasses as well [37,46].
Even though the aging dynamics in the mean-field models of
spin glasses has been studied in detail [44–47], the role played
by the length scale obtained from the multipoint correlators
and their characteristics in general have not been studied. In
this section, we extend the calculation for mean-field p-spin
spin-glass models to capture the growth kinetics upon abrupt
quench.

Let us start with the microscopic Hamiltonian for the p-spin
spherical spin-glass model,

H = −
N∑

i1>i2>···>ip=1

Ji1,...,ipSi1Si2 · · · Sip , (54)

where the couplings Ji1,...,ip are Gaussian random variables
with zero mean and variance p!/2Np−1. Si’s are the spin
variables obeying the spherical constraint

∑N
i=1 S2

i = 1. This
model shows an equilibrium phase transition at a temperature
Ts when the system goes from the paramagnetic phase to the

spin-glass state characterized by the one-step replica symmetry
breaking [37,46]. Ts is lower than Td , the dynamic temperature
when the system goes to a nonergodic state, as also given by
mode-coupling theory for structural glasses.

To write down the dynamics for this model, let us consider
the Langevin equation

∂Si(t)

∂t
= −z(t)Si(t) − ∂H

∂Si(t)
+ ηi(t), (55)

where we have set the kinetic coefficient to unity and z(t) is
a Lagrange multiplier to satisfy the spherical constraint. ηi(t)
satisfies the white noise statistics. In the limit N → ∞, one
can characterize the system with a scalar variable [84]. In
that limit, one can treat the dynamics analytically through the
standard dynamical field theory [85–88]. The calculation for
the two-point correlation function is tedious but quite standard
and well known in the literature [37,46,83,89], so let us just
quote the results here,

∂C(t,tw)

∂t
= − z(t)C(t,tw) + p

2

∫ tw

0
Cp−1(t,s)R(tw,s)ds

+ p(p − 1)

2

∫ t

0
Cp−2(t,s)R(t,s)C(s,tw)ds,

(56)
∂R(t,tw)

∂t
= − z(t)R(t,tw) + δ(t − tw)

+ p(p − 1)

2

∫ t

tw

Cp−2(t,s)R(t,s)R(s,tw)ds,

(57)

with

z(t) = T + p2

2

∫ t

0
Cp−1(t,s)R(t,s)ds. (58)

It has been shown in Ref. [90] that susceptibilities, defined
as the derivatives of the two-point correlator with respect to a
number of control parameters such as temperature, pressure, or
density, are capable of capturing information about the length
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scale of glassy dynamics [8,9]. In particular, the derivatives
of C and R with respect to T have the status of a three-point

correlator. Thus, to capture the growth kinetics of the spin-glass
system, we define nonstationary susceptibilities as follows:

χC(t,tw) = −∂C(t,tw)

∂T
, χR(t,tw) = −∂R(t,tw)

∂T
.

Then we will obtain the equations governing the domain growth for glassy regions as

∂χC(t,tw)

∂t
= −z(t)χC(t,tw) + [1 − ω(t)]C(t,tw) + p(p − 1)

2

∫ tw

0
Cp−2(t,s)χC(t,s)R(tw,s)ds

+ p

2

∫ tw

0
Cp−1(t,s)χR(tw,s)ds + p(p − 1)(p − 2)

2

∫ t

0
Cp−3(t,s)χC(t,s)R(t,s)C(s,tw)ds

+ p(p − 1)

2

∫ t

0
Cp−2(t,s)χR(t,s)C(s,tw)ds + p(p − 1)

2

∫ t

0
Cp−2(t,s)R(t,s)χC(s,tw)ds, (59a)

∂χR(t,tw)

∂t
= −z(t)χR(t,tw) + [1 − ω(t)]R(t,tw) + p(p − 1)(p − 2)

2

∫ t

tw

Cp−3(t,s)χC(t,s)R(t,s)R(s,tw)ds

+ p(p − 1)

2

∫ t

tw

Cp−2(t,s)χR(t,s)R(s,tw)ds + p(p − 1)

2

∫ t

tw

Cp−2(t,s)R(t,s)χR(s,tw)ds, (59b)

with the definition of ω(t) as

ω(t) = p2(p − 1)

2

∫ t

0
Cp−2(t,s)χC(t,s)R(t,s)ds

+ p2

2

∫ t

0
Cp−1(t,s)χR(t,s)ds. (60)

The numerical algorithm for solving these equations of
motion is same as for the case of structural glasses (see [55,76]
for details). Here we show the results for the particular case
of p = 3. We find that the correlation volume has a behavior
similar to the structural glasses; the peak value χP

C grows and
shifts to larger t − tw as one waits longer in the quenched state
(Fig. 7). However, the growth law is different in this case; for a
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FIG. 7. Evolution of the three-point correlator for a quench
corresponding to T = 0.5 starting from a high-temperature state
of the mean-field p-spin spin-glass model. Inset: The two-point
correlation function as a function of t for various tw for the same
set of parameter values. Various tw are same as in the main figure.

quench to T = 0.5, χP
C (tw) ∼ t0.13

w , which is much smaller than
the exponent found for the growth of the correlation volume of
structural glasses. More detailed study is required for a deeper
understanding of the growth kinetics of spin glasses.

Here we emphasize that the equations of motion for the
p-spin spherical spin glass model with p = 3 and those for
the schematic limit of the structural glasses are identical [83].
The present formulation is, however, such that there is only one
control parameter for the case of the p-spin model, namely the
temperature T . From this perspective, a comparison between
the results in Sec. V and the current section can be viewed
as quench along two different lines in the phase space. This
shows that various exponents obtained in the previous section
(as well as the current one) are not universal but there is a
dependence on λ and T . Our results in Sec. V hold close to the
MCT transition. Thus, even within a mean-field theory, that
MCT is, we will expect these exponents to change when the
quenches are in a very different regime of phase space.

VII. AGING UNDER SHEAR: CUTOFF OF THE GROWING
LENGTH SCALE IN STRUCTURAL GLASS

Since the theoretical system size is infinite, the system will
never equilibrate when we quench it from the liquid state
to below λc, the MCT transition point; the length scale and
relaxation time will keep on increasing as the waiting time tw
increases. However, imposing a nonzero shear will force the
system to reach a steady state cutting off the growth of the
length scale and the relaxation time τ of the system. Shearing
is like stirring the system at a time scale γ̇ −1, where γ̇ is the
shear rate and the system will be affected by shear only if
τ � γ̇ −1. In this section, we explore the effect of shear on the
coarsening dynamics of structural glasses.

Within mode-coupling theory, shear enters as two important
effects [61–65,91,92]: first, shear modifies the equilibrium
structure factor and reduces the structure height, second, it
modifies the mode-coupling vertex and the MCT kernel loses
its weight when the time scale becomes of the order of the
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inverse shear rate γ̇ −1. Even though both these modifications
have their importance, for a qualitative understanding it seems
sufficient to keep the second effect in the theory [63,64].
Moreover, if we assume isotropy [64], the structure factor
of the fluid remains unchanged even under shear [93]. In that
case, the critical input that shear brings into the calculation is
the advection of wave vectors due to shear, and the k ≡ k(t)
vectors at time t get coupled with the wave vectors k(t ′) at
time t ′. The advected wave vector can be calculated for a shear
in the x direction and the velocity gradient in the y direction
as

k(t) = k(0) + γ̇ tkx ŷ. (61)

We will not write this time index on the wave vectors explicitly,
but instead use the notation that the associated wave vector of
a quantity at time t is also at that same time, i.e., we will write
the quantity Ak(t)(t) as Ak(t). For the two-time quantities such
as the correlation and response functions, we will assume that
index k denotes the coupling of wave vector k(t) with k(tw)

and write the variables as Ck(t,tw) and Rk(t,tw) as a compact
notation. Let us first calculate the equation of motion for the
two-point correlator under shear.

The equation of motion for the density fluctuation of a
dense fluid can be obtained from the continuity equations (for
the density and momenta) of hydrodynamics [see Eq. (6) for
the derivation]:

∂δρk(t)

∂t
+ K1(t)δρk(t) = K2

2

∫
q
Vk,qδρq(t)δρk−q(t) + ηk(t),

(62)

where DL = (ζ + 4η/3)/ρ0, Vk,q = k · [qcq + (k − q)ck−q],
and the noise obeys the following statistics:

〈ηk(t)ηk′(t ′)〉 = 2kBT

DL

ρk(t)δ(k + k′)δ(t − t ′). (63)

Then following a similar calculation as was done above in
the case of unsheared fluid, keeping the advection of the wave
vector in mind, we will obtain the equations of motion for an
aging fluid under shear as

∂Rk(t,tw)

∂t
= −K1(t)Rk(t,tw) + δ(t − tw) +

∫ t

tw

ds �k(t,s)Rk(s,tw), (64a)

∂Ck(t,tw)

∂t
= −K1(t)Ck(t,tw) +

∫ tw

0
ds Dk(t,s)Rk(tw,s) +

∫ t

0
ds �k(t,s)Ck(s,tw). (64b)

The expressions for Dk and �k are

Dk(t,t ′) = 2kBT

DL

ρk(t)δ(t − t ′) + 1

2

(
kBT

DLk(t)k(t ′)

)2 ∫
q
(k(t) · {q(t)cq(t) + [k(t) − q(t)]ck(t)−q(t)})

× (k(t ′) · {q(t ′)cq(t ′) + [k(t ′) − q(t ′)]ck(t ′)−q(t ′)})Cq(t,t ′)Ck−q(t,t ′), (65a)

�k(t,t ′) =
(

kBT

DLk(t)k(t ′)

)2 ∫
q
(k(t) · {q(t)cq(t) + [k(t) − q(t)]ck(t)−q(t)})

× (k(t ′) · {q(t ′)cq(t ′) + [k(t ′) − q(t ′)]ck(t ′)−q(t ′)})Rq(t,t ′)Ck−q(t,t ′). (65b)

Equations (64a) and (64b) along with the expressions of Dk and �k as given in Eqs. (65a) and (65b), respectively, give the
mode-coupling theory for an aging system under shear.

The equations of motion for the growth kinetics are derived in the same procedure as before, and we will just present the final
equations here:

∂χR
k (t,tw)

∂t
= − K1(t)χR

k (t,tw) +
∫ t

tw

ds �k(t,s)χR
k (s,tw) +

∫ t

tw

ds
∂M̃k(t,tw)

∂ε

∣∣∣∣
ε→0

Rk(s,tw) +
(

kBT ck

DL

− ωk(t)

)
Rk(t,tw),

(66)
∂χC

k (t,tw)

∂t
= − K1(t)χC

k (t,tw) +
∫ tw

0
ds Mk(t,s)χR

k (tw,s) +
∫ t

0
ds �k(t,s)χC

k (s,tw) +
∫ tw

0
ds

∂M̃k(t,tw)

∂ε

∣∣∣∣
ε→0

Rk(s,tw)

+
∫ t

0
ds

∂�̃k(t,tw)

∂ε

∣∣∣∣
ε→0

Ck(s,tw) +
(

kBT ck

DL

− ωk(t)

)
Ck(t,tw),

where K1(t) and ωk(t) have a structure similar to that in the unsheared case, and we will present their schematic form below.
Now we will schematicize these equations. First, let us look at the memory kernel. Due to advection of the wave

vectors, the weight of the memory kernel reduces as the time interval becomes of the order of the inverse shear rate. The
diminishing memory kernel weight can be incorporated in the schematic theory by replacing the vertex by a term of the form
4λe−γ̇ (t−s) as the exponential reduces the weight of the term when (t − s) becomes of the order of 1/γ̇ . The exponential is
a simple form, but a variety of other forms are possible [64,75]. Thus the schematic equations for the two-point correlators
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become

∂R(t,tw)

∂t
= − μ(t)R(t,tw) + δ(t − tw) + 4λ

∫ t

tw

e−γ̇ (t−s)R(t,s)C(t,s)R(s,tw)ds,

∂C(t,tw)

∂t
= − μ(t)C(t,tw) + 2T R(tw,t) + 2λ

∫ tw

0
e−γ̇ (t−s)C2(t,s)R(tw,s)ds + 4λ

∫ t

0
e−γ̇ (t−s)R(t,s)C(t,s)C(s,tw)ds. (67)

Similarly, the schematic equations for the susceptibilities are

∂χR(t,tw)

∂t
= − μ(t)χR(t,tw) + [1 − ω(t)]R(t,tw) + 4λ

∫ t

tw

e−γ̇ (t−s)χR(t,s)C(t,s)R(s,tw)ds

+ 4λ

∫ t

tw

e−γ̇ (t−s)R(t,s)χC(t,s)R(s,tw)ds + 4λ

∫ t

tw

e−γ̇ (t−s)R(t,s)C(t,s)χR(s,tw)ds,

∂χC(t,tw)

∂t
= − μ(t)χC(t,tw) + [1 − ω(t)]C(t,tw) + 4λ

∫ tw

0
e−γ̇ (t−s)C(t,s)χC(t,s)R(tw,s)ds

+ 2λ

∫ tw

0
e−γ̇ (t−s)C2(t,s)χR(tw,s)ds + 4λ

∫ tw

0
e−γ̇ (t−s)χC(t,s)R(t,s)C(tw,s)ds

+ 4λ

∫ tw

0
e−γ̇ (t−s)C(t,s)χR(t,s)C(tw,s)ds + 4λ

∫ tw

0
e−γ̇ (t−s)C(t,s)R(t,s)χC(tw,s)ds

+ 4λ

∫ t

tw

e−γ̇ (t−s)χC(t,s)R(t,s)C(s,tw)ds + 4λ

∫ t

tw

e−γ̇ (t−s)C(t,s)χR(t,s)C(s,tw)ds

+ 4λ

∫ t

tw

e−γ̇ (t−s)C(t,s)R(t,s)χC(s,tw)ds, (68)

where the functions μ(t) and ω(t), being the schematic forms of K1(t) and ωk(t), respectively, are given as

μ(t) =T + 6λ

∫ t

0
e−γ̇ (t−s)C2(t,s)R(t,s)ds, (69)

ω(t) = 12λ

∫ t

0
e−γ̇ (t−s)C(t,s)χC(t,s)R(t,s)ds + 6λ

∫ t

0
e−γ̇ (t−s)C2(t,s)χR(t,s)ds. (70)

As we have discussed earlier, it is expected that the system
will reach a steady state under shear after a waiting time tw
of the order of the inverse shear rate. Thus, imposing shear
constrains the growth of the dynamic length scale in an aging
system. This is exactly what we find from the numerical
solution of the mode-coupling equations. In Fig. 8, we show
the solution for an imposed shear rate γ̇ = 10−2 with a value of
the parameters T = 1.0 and λ = 2.0. Starting with the initial
conditions corresponding to a high-temperature liquid, we see
that the three-point correlator χC(t,tw) grows and then the
growth saturates when tw ∼ 102. In the inset, we show how
the correlation function behaves. The two-point correlator also
reaches a steady state after a certain waiting time that is of the
order of the inverse shear rate. In Fig. 9, we show the behavior
of χC(t,tw) and C(t,tw) for the same value of temperature
T = 1.0 and λ = 2.0 but for the shear rate γ̇ = 10−3. In this
case, the correlators reach their steady state when the waiting
time becomes of the order of 103. Since the relaxation time
tr goes as t0.8

w , these results imply for a sheared system under
aging that the relaxation time will behave as tr ∼ γ̇ −0.8, a
testable prediction.

Since activated hopping is ignored within mode-coupling
theory, if the quench is below the transition point, the aging
system will reach equilibrium in the absence of shear when
the waiting time becomes infinity. The system will be trapped

into one of the local minima and thus become nonergodic.
However, an arbitrarily small shear stirs the system and helps
it come out of the local minimum, thus restoring ergodicity.
Shear not only cuts off the relaxation time of the system, it
also sets the dynamic length scale.

Shear does not affect the dynamics much when tw is much
smaller than γ̇ −1. We have seen earlier that the aging dynamics
cannot be characterized by an evolving effective temperature.
Therefore, even under shear, the evolution toward the steady
state cannot be characterized by an effective temperature,
however the steady state itself can be [94]. If we take the
tw → ∞ limit of Eqs. (67) and (68), the resulting theory will
describe the sheared steady state. It is possible to define an
effective temperature Teff for this steady state:

∂C(t)/∂t = −TeffR(t), (71)

where C(t) and R(t) are the correlation and response functions
defined in the steady state. We find that (Teff − T ) ∼ γ̇ 1/4,
where T is the bath temperature. This power-law form is
somewhat ad hoc, but the trend of Teff governed by this theory
is quite encouraging [95,96]. It is important to note that no
equilibrium relation such as the fluctuation-dissipation relation
has been used in deriving this theory [55,94]. However, the
full generality of the theory, i.e., whether it can also be used
to describe athermal systems, remains to be tested.
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FIG. 8. (a) The growth of the three-point correlator χC(t,tw) under aging gets cut off by shear when the waiting time becomes of the order
of inverse shear rate. The imposed shear rate is γ̇ = 10−2. (b) The two-point correlator for the aging system under shear also reaches a steady
state when tw ∼ γ̇ −1.

VIII. DISCUSSION AND CONCLUSION

In this work, we have adapted and extended mode-coupling
theory to describe the nonstationary states and show that
the resulting theory captures the key features of emergence
and growth kinetics of glassy domains starting from a liquid
background. We have achieved this through a suitably defined
susceptibility χC(t,tw) analogous to the one in Ref. [7] for
the equilibrium system and monitoring its growth following a
quench to a low-temperature state. The peak height of χC(t,tw)
is interpreted as the correlation volume, and its growth with
waiting time tw gives the domain growth of glassy order. We
find that the glassy correlation volume grows as t0.5

w ; this is
slower than the growth dynamics in conventional coarsening.
We can extract a relaxation time tpeak as the time where χC(t,tw)
has its peak and tpeak grows as t0.8

w . These theoretical findings
are supported by simulation results of Refs. [27,34]. The
broad features of the three-point correlator are in qualitative
agreement with [28]. A very recent experimental study also

sees the growth of glassy correlation volume and relaxation
time with waiting time [97]; a comparison of our theory to
their findings in the appropriate range of temperatures and
time scales would be very welcome.

Next, we have obtained the equations of motion for
the growth kinetics in a p-spin spherical spin-glass model.
Even though the qualitative features of domain growth as a
function of waiting time are similar to those for the structural
glasses, the correlation volume has a much slower growth
(∼t0.13

w ) in this case with p = 3. We hope these results will
encourage further studies of how the length scale of dynamic
heterogeneity affects the domain growth of spin-glass order
and the aging dynamics in spin-glasses in general.

We have further extended our theory for an aging system
under steady shear and found that an imposed shear rate γ̇ cuts
off aging and coarsening at tw ∼ 1/γ̇ in the glassy region and
tw = min(tr ,1/γ̇ ) in the fluid. As the relaxation time goes as
t0.8
w , tr or tpeak should vary as γ̇ −0.8 for a sheared system. Note
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FIG. 9. When the system is quenched from the high-temperature liquid phase to deep in the glassy phase with the quench characterized by
the parameters T = 1.0 and λ = 2.0, we expect the system to show aging behavior forever. However, shear (with γ̇ = 10−3) cuts off the aging
behavior and drives the system to its steady state after a waiting time tw ∼ 103. (a) The behavior of χC(t,tw) as a function of t for various tw .
(b) Behavior of the two-point correlator C(t,tw).
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that this result is not valid in the aging regime, but applies only
when tw ∼ γ̇ −1. Since the system reaches steady state at that
time, the result remains valid in the steady state. This is an
interesting and testable prediction of the theory.

An important feature of the dynamics emerging from
studying the three-point correlator is that the dynamics at
various waiting times cannot be described with an evolving
effective temperature Teff, contrary to what the study of the
two-point correlator seems to suggest. Thus, for the case of
an aging system under shear, the evolution of the system
toward the steady state cannot be described by an effective
temperature, although the final steady state itself has a well-
defined Teff. In results to be presented separately [94], we
find that (Teff − T ) ∼ γ̇ 1/4, where T is the bath temperature.
Although this power-law fitting form was somewhat ad hoc,
the qualitative features agree well with numerical experiments
[95,96].

Our theory gives the equations of motion for various
susceptibilities, and we solved the schematic version of
the final equations. A schematic theory, though useful in
obtaining different useful information, does not have any
spatial structure. Thus, the calculation gives an estimate of
the number of correlated atoms. We need the notion of
fractal dimension in order to infer the correlation length scale.
Whenever we talked about the correlation length scale in
this work, we assumed that the peak of susceptibility gives
a measure of the correlation volume that is associated with
the correlation length. But as we do not know the fractal
dimension, a direct measure of the length scale is not possible
within this framework.

It would be interesting to see what the full k-dependent
theory predicts. We had to schematicize the equations in order
to obtain a numerically tractable form. Even in that case, it
takes quite a long time (e.g., 10–15 days for the data in Fig. 3)
to extract a significant waiting-time dependence for various
functions. To do anything better than this, we need to find a
better numerical algorithm, but it is not clear how to go about
this important task.

MCT is applicable in a narrow regime at the onset of
the glassy transition. How seriously should we then take the
results presented here? If the quench is below the mode-
coupling transition, but above an ideal glass transition, say
the Kauzmann temperature TK [98], activated processes that
are not present within MCT [99] should cut off the growth in
an experiment or simulation. But typical simulations do not
explore these asymptotically long time scales, and thus they
can be usefully compared to our MCT coarsening results [30].
A quench below TK will presumably give indefinite growth of
a different length scale [19,100,101] with a form not predicted
by MCT.
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Spin-Glasses and Random Fields (World Scientific, Singapore,
1997).

[79] I. M. Hodge, Science 267, 1945 (1995).
[80] B. Sen Gupta and S. P. Das, Phys. Rev. E 90, 012137 (2014).
[81] K. Vollmayr-Lee, C. H. Gorman, and H. E. Castillo,

arXiv:1603.06259.
[82] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091

(1987).
[83] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388

(1987).
[84] H. E. Stanley, Phys. Rev. 176, 718 (1968).
[85] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423

(1973).
[86] H. K. Janssen, Z. Phys. B 23, 377 (1976).
[87] C. DeDominicis, J. Phys. (Paris) Colloq. 1, 247 (1976).
[88] R. V. Jensen, J. Stat. Phys. 25, 183 (1981).
[89] A. Crisanti, H. Horner, and H. J. Sommers, Z. Phys. B 92, 257

(1993).
[90] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Masri,
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