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Long-range attraction of particles adhered to lipid vesicles
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Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This
microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As
a model system to study adsorption-mediated interactions, we study the collective behavior of micrometric
particles adhered to a lipid vesicle. We estimate the colloidal interactions using a maximum likelihood analysis of
particle trajectories. When the particles are highly wrapped by a tense membrane, we observe strong long-range
attractions with a typical binding energy of 150kBT and significant forces extending a few microns.
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I. INTRODUCTION

The geometry of lipid membranes is essential to living cells.
Their topology defines the boundaries of the cell, nucleus, and
organelles [1]. Their shape and size also play an essential role
in cellular physiology, from the contraction of muscle [2] to
the creation of vivid structural color [3]. Therefore, regulation
of membrane geometry is of fundamental importance to cell
biology.

In many cases, the folding of lipid membranes into complex
three-dimensional structures is achieved by the adsorption
and self-assembly of proteins on the surface of a lipid
membrane [4]. While many of the essential molecules have
been identified, relatively little is known about the basic
physics of protein-assisted membrane folding. Experiments
have demonstrated a coupling between membrane curvature,
tension, and binding affinity [5,6]. Furthermore, membrane
folding is intricately related to the organization of adsorbed
proteins into supermolecular structures [4]. These observations
have inspired a number of theoretical studies considering the
adsorption and interaction of proteins on membranes [7,8].
However, experimental measurements of the interactions of
membrane-bound proteins are unavailable.

The mechanics of bare lipid membranes is a compromise
of tension and bending energy [9,10]. When particles adsorb,
the physics is enriched by the particles’ adhesion energy and
geometry. More precisely, for a piece of membrane of shape
S bound to a particle, the energy of the system is described by
the Helfrich Hamiltonian

H(S) = −wac +
∫ (

τ + 1

2
κC2

)
dA, (1)

where τ is the membrane tension, κ the bending rigidity,
C the local total curvature, and w and ac the adhesive
surface energy and area of contact between the membrane
and the particle. An important material length scale emerges,
λ = √

κ/τ . Bending dominates on shorter scales, and tension
dominates on longer ones. Bending rigidities of lipid bilayers
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are typically around 20kBT , so for moderately tensed vesicles
(τ ∼ 10−5–10−4 N/m), λ ∼ 50–100 nm [11].

While membrane-mediated interactions of bound proteins
are challenging to access experimentally, a few studies have
made observations of membrane-induced attractions between
micrometric colloidal particles [12–15]. These observations
are not consistent with analytical theories of interactions of
spherical particles which assume small deformations and pre-
dict repulsive interactions [16]. On the other hand, numerical
studies in the large deformation regime have found attractions
between spheres [7,17–19].

Here, we investigate the interactions of membrane-bound
particles using micron-sized colloidal particles attached to a
giant unilamellar vesicle (GUV). When particles are highly
wrapped by a tense membrane, they spontaneously aggregate.
We describe a maximum likelihood analysis to estimate the
pair potential from the approach to binding of individual
particle pairs. The potential is strongly attractive (>100kBT

deep), and long ranged (>4 μm).

II. EXPERIMENTAL RESULTS

Giant unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) (98%), enhanced with
lipids functionalized by rhodamine (1%) and PEG-biotin (1%),
are fabricated by electroformation [20]. They are resuspended
in a hypotonic buffer, and settle onto a nonadherent coverslip.
The vesicles have a wide range of tensions: some exhibit
large shape fluctuations, while others are smooth and nearly
spherical [Fig. 1(a)]. Using optical tweezers (1064 nm), we
bring streptavidin-functionalized polystyrene spheres (radius
R = 1 μm) in contact with GUVs of diameters from 15 to
20 μm. There is strong adhesion of the particles to the bilayer
due to the interaction of biotin with streptavidin. The extent
of adhesion varies somewhat from bead to bead, but the
membrane typically wraps the bead past its equator, as shown
in Fig. 1(a).

Even though individual particles are stable in the bulk,
beads bound to tense GUVs formed clusters, as shown by
the micrograph in Fig. 1(c). Thermal fluctuations were not
able to dismantle these clusters, but they did cause significant
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FIG. 1. Particle binding and interaction on GUVs. Scale bar is
2 μm. (a) Fluorescent and (b) corresponding bright-field images of a
bead strongly bound to the equatorial plane of a vesicle. More than
half of the particle’s surface appears to be wrapped. The GUV is tense,
since its shape is spherical and no undulations are visible. (c) Particles
self-assemble when bound to the same GUV. (d)–(f) Time sequence
of two particles at the top of a GUV (18 μm diameter) interacting
across a distance of over 4 μm, and quickly moving towards each
other in a time of about 1 s.

fluctuations in the particle separation, as we will discuss later.
Beads bound to flaccid GUVs did not aggregate.

These particle interactions are long ranged. Particles within
a few microns of one another move quasiballistically toward a
bound state, as shown in the time sequence in Figs. 1(d)–1(f).
We imaged the approach of particle pairs with a high-speed
camera (250 frames per second) and extracted the bead posi-
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FIG. 2. Representative trajectories of particle pair separations
on three different vesicles. All trajectories equilibrate at a distance
around 2 μm in the bound state (t � 0 s).

tions using a standard particle tracking algorithm [21]. Three
representative trajectories of the center-to-center separation
between two 2-μm-diameter beads bound to the same vesicles
are shown in Fig. 2. All show a strong attraction starting
from over 4 μm away, with average velocities around 1 μm/s,
and significant fluctuations about a bound state near contact.
A movie showing the particles motion is available in the
Supplemental Material [22].

III. MAXIMUM LIKELIHOOD ANALYSIS

We aim to quantify these membrane-mediated interactions.
Analysis of the fluctuations near equilibrium [23] enables
measurement of the stiffness of the particle-particle bond, but
they do not sample the long-range interaction. In principle, the
long-range interaction could be probed using optical tweezers
as a force transducer [24], or blinking optical tweezers [21,25].
Unfortunately, we have found that lipid vesicles are perturbed
by the laser traps [12,26]; however, they relax after about 200
ms after the laser is blocked.

Consequently, we introduce an alternate approach to quan-
tify interaction parameters from individual trajectories, based
on the general method of maximum likelihood [27]. Consider a
Brownian particle moving in one dimension, with position x.
Its dynamics are given by the Smoluchowski equation [25].
In general, the diffusion coefficient D, and applied force
F , may depend on x. However, over sufficiently short time
intervals �t , the particle samples a region where force and
diffusion coefficient are uniform. In this case, the change in the
particle position, δ = x(t + �t) − x(t), is given by a Gaussian
probability distribution p(δ | �t,F (x),D(x)). The mean, μ,
and standard deviation, σ , of the distribution depend on the
force and diffusion coefficient as

μ =
(

FD

kBT
+ dD

dx

)
�t, (2)

σ =
√

2D�t. (3)

Consider a discretely sampled one-dimensional trajectory
{x1, . . . ,xN }, where xi indicates the coordinate at time ti . The
force and diffusion profiles are unknown, but we assume that
they can be described by a discrete set of parameters α0 =
{α0

1, . . . ,α
0
q}. For example, in the case of homogeneous force

and mobility, this is simply {F0,D0} where F0 and D0 are
constants. Given a trial set α = {α1, . . . ,αq}, the probability
density of observing the trajectory {x1, . . . ,xN } is

P(α) =
N−1∏
i=1

p(δi | xi,�t,α), (4)

where N is the number of sampled time points, and the
discrete displacements are δi = xi+1 − xi . In the limit of large
trajectories (N → ∞), P(α) is maximum when α = α0 [28].
In practice, the analysis is more stable numerically if one
maximizes a log-likelihood function

L(α) = 1

N − 1

N−1∑
i=1

ln[p(δi |xi,�t,α)]. (5)
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FIG. 3. Displacement and force fits. Top: Frame-to-frame (�t =
4 ms) displacements δi as a function of pair separation ri for the far-
field part of the red trajectory. The red dots represent the experimental
data. The solid black line is the maximum likelihood fit for the mean
displacement. The dashed lines represent the typical fluctuations due
to Brownian motion (

√
2D(r)�t). Bottom: Force profiles obtained

from the maximum likelihood analysis of the blue, green, and red far-
field trajectories. The dashed lines represent the statistical uncertainty
on the fits (see Appendix B and Fig. 6).

The main benefit of this approach is that it does not require
the construction of an empirical probability distribution [29],
and can be implemented with a single trajectory. The key
limitation of this approach is that it requires a model for the
spatial dependence of the force and diffusion coefficient.

We apply the maximum likelihood analysis to estimate
the interaction parameters for the three trajectories shown in
Fig. 2. We start by restricting our attention to the far-field
attractive interaction, laying aside the stably bound portion of
the trajectory. As an example, the displacements as a function
of interparticle separation for the red trajectory are presented
in Fig. 3 (top).

It is important to note that, to our knowledge, there is
no definite theoretical form for the attractive force between
micron-sized particles on a tense vesicle [16]. A new hypothe-
sis, recently introduced in [15], is that the contact lines between
the membrane and the beads are pinned [30] in a complex
geometry. The basic idea is that rough contact lines deform
the membrane and induce attractive interactions, analogous
to those between particles at the interface of two simple
fluids. These interactions have been formalized in [31] and
the dominant term is quadrupolar, so that the force is predicted
to be a power law with exponent −5. This is the description

which we adopt here, so we assume that the force between the
particles has the form

F (r) = −φ
1

r5
. (6)

Therefore, the force F depends on one parameter, φ.
Similarly, there is no appropriate theory for the relative

diffusion coefficient of two large beads bound to a lipid
membrane, where both the liquid and the membrane con-
tribute [32–35]. Therefore, we assume a simple form for the
relative diffusion coefficient: it should be zero in contact and
plateau to some constant value at large separations. These
basic criteria are satisfied by the form for identical spheres in
a viscous fluid [36]:

D(r) = D0
12(r/R0 − 2)2 + 8(r/R0 − 2)

6(r/R0 − 2)2 + 13(r/R0 − 2) + 2
, (7)

where D0 is the one-particle diffusion coefficient at infi-
nite separation, and R0 is the hydrodynamic radius of the
particle. In a viscous fluid, D0 and R0 are related through
the original Stokes-Einstein relation. Here, we let them
vary independently to accommodate contributions from both
the membrane and bulk. Putting together these forms for the
force and hydrodynamic drag, the far-field trajectories are
characterized by a set of three parameters: {φ,D0,R0}.

We report the parameter values that maximize the likeli-
hoods for the trajectories in Fig. 2 in Table I. The inferred mean
and standard deviation of the frame-to-frame displacement
distribution for the red trajectory are plotted on top of
the data points in Fig. 3 (top) and for the others in the
Supplemental Material [22]. The inferred force profiles for
all three trajectories are shown in Fig. 3 (bottom). The forces
have maximum values of about 1 pN, and decay over length
scales of a few microns.

The force profiles for the three pairs of particles appear quite
different. To determine if these differences are significant,
we investigated the robustness of these force profiles, and
their associated uncertainties. We quantified the statistical
uncertainty in a force profile using numerical simulations
of Brownian trajectories, and extracted the 25th and 75th
percentiles from the distributions of their maximum likelihood
force fits. We report the corresponding confidence intervals as
dashed lines in Fig. 3, which correspond to roughly ±15% of
the input value (see Appendix B). We tested for sensitivity to
the assumed function form by analyzing the data with various
functional forms of the force. The recovered force profiles
are very similar to the ones presented in Fig. 3. Details are

TABLE I. Maximum likelihood estimates of the trajectories force
and diffusion parameters in the far field and near field. The number of
significant digits comes from numerical uncertainty in maximization
of the likelihood.

Blue Green Red

φ (×10−41) 2.29 4.49 4.64
D0 (×10−14 m2/s) 8.63 9.88 5.48
R0 (μm) 1.046 1.050 1.038
k (nN/μm) 0.79 9.4 79.5
req (μm) 2.06 2.071 2.074

012604-3



RAPHAEL SARFATI AND ERIC R. DUFRESNE PHYSICAL REVIEW E 94, 012604 (2016)

provided in the Supplemental Material [22]. Therefore, the
differences in the force profiles between the blue trajectory
and the green and red appear as significant, and presumably
due to differences in the membrane tension and the wrapping
of the bead by the membrane.

The spatial dependence of the diffusion coefficient is sur-
prisingly well captured by Eq. (7), with a hydrodynamic radius,
R0, that is not significantly different from the particle radius, R,
in any of the three trajectories (Table I). However, the limiting
value of the diffusion coefficient varies more significantly from
particle to particle, perhaps reflecting differences in the extent
of wrapping by the membrane.

IV. NEAR-FIELD INTERACTION

Having analyzed the far-field attraction, we now focus
on the interaction in the bound state. Significant separation
fluctuations are observed, with essentially two characteristic
time scales. Notably in the first 0.5 s of the bound state,
we notice some slow features (see Fig. 2, blue and green),
which we attribute to evolving wrapping of the membrane
around the particles. After this transition period, the particle
separation fluctuates about an apparent equilibrium separation,
with a characteristic time of about 5 ms. At this point, the
particle interaction should be given simply by Hooke’s law,
F (r) = −k(r − req), with k the spring constant and req the
equilibrium distance.

We apply the maximum likelihood analysis to estimate
these parameters for each trajectory, and report our results
in Table I. As expected, the equilibrium separation of the
particles is consistently found to be close to the nominal
particle diameter. Interestingly, the measured spring constants
span two orders of magnitude. We suspect that these widely
varying stiffnesses depend strongly on the tension and state of
wrapping of the particles by the membrane. In Appendix B, we
show that these estimations are very similar to estimations of
k and req obtained from standard Boltzmann statistics analysis
of these trajectories.
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FIG. 4. Plot of the estimated energy landscape as a function of
the pair separation. Inset: Zoom-in of the near-field part. The binding
energy is about 150kBT .

By integration of the measured force profile, we construct
the two-particle membrane-mediated energy landscape for
the red trajectory in Fig. 4. The potential depth approaches
150kBT .

V. CONCLUSION

We observed long-range attractions between micron-sized
functionalized polystyrene spheres strongly adhered to a tense
lipid bilayer. We estimated pair interactions based on a
maximum likelihood analysis. This approach estimates the
force profile with many fewer observations than spatially
resolved measurements of the drift velocity and diffusion
coefficient [25], and therefore is well suited to single-trajectory
analysis.

While there are many possible origins for the observed
long-range attraction, tension-mediated interactions seem to
be the most likely candidate. Tension-mediated interactions
are analogous to capillary interactions of particles at a fluid
interface. Since the weight of the particles is too small to
induce significant membrane deformations [37,38], the most
plausible origin of the long-range attraction is multipolar
capillary interactions due to roughness of the contact line.
Previous studies have mentioned the possibility of a pinned
contact line between a sphere and a lipid membrane [30],
which has recently been suggested to be the origin of attraction
of particles on lipid membranes [15]. Multipolar capillary
interactions are well understood at fluid-fluid interfaces, and
have a dominant term corresponding to the quadrupolar
mode [31], Eq. (6). In order to elucidate the exact mechanism
behind these long-range interactions, further measurements
quantifying and controlling the tension in the membrane are
necessary.
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APPENDIX A: MATERIALS AND METHODS

Phospholipids were purchased from Avanti Lipids:
POPC, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[biotinyl (polyethylene glycol) 2000] (DSPE-biotin), and L-
α-phosphatidylethanolamine-N-(lissamine rhodamine B sul-
fonyl) (PE-Rhod). Lipid vesicles were synthesized using the
electroformation method [20]. Briefly, 50 μL of a mixture
of POPC–DSPE-biotin–PE-Rhod 98:1:1 (1 mg/mL in chlo-
roform) were deposited using a glass syringe (Hamilton
Gastight) onto two platinum wires contained in a teflon
chamber. The chamber was filled with 1.6 mL of a solution
of 200 mM of sucrose, then sealed, and the wires where
connected to a signal generator (Wavetek FG2 A) applying
a sinusoidal voltage (10 Hz, 8 V peak to peak) for 2 to 8 h.
A working solution was made by mixing 10 μL of the lipid
vesicle solution, 3 μL of streptavidin coated, 2-μm-diameter
latex beads (Polysciences, volume fraction 1.36%), and 87 μL
of a hypotonic binding buffer solution (62.5 mM KCl, 25 mM
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FIG. 5. Histogram of the results of the maximum likelihood analysis for φ,D0,R0 for each of the 1000 simulated trajectories.

glucose, 12.5 mM HEPES, 0.5% bovine serum albumin). After
gentle homogenization, 7 μL of the solution were deposited
in a sealed, thin chamber (Secure-Seal spacer from Life
Technologies, 9 mm diameter and 120 μm thickness) in order
to prevent any flow by turbulence or evaporation. Observation
was realized using an inverted microscope (Nikon TE-2000),
equipped with a fluorescent filter and a N.A. 1.4 100× oil im-
mersion objective lens. Movies were recorded using a fast cam-
era (Photron Fastcam 1024PCI). The beads were manipulated
using a holographic optical tweezers setup described in [39].

The particle positions were extracted from the movies
using a standard particle tracking algorithm in MATLAB [21].
The maximum likelihood analysis was performed using the
fminsearch function in MATLAB, which finds the position
of the minimum of a scalar function of several variables.
This function requires one to input an initial guess for the
position of the minimum. We made sure that our results were
independent of the guess inputs by trying several dozens of
initial guesses over a wide range of parameters.

APPENDIX B: NUMERICAL INVESTIGATION OF
MAXIMUM LIKELIHOOD ANALYSIS

1. Far-field simulations

We perform numerical simulations to investigate the ro-
bustness of the maximum likelihood analysis that we use in
this article, and estimate the associated uncertainties.

We simulate the motion of a Brownian particle with
diffusion coefficient D(x) in a force field F (x), both dependent
on the particle’s position x. We analyze these trajectories using
the maximum likelihood analysis.

To mimic our experimental trajectories, we generate Ns =
1000 random trajectories of 300 points separated by a time
interval �t = 4 ms and all finishing at x = 2.1 μm. These
trajectories were obtained from longer trajectories simulated
at a higher frequency of 104 frames per second. We use the
force profile

F (x) = −φ
1

x5
, (B1)

and the diffusion profile

D(x) = D0
12(x/R0 − 2)2 + 8(x/R0 − 2)

6(x/R0 − 2)2 + 13(x/R0 − 2) + 2
, (B2)

with parameter values for φ, D0, and r0 corresponding to
the values extracted from our trajectories fits. We apply the
maximum likelihood analysis, and compare the results to these
values.

The parameter values estimated from the maximum like-
lihood analysis are presented as histograms in Fig. 5, for the
simulations corresponding to the red trajectory (φ = 4.64 ×
10−41 N/m5, D0 = 5.5 × 10−14 m2/s, r0 = 1.04 × 10−6 m).
We find that estimations of the three parameters are closely
distributed around their actual values. As a consequence, the

FIG. 6. Maximum likelihood fit distributions. Left: Displacement fits. The high density area (darker colors) correlates to the input
displacement profile. Middle: Force fits. Again, the high density area correlates with the input force profile. Right: Force fits for all simulated
trajectories (blue curves), and input force profile (solid red curve). The 25th and 75th percentiles (dashed red curves) are obtained from the
distribution shown in the middle plot.
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force and displacement profiles are very similar, as seen in
Fig. 6.

These simulated trajectories allow us to estimate the un-
certainty on our estimated parameters. From the Ns estimated
force profiles, we can calculate the 25th and 75th percentiles
from the force distribution at each separation in order to
estimate the 50% confidence interval, which we reported in
Fig. 3, as shown in Fig. 6.

2. Near-field comparison between Boltzmann statistics and
maximum likelihood

In the near field, where the particle separation fluctuations
about an equilibrium position, the spring constant k, and
equilibrium distance req can be inferred both from the
maximum likelihood method and from a more traditional
Boltzmann statistics analysis. Here, we present a comparison
of the two methods.

Following Boltzmann statistics, we can calculate the
spring constant kBS from a set of experimental separations

TABLE II. Results from the maximum likelihood (ML) analysis,
and comparison with the Boltzmann statistics analysis (BS). The
number of significant digits comes from numerical uncertainty in
maximization for ML, and standard statistical uncertainty for mean
and variance for BS.

Blue Green Red

kML (nN/μm) 0.79 9.4 79.5

kBS (nN/μm) 0.76 8.99 72.3
rML

eq (μm) 2.06 2.071 2.074

rBS
eq (μm) 2.06 2.07 2.07

X = {x1, . . . ,xn} using

kBS = kBT

σ 2(X )
, (B3)

where σ 2 denotes the variance.
In Table II, we present a comparison of the results obtained

from Boltzmann statistics and from the maximum likelihood
analysis. The results agree very well.
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