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Phase separation on the sphere: Patchy particles and self-assembly
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Motivated by observations of heterogeneous domain structure on the surface of cells, we consider a minimal
model to describe the dynamics of phase separation on the surface of a spherical particle. Finite-size effects on the
curved particle surface lead to the formation of long-lived, metastable states for which the density is distributed
in patches over the particle surface. We study the time evolution and stability of these states as a function of both
the particle size and the thermodynamic parameters. Finally, by connecting our findings with studies of patchy
particles, we consider the implications for self-assembly in many-particle systems.
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I. INTRODUCTION

Phase separation in bulk systems can proceed via a number
of distinct physical mechanisms (such as spinodal decomposi-
tion and heterogeneous or homogeneous nucleation), and it is
generally well understood. However, the dynamical processes
involved are less clear when the system is subject to some
form of spatial confinement. This confinement can arise from
the presence of external fields, representing, for example,
substrates or random obstacles, but it can also be imposed
by the geometry of the embedding space. The latter type of
confinement is particularly relevant to biological cells, for
which the mobile fluid particles constituting the cell membrane
are constrained to lie on the surface of a (roughly) spherical
body. These membranes exhibit stable domains, the spatial
distribution of which is important for many cell properties,
e.g., adhesion [1,2]. The composition of these domains and
their distribution over the surface of the cell dictates to a large
extent the interaction forces between different cells and thus
the self-assembly behavior of many-cell systems.

One common view is that the domains on the surface of
a cell are a consequence of an arrested or incomplete phase
separation, however it remains to be established whether the
observed states are permanent or metastable in character.
If the heterogeneous domain structure on the cell surface
is an equilibrium state, then some stabilizing mechanism
is required; the line tension incurred by interfaces between
domains would make inhomogeneous phases energetically
unfavorable when compared to a fully phase-separated system.
Computer simulation studies of simple model systems [3,4]
have shown that the size, composition, and dynamics of
membrane domains can be regulated by introducing randomly
located, immobile objects. These obstacles, embedded within
the two-dimensional fluid, serve to hinder macroscopic phase
separation and act as a source of quenched disorder. It has
been proposed in Refs. [3,4] that the quenched disorder found
in real cells, provided by fixed cytoskeletal proteins, could be
the key stabilizing mechanism.

An alternative scenario is that the domains are long-lived
metastable, rather than equilibrium, states. It is well known
from studies of phase separation [5,6] in bulk that quenching
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the thermodynamic parameters to a state point close to the
spinodal will result in very slow phase-separation dynamics.
Following the quench, spherical domains of the minority phase
form and then slowly merge together, a process known as
Ostwald ripening [7]. The ripening process could possibly be
slowed down, or even arrested entirely, by the presence of small
quantities of an additional species, which sits preferentially at
the interfaces between domains.

A requirement for studying domain formation is an under-
standing of diffusion processes on the sphere. Such studies
can be found in the literature in a variety of contexts. The
diffusion of noninteracting particles on a spherical surface
has been addressed using analytical methods by Ghosh et al.
[8]. Marenduzzo and Orlandini have used numerical methods
to study diffusive motion on general curved surfaces, and
they investigated the coupling between phase separation and
local curvature [9]. Fischer and Vink performed many-body
simulations on a spherical surface, with the aim to optimize the
boundary conditions for simulations of first-order transitions
in finite-size systems [10].

Going beyond single-cell properties, assemblies of spher-
ical cells exhibit nontrivial interactions, both with each other
and with external substrates. The interaction potential between
a pair of cells is strongly influenced by the distribution and
size of the domains covering its surface. In this sense, cells
may be regarded as a naturally occurring type of “patchy
particle,” which is the term given to particles with distinct
surface sites generating anisotropic interparticle interactions.
While synthetically fabricated patchy particles have attractive
interaction patches strategically arranged on their surface
[11], the domains covering the cell emerge as a result
of self-organization. When multiple cells are present in a
crowded environment, the influence of competing physical
mechanisms, acting both within each cell membrane (line
tension, quenched disorder) and between different cells, can
generate a complex domain structure.

The phase behavior and equilibrium microstructure of
synthetic patchy particles depends upon the number, spatial
distribution, and attraction strength of the interaction patches.
For example, spherical particles with just two attractive
patches will tend to form polymerlike chains, whereas three-
patch particles will assemble into open gel-like structures
(“empty” liquids) [12]. Recent developments in the controlled
fabrication of patchy particles have raised hopes that materials
with desired properties may be tailored by prescribing the
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number and geometrical arrangement of the patches [11,13].
To understand the collective behavior of natural patchy
particles, for which the domains self-organize, it is necessary
to understand first the dynamical processes occurring on the
surface of individual cells.

In this paper, we investigate how phase separation on
the surface of a spherical body can give rise to different
domain structures, and then we infer how these domains
could influence the self-assembly in systems consisting of
many spherical bodies. We do not seek to describe real
biological cells, but rather we take these as a motivation for
the construction of simple models capturing generic physical
features. We will focus first on single-particle properties,
investigating how the domains form on the particle surface
under various conditions, before proceeding to study how these
domains may influence interparticle interactions. In Sec. II we
outline the model system to be considered, the theoretical
method employed, and the numerical methods used to solve
our equations. In Sec. III we investigate the domain formation
on a single spherical body, and we infer from this the likely
consequences for many-body self-assembly in Sec. I'V. Finally,
in Sec. V we discuss our findings and provide an outlook.

II. THEORY

We will investigate the demixing of a binary fluid on the
two-dimensional surface of a large spherical particle. To avoid
any confusion with terminology, we will henceforth refer
to the large particle as the “mesoparticle” and the smaller,
mobile particles constituting the fluid on its surface as the
“surface particles.” As we are interested in the phenomenol-
ogy of phase separation and domain formation, we choose
for convenience a very simple microscopic model, namely
the Gaussian core model (GCM), to represent the surface
particles. In the present study, the GCM is employed simply
because of its generic demixing properties, rather than as an
approximation to any specific physical system. The collective
behavior of the GCM on the mesoparticle surface is treated
using a well-established mean-field density-functional theory.

A. The Gaussian core model

To represent the surface particles, we consider a model
binary mixture in which the particles interact via the soft
repulsive pair potential

Buij(r) = —r?/R}}, (1)

where B=(kgT)~" and the non-negative parameters ¢;; and
R;; determine the strength and range, respectively, of the
interaction between species i and j. The GCM was introduced
by Stillinger [14] to study phase separation in binary mixtures
and has since been studied intensively, both in bulk and at
interfaces [15-20]. The model has the advantage that a simple
mean-field approximation to the free energy provides good
agreement with computer simulation data [21].

When calculating the interaction between surface particles,
the separation r entering the pair potential (1) is taken to be the
direct, straight-line distance (cutting through the mesosphere),
rather than the length of the arc around the surface of the
mesosphere.

Beij exp {
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B. Mean-field free-energy functional

To describe the collective behavior of the surface particles,
we use an approximation to the two-dimensional Helmholtz
free-energy functional,

BF{pg(r.0)}]
= Z/drpq(r){ln[pq(r)] -1
q

1
+ 3 ; / dr/ dr' p,(r)pi(X)Bug(lr — '),  (2)

where the first and second terms provide the ideal and excess
(over ideal) contributions, respectively. The subscripts ¢ and
[ are species labels, and the notation [{p,(r,?)}] indicates a
functional dependence on the one-body density profiles of all
species. We set the (physically irrelevant) thermal wavelength
equal to unity. For a binary mixture, the species indices are
restricted to the values g,/ = 1,2. In bulk, the number density
of species g is p,=N,/V, where V is the area in the two-
dimensional (2D) case. The total density is p = p; + 03.

It is convenient to introduce a concentration variable
x = N,/N, which enables the species labeled densities to be
expressed as p; = (1 — x)p and p» = xp. In these variables,
the bulk free energy per particle consists of a sum of two terms,
f=F/N = fig+ fex. The ideal part is given by

Bfia=In(p)— 14+ 1 —=x)In(1 —x)+xIn(x), (3)

where the contribution (1 — x)In(1 — x) + x In(x) is due to
the entropy of mixing. The reduced bulk excess free energy
per particle is given by

Bfex = ﬁ[mplﬁu(o) +20102012(0) + 0202022(0)],  (4)

where ©;;(0) is the Fourier transform of the pair potential at
zero wave vector ¥;;(k = 0)=¢; R2 m and e = Beij.

Expressing p; and p; in terms of the concentratlon variable
X, one obtains

Bfex = 2pl(1 — x)*011(0) + 2x(1 — x)D12(0) + x*02(0)].
)

When the total density p becomes sufficiently large, the GCM
demixes. To obtain the coexistence curve (binodal) both the
chemical potential of each species and the pressure have to be
set equal in the coexisting phases (see Appendix A).

C. Microscopic dynamics of surface particles

If we assume that the momentum degrees of freedom of the
surface particles equilibrate much faster than their positions,
then the motion of the surface particles may be modeled using
Brownian dynamics [22]. For a multicomponent system, the
configurational probability density, W({r;,},t), describes the
probability to find a given particle configuration at time ¢,
where r;, is the coordinate of the ith particle of species g.
Given an initial state, the time evolution of W({r;,},?) is given
by the Smoluchowski equation [23]

3‘1’({rzq} t) ZZ

Jiq({riq}vt)v (6)
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where the sums are taken over all particles and species. The
current of particle i of species g is given by

Jig(iright) = y;l\IJ({riq},t)[F,-q({riq},z)

— kBTiln \IJ({r,-q},t):|, (7
al'iq
where y, = kgT /D, is a friction coefficient, D, is the bare
diffusion coefficient of species g, and kT is the thermal
energy. We will henceforth assume, for simplicity, that all
species have equal friction coefficient, y, = y. The total force,
Fi;({rig}), is the sum of contributions from interactions and
external fields.

D. Dynamical density-functional theory

To study phase separation on the surface of a mesoparticle,
we will focus on the dynamics of the one-body density of
the surface particles. This can be obtained using dynamical
density-functional theory (DDFT) [17,24]. Within this ap-
proach, the time evolution of the density of species g is given
by a generalized diffusion equation

dpg(r,t) 0
ar  9r

[ylpq(r,,) 9 w} ®)

or  8p,(r.1)

The DDFT equation of motion (8) is obtained from the many-
body Smoluchowski equation (6) by (i) integrating over all
but one of the particle coordinates, and (ii) approximating the
interaction forces using the equilibrium free-energy functional.
This second step constitutes an adiabatic assumption. As the
adiabatic approximation is well documented, we refer the
interested reader to Refs. [17] and [25] for a detailed derivation
of Eq. (8).

E. Numerical implementation

To solve the DDFT equation of motion (8) on the surface
of a mesosphere, we must define an appropriate numerical
grid. The chosen grid should enable accurate finite-difference
schemes for calculating the gradient and divergence of scalar-
vector fields, as well as an efficient method to compute the
convolution of two scalar fields. We find that for the present
application, the simplest approach is, in fact, the best choice:
we parametrize the sphere using the spherical polar angles
0 and ¢. In the following subsections, we report relevant
technical details of our numerical solution of (8).

Numerical grid and finite differences: We parametrize the
surface of a mesosphere of radius R using the angles ¢ €
[0,27) and 6 € [0,7]. The ¢ range is divided into M equally
spaced points with spacing d¢ = 2w /M and the 6 range in
N points with spacing d0 = 7 /N. To avoid the singularity
at the north (0 = 0) and south (f = m) poles, we exclude
these two points and start our 6 grid at 6y = d6/2 and end
itat Oy_; =N —1)d0 +db/2 =m —db/2. From Fig. 1,
it is evident that the pole regions suffer from oversampling
when compared to the area around the equator. However,
this disadvantage is compensated for by the ease with which
finite differences may be calculated. All fields can be stored
in M arrays, and neighboring entries in the array correspond
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FIG. 1. The numerical grid (here for M = 60 and N = 30) used
to calculate density profiles on the mesoparticle surface. The angular
increment d¢ = 2w /M points from west to east, and the angular
increment d6 = pi /N points from the north pole to the south pole.
This discretization leads to an oversampling of points around the two
poles.

to physical neighbors on the sphere. The only complication
arises on the edges, 6p = d6/2 and Oy_; = m — d6 /2. Details
of our finite-difference scheme are given in Appendix B.

Convolutions: The nonlocal approximation to the free
energy, Eq. (2), generates in Eq. (8) convolution integrals of
the form

/ d f(¢',0) g(xr — 1), 9)

where |r| = |r'| = R and both f and g are scalar functions.
Convolutions on the surface of a unit sphere can be efficiently
computed by expanding the scalar fields f(¢,6) and g(¢,6) in
spherical harmonics,

L
[@.0)=)">" a'Y"(®.0). (10)

1=0 |m|<I

In principle, an infinite number of terms are required, but in
practice the series may be truncated at a finite value of L. It
follows from orthogonality, f dQY]" Y = 6y 8 m, that the
coefficients are

a" = f dQY)"(¢.0)f(9.0). (11)

To compute the convolution (9), we make use of the fact that
for two functions f and g defined on the unit sphere, the
transform of the convolution is given by a pointwise product
of the transforms, namely

4
(f# g = | ———a"b?, (12)
! 2041 47

where b) = [dQ2Y)(¢,0)g(#,6). A proof of this statement
and further insight into the method can be found in Ref. [26].
Extension of the convolution theorem (12) to spheres of
nonunit radius simply requires that Eq. (12) be multiplied by
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a factor R?. Spherical harmonic transforms were performed
using an open-source C library [27,28]. The computational
effort for one transform is of order (M x N)3/2.

Time Integration: When solving (8), the spatial grid spacing
imposes a bound on the maximum step size d¢, which can be
used to calculate the time evolution. Beyond a critical value
of dt, the time integration becomes unstable. This is the main
drawback of our chosen spatial grid; the local oversampling
around the poles leaves very little room to adjust the (global)
step size dt. It is thus necessary to choose a value of dt
sufficiently small that the regions around the poles remain
stable. The most reliable method to evolve (8) is simple Euler
integration. More sophisticated methods, such as Runge-Kutta
integration combined with adaptive step size, do not lead to
any significant increase in performance.

III. RESULTS

The surface of a mesosphere of radius R represents a
finite-size system and thus does not admit a true phase
transition. Nevertheless, provided that a sufficient number
of surface particles are present, the phase diagram of an
infinite planar system offers a useful guide when calculat-
ing density dynamics on the mesosphere. The bulk phase
diagram of an infinite planar system is shown in Fig. 2
for the parameters Rjy = Ry = Rjp =1, €], = €5, =2, and
€1, = 1.035¢],. State points at which we perform detailed
calculations are indicated.

We consider first a mesosphere of radius R = 10R;; with
a total density of surface fluid particles pR?, =25 and
composition x = 0.5, corresponding to state point A in the
phase diagram (see Fig. 2). In Fig. 3, we show the density
profile of species 1 at four different times. The initial condition
is chosen by adding to a constant density several randomly
located density peaks and dips of small amplitude.

After a time * = tD/R?}, = 80, the spinodal instability
becomes clearly visible on the scale of the figure. For later
times (we show t* = 200 and 5000), domains form and evolve

35 T T T T T T T T
30 |
25 § * X +
a 20 R 3
v
S 15+ 8
10 + g
5 | |
binodal state A+ state C %
B spinodal state B x state D
0 01 02 03 04 05 06 07 08 09 1

X

FIG. 2. Phase diagram of the symmetric GCM for the surface par-
ticles in an infinite, two-dimensional, planar system. The parameters
used are R} = Ry = Rip =1, €, = €5, =2, and €], = 1.035¢7,.
The critical point is located at p R?, = 9.094 568, x = 0.5.
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FIG. 3. Larger sphere with x = 0.5. The time evolution of the
density of species 1 with pR? = 25, confined on a mesosphere of
radius R = 10R;;. The times shown are t* = tD/RlzI = 80, 200,
5000, and 60 000. The process of spinodal decomposition leads to
characteristic density inhomogeneities. In the long-time limit, the line
tension is minimized when the interface maps a great circle.

as the system seeks to minimize the length of the boundary
between the two phases. At the longest time for which we
performed numerical calculations, t* = 60 000, the interfacial
region lies on a great circle, which is a consequence of the
chosen composition x = 0.5. We note that the orientation
of the final phase-separated state is not correlated with the
underlying numerical grid, thus suggesting that our chosen
discretization does not introduce any artificial bias into the
phase-separation dynamics.

As the DDFT is an adiabatic theory, we can track the time
evolution of the free energy. This is shown in Fig. 4 for three
different initial conditions where we plot the free energy per

- I initial condition 1 .
initial condition2 &
A & aa initial condition 3 =
1+ * %
08
.
& 06
<
04
02 + B
0 E L
10 100 1000 10000

t* = (D/R ;>

FIG. 4. Larger sphere with x = 0.5. Time evolution of the free
energy per particle for three different initial conditions of a system
with pR?, = 25. Initial condition 1 corresponds to the data shown in
Fig. 3.
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FIG. 5. Larger sphere with x = 0.3. Evolution of the density with
p R} = 25 on a mesoparticle with R = 10R;;. The state at t* = 10
is not the final state, but rather a very long-lived metastable state with
five patches (two of which are located here around the back of the
mesosphere).

particle 8f minus the long-time value of the free energy. Aside
from slight differences arising from different initial conditions,
the general behavior of the free-energy relaxation is very
similar for all cases investigated; a rapid initial relaxation is
followed by a slow decay to equilibrium.

We next consider a composition x = 0.3, corresponding
to state point C in Fig. 2. The density is shown in Fig. 5 for
four different times. In contrast to the behavior for x = 0.5, the
initial stage of the evolution for x = 0.3 is characterized by the
formation of circular islands of the minority phase, which then
slowly merge together, a process known as Ostwald ripening
[7].

In Fig. 6 we show the corresponding free energy as a
function of time. The free energy decreases rapidly whenever

0.5

045 | . 1
04 . 1
035 . 1

03

0.15
0.1

0.05

0 1 1 L
10 100 1000 10000

= DR ;%

100000

FIG. 6. Larger sphere with x = 0.3. Time evolution of the free
energy at state point p R, = 25, corresponding to the density profiles
shown in Fig. 5. Sudden decreases in the free energy correspond to
events in which two domains merge. This contrasts with the smoother
decay observed in Fig. 4.
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FIG. 7. Smaller sphere with x = 0.5. Time evolution of the
density with pR?, = 25 on a mesoparticle with radius R = 2.5R;.
The surface particles become trapped in a “banded”” metastable state.
For comparison, the density on a larger mesoparticle (see Fig. 3) at
the same state point does not display such a banded structure at any
point during the time evolution.

two circular patches merge, however these merging events
become less frequent as time progresses (note the logarithmic
time scale). Even after t* = 10°, the system has still not
attained its final state, but the free energy shows no significant
further decrease. The final state shown in Fig. 6 proved
to be very stable; the expected completely phase-separated
state could not be obtained within the available computation
time. For the duration that the surface fluid is trapped in this
metastable state, which, according to our calculations, survives
many tens of thousands of Brownian time units. During this
time window, the mesoparticle could be regarded as a patchy
particle, which would surely exhibit anisotropic interactions
with neighboring mesoparticles.

We next consider phase separation on a smaller mesoparti-
cle, R = 2.5R;;, for which finite-size effects become impor-
tant. A typical example of the time evolution of the density is
shown in Fig. 7 and the corresponding free energy in Fig. §,
where we address first the state point A in the phase diagram
(p = 25, x = 0.5). When compared with the phase-separation
dynamics on the larger mesoparticle (see Fig. 3), we observe
from the decay of the free energy that, although the onset time
of the initial instability is larger for the smaller sphere, the
overall time taken to arrive at the equilibrium state is smaller.

In contrast to the behavior on the larger mesosphere, the
density evolves here into a “band” state, where two islands with
species 1 form, separated by a band of species 2 particles. This
state is stable over a long time, which can be seen in the plateau
of the free energy (from ¢* ~ 5000 to #* ~ 20 000), before it
finally collapses to reach an equilibrium state qualitatively
similar to that found on the larger sphere. The interesting fea-
ture here is that, despite the symmetric composition (x = 0.5),
the time evolution is qualitatively closer to Ostwald ripening
than classic spinodal decomposition. This is a finite-size effect,
which arises because “long-wavelength modes” (a notion to
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FIG. 8. Smaller sphere with x = 0.5. Time evolution of the free
energy for state point pR? =25 on a mesoparticle with radius
R =2.5R;,. The sudden decrease in the free energy at around
t* = 20000 corresponds to the breaking of the density “band” around
the mesoparticle (see Fig. 7).

be clarified in the following section) are suppressed by the
relatively small circumference of the mesosphere, relative to
the size of the surface particles.

If the value of x is reduced for fixed p, the state point
moves toward the spinodal and the time taken for the system
to reach equilibrium increases. In Fig. 9, we show an example
of the density evolution for the value x = 0.3 (state point C).
We again observe the formation of a band around the particle,
however this metastable state is much longer-lived than that
observed for the case x = 0.5, as can be seen from the time evo-
lution of the free energy shown in Fig. 10. In general, we find
that the smaller the value of x, the more stable the band struc-
ture becomes. In Fig. 10, we show the free energy per particle
as a function of time for state points A, B, C, and D in Fig. 2,

S t* = 2000 t* = 20000
2.
30 30
25 2
- 0 2
= 5 Z 15
g TS 10
5 5
0 0
25
YR ;0 35
25 TRy 25 TRy
t* = 80000 t* = 100000
25 25
30 30
25 25
. 0 20
= 0 5 2 o 15
g o g 10

-2.5 -25

y/R ;0 yR ;0

N s
25 TRy 25

FIG. 9. Smaller sphere with x = 0.3. Time evolution of the
density with prl = 25 on a mesosphere of radius R = 2.5R;;. The
banded state is here more stable than in the case x = 0.5 (see Fig. 7).

25
xRy
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FIG. 10. Smaller sphere withx = 0.2, ...,0.5. Time evolution of
the free energy for p R?, = 25 on a mesosphere of radius R = 2.5R;;.
The plateau in the free energy corresponds to the banded state. The
lifetime of the density band increases as x is reduced.

corresponding to x = 0.5, 0.4, 0.3, and 0.2. This enhanced
stability of the band structure can be attributed to the fact that
the distance between the interfaces increases as the surface
coverage of the minority phase is reduced by reducing x.

The process of spinodal decomposition in bulk systems is
commonly subdivided into different dynamical regimes. In
the early stages of phase separation, density gradients are
small and the dynamics can be well described using Cahn-
Hillard theory (see, e.g., Refs. [29-32]). Early-stage spinodal
decomposition is characterized by an exponential growth of
low-wavelength density fluctuations [32]. For infinite, flat
systems, the fluctuation spectrum is conveniently analyzed
using the Fourier transform, which enables unstable wave
numbers k to be identified. In the present situation, in which
the surface fluid is confined to a spherical surface of finite
extent, the analog of the wave number is provided by the I,m
labels of the spherical harmonic expansion of the density field.

We define the early stage of spinodal decomposition to be
the time window following the quench, for which the linearized
theory agrees with a full nonlinear calculation. Deviations
indicate the onset of intermediate-stage phase separation. We
thus follow [32] and linearize the DDFT equation in the density
fluctuation p;(r,t) = p;(r,t) — pl.b . We first express the DDFT
equation in the form
pr-! w = V25i(r,1) — V|5,V (0]

—p} VeV (r,0), (13)

and we substitute into this expression a functional Taylor
expansion of the one-body direct correlation function,

1 1
cPir,r) = Z (e,
j

o

+Zfﬁﬁmm>m6n+~.m®
J

P;
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For the GCM surface fluid, this yields to first order in density
fluctuations the following result:

-1 . ba ba ~ ~
B C(l )(I'J)Z —P1V11 — P V12 — P1 * Vi1 — P2 * V12,
-1 .0 ba ba ~ ~
B C(g)(l',f)z —py02 — p{D12 — P2 * v2o — P1 * V12, (15)

where the star denotes a convolution. Substitution of (15) into
(13) and retaining linear terms yields

_19p1(r,1) ~
AT 113—; = V25(r,t) — Bp? V(v * p1 + via * p2),
(16)
_100a(r,7) ~
B 12770 Vzpz(l',l) — ﬁpgvz(vgz * 03 + V12 * p1).

Jat
(17)

To identify the regime of early-stage phase separation, we
have compared the free energy from the nonlinear DDFT,
Eq. (8), with the results obtained by solving Egs. (16) and (17).
Our numerical calculations show where the linearized solution
begins to deviate from the full solution of the DDFT equations.
For a given mesoparticle radius, we evaluate the density field at
a time just prior to this deviation, determine the coefficients in
the spherical harmonic expansion, Eq. (10), and then average
over the m index. Furthermore, we average over a set of 50
different initial conditions. The resulting averaged coefficient,
(a;"), is a function of the index / and indicates which modes
of the density field contribute most to the density instability.

In Fig. 11, we show (a;") as a function of / for different
mesoparticle radii. For the familiar case of spinodal decom-
position in a flat space, it is standard procedure to analyze
the static structure factor in order to identify unstable Fourier
modes. In the present situation, in which a liquid is constrained
to lie on a finite spherical surface, the (g;") data shown in
Fig. 11 provide an appropriate analog to the structure factor.
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FIG. 11. [-modes of the early-stage spinodal decomposition
for different mesoparticle sizes. We show the spherical harmonic
coefficient for a given [-value, averaged over the m indices from
m = —I[,...,] and averaged over initial conditions. For smaller
sphere sizes, the peak shifts to smaller /-values.
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FIG. 12. [-modes for different times for a mesoparticle of radius
R = 10R;,. As the density evolves, the smaller /-modes give an
increasing contribution. In the final state, the dipole dominates.

For smaller sphere sizes, the dominant /-values are lower
than for larger spheres. An explanation for this effect is that
the wavelengths that dominate the instability, the “ripples” on
the sphere surface, are independent of the sphere size, and,
therefore, on smaller spheres they are described by a smaller
[-value. Using Jeans’ rule, one can identify the wavelength of
a spherical harmonic with degree [ by A =27 R/(I + 1/2).

As the density relaxes from its initial to its final state,
the (a;") evolve in time. For a sphere of radius R = 10R;;
and x = 0.5, we show in Fig. 12 this time evolution from
the end of early-stage spinodal decomposition, all the way
to the final state. For times just beyond the early stage of
spinodal decomposition, we observe the same behavior as seen
in Fig. 11. However, the peak of the curve shifts to smaller
values as time increases. In the final state, the surface fluid

25 30
20 h »
_ 20
a B 15
=10 10
: il
0 0
0 10 20 30 40 50
xRy
25 30
20 25
_ 20
g B 15
S0 1
5 5
0 0
0 10 20 30 40 50 0 10 20 30 40 50
X/Ryy xRy

FIG. 13. Time evolution of the density distribution for a Gaussian
mixture confined to a flat surface. The system has periodic boundary
conditions to ensure the conservation of particles. The number of
particles (surface area) is equivalent to the sphere system with radius
R = 10R;;. We see that the dynamics on the flat grid appear to
be much faster, since the equilibrium state is reached after roughly
t* = 7000, which took t* = 60000 on the sphere (see Fig. 3). The
corresponding evolution of the free energy can be seen in Fig. 14.
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FIG. 14. Free-energy time evolution for the spinodal decompo-
sition on a flat surface with periodic boundary conditions. The flat
system shows qualitatively similar behavior to the spherical system.
The free energy shows a significant drop in the initial stages of
spinodal decomposition and afterward slowly decreases as the system
reaches its equilibrium state.

is completely phase-separated and the dominant mode is the
dipole (I = 1).In all plots, we excluded the [ = O contribution,
which only represents a homogeneous field and has therefore
no contribution to the angular distribution.

The dynamics of phase separation on a mesoparticle can
be compared with phase separation in a flat, planar system.
For this comparison, we use the same parameters R;; and ¢;;
as were used previously, and we employ periodic boundary
conditions. The number of particles is set equal in the flat
and curved systems. The time evolution of the density and
the free energy for the flat system are shown in Figs. 13 and
14, respectively. In both cases, we use x = 0.5. The main
observation is that the dynamics of spinodal decomposition are
much faster for the flat system than the corresponding spherical
system. The equilibrium state is reached after approximately
t* =7x103, compared to the curved system, which took * =
6x 10, an order of magnitude longer, to achieve comparable
equilibration (see Fig. 3).

From Fig. 13, it is apparent that the periodic boundary
conditions artificially constrain the orientation of the interface.
This unphysical constraint is absent on the sphere, since its
topology does not need any boundary conditions and the inter-
faces can have arbitrary orientation. From our calculations, it
would appear that the finite-size effects associated with smaller
mesospheres have a stabilizing effects on the band structure.

IV. INTERACTING MESOPARTICLES

Going beyond the dynamics of phase separation on a single
sphere, we next investigate the interaction between a pair of
mesospheres. If two mesospheres are sufficiently close that
their surface particles interact, then they exhibit an anisotropic
interaction. Understanding the pair interaction can then form
a basis for investigating the structures, which may result from
self-assembly.

PHYSICAL REVIEW E 94, 012603 (2016)

Calculating the interaction potential between two mesopar-
ticles requires as input the distance between two arbitrary
points, one located on mesoparticle 1 and the other on
mesoparticle 2. For convenience, we fix mesoparticle 1 at the
origin of a Cartesian coordinate system (henceforth referred
to as the “left particle,” with radius R;). The center of the
right particle (radius Rg) is chosen to lie on the positive x
axis. The center-to-center distance is R;, + Rg + d, and if d is
comparable to the range of the Gaussian interaction R;;, then
the two particles will influence each other.

The distance |z| between any point (¢ ,0;) on the surface
of the left sphere and any point (¢,6g) on the surface of the
right sphere is given by

|z|2=(RL sinf; cos ¢, — Rgsinfgcos¢pp —d — Ry, — RR)2
+(Ry sinfy, sin ¢y — R sin O sin (;SR)2
+(Ry cosf; — Rg cos GR)Z.

The external potential exerted on particle species i = 1,2 on
the left sphere by the right sphere is thus given by

BVext(0.9)Li = ﬁ/dQ/pm(Q’) villz1(2,2)]

+ﬂ/d9’pm(9’) vllzl(2,2)]. (18)

The external potential acting on the right sphere is then simply
obtained by exchanging the labels R and L in the above
expression.

In the numerical time integration of the DDFT equation, it
is expensive to compute these integrals at each time step. In
principle, to solve the time evolution in a fully self-consistent
way, the density on each particle surface should be subject at
each time step to the instantaneous external field generated
by the density distribution on the surface of the other sphere.
However, a fully self-consistent solution seems to us to be
unnecessary. The two mesoparticles are mobile objects, and,
provided the density is not too high, the process of phase
separation on each mesoparticle will largely proceed in the
absence of significant interaction with the others. From our
single mesoparticle studies, we have shown that the patchy
domain structure can be a long-lived metastable state. It is thus
rather likely that mesoparticles that drift together and interact
do so while trapped in a metastable state. More precisely, we
assume that the time scale of collisions between mesospheres,

D, 1,0,;2/ 3, where D,, and p,, are the diffusion constant and
density of the mesospheres, is less than the lifetime of the
metastable states on the individual mesosphere surfaces.

Due to the above considerations, we can simplify the
problem by considering the interaction of mesospheres with
static surface density distributions. These static distributions
are obtained from the single-particle calculations presented
in Sec. III. For a given interparticle separation, we seek the
lowest energy relative orientation of a pair of mesospheres.
Using Eq. (18), we can determine for all relative orientations
the potential acting upon each mesosphere due to its neighbor
and, thus, the dependence of the total free energy on the
relative orientation and separation of the mesosphere pair.
In Appendix C, we report the techniques required for this
calculation.
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FIG. 15. Two interacting mesospheres with radius R = 2.5R;
and x = 0.2. The configuration shown minimizes the total free energy.

For simplicity, we will limit ourselves to the interaction
between mesospheres for which the phase-separation process
is fully completed. In Fig. 15, we show the configuration of
minimum free energy for R = 2.5R;; and x = 0.2. In this case,
the spheres orient such that the interfaces between domains
are touching. The choice of mixing parameter x thus specifies
the “bond angle” between the two mesospheres. In Fig. 16,
we show two different configurations of mesospheres with ra-
dius R = 2.5R,, but now for x = 0.5. The first configuration
shown (state A) yields the lowest value of the free energy. By
flipping one of the spheres (state B), we obtain a state with
higher free energy, but which represents a local minimum in

state A

]

30

7Z/Ry;

(==

'
LMoL =i
u

'
(]
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—_ N

7Z/Ry;

- & o

LU= o
'

FIG. 16. Two interacting spheres with mixing parameter x = 0.5.
The plot shows two different configurations A and B. State A is the
configuration with a minimal energy cost. Turning one of the spheres
away from this configuration (state B) leads to an extra energy cost.
The energy cost as a function of angle 6 is shown in Fig. 17.
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FIG. 17. The energy cost per particle as a function of angle when
turning one of the two interacting spheres away from its equilibrium
configuration.

the free energy. In Fig. 17, we show the dependence of the free
energy on the angle 6 (Euler angle for rotation around the y
axis; see also Appendix C).

We would like to emphasize that, for the present GCM
surface particles, the interaction forces acting between meso-
spheres are repulsive. The minimum free-energy configura-
tions identified here correspond to situations of minimal re-
pulsion for a given particle separation. While this is somewhat
different from the standard picture of synthetic patchy particles
(for which the patches are mutually attractive), we expect
the anisotropic repulsion presented by the present model to
be important for determining the packing structure of the
mesospheres at intermediate and high densities.

The configurations shown in Figs. 15 and 16, together with
the free energy in Fig. 17, indicate that fully phase-separated
mesospheres will show interesting self-organization behavior,
which can be tuned by varying the value of the mixing
parameter x. For x = 0.5, it is clear from the minimum
energy state A (shown in Fig. 16) that an assembly of
many phase-separated mesospheres would build sheets of
particles with hexagonal in-plane packing. Indeed, precisely
this behavior was found in computer simulations of a closely
related model of patchy particles [33]. In this study, the
authors considered the self-assembly of hard spheres with
discrete attractive patches positioned around the equator. We
thus anticipate that our particles with x = 0.5 will show very
similar self-assembly. A distinction between our model and
that studied in [33] is that our mesoparticles do not possess an
up-down symmetry. Our minimum energy state would have all
mesoparticles oriented in the same direction, however the fact
that the “flipped state” (state B in Fig. 16) is a local free-energy
minimum suggests that a certain fraction of the mesoparticles
in the sheet will be flipped with respect to the majority.

For x # 0.5, the bond angle is no longer zero. In a system of
many particles, this would lead in general to a “buckled” sheet
of particles that would be subject to geometrical frustration
effects. However, for particular choices of x the bond angle
can be made compatible with a closed shell of particles. The
findings of Ref. [33] support this speculation; simulations were
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performed on systems of hard spheres with a ring of discrete
attractive patches lying away from the equator.

V. CONCLUSIONS

In this paper, we have studied the process of phase separa-
tion on the surface of a sphere using the method of dynamical
density-functional theory with a simple mean-field free-energy
functional. For larger mesosphere radii, we find standard spin-
odal decomposition dynamics for an equal mixture, x = 0.5,
leading to a “half-half” final state. As the value of x is reduced
toward the spinodel, the phase-separation dynamics are given
by the Ostwald ripening scenario, as expected. The long-lived
metastable states, consisting of islands of minority phase,
could behave as patchy particles with potentially interesting
self-assembly properties. An unexpected finding is that smaller
mesoparticles do not exhibit typical spinodal decomposition
dynamics for any value of x. Even for the symmetric mixture
withx = 0.5 the phase separation resembles Ostwald ripening.

For the case of a fully phase-separated larger sphere, we
have considered the interaction between pairs of mesoparticles
in order to gain insight into possible self-assembly mecha-
nisms. For a pair of mesoparticles in contact with each other,
we find the state of minimum free energy to be that where the
interfaces between domains are touching (see Figs. 15 and 16)
and the mesoparticles have the same orientation. The state for
which the particles have opposite orientation is a less favorable
metastable minimum of the free energy.

In Ref. [33], the self-assembly of a simplified version of our
phase-separated mesoparticles has been studied. Simulations
were performed of particles with discrete attractive interaction
sites at fixed locations on the particle surface. For particles with
an attractive ringlike patch around the equator, self-assembly
into particle sheets was identified. When the ring of discrete
sites was displaced from the equator, the sheets became bent
and frustrated. From our findings, it would appear that a
fully phase-separated binary mixture on the surface of each
mesoparticle provides an approximate realization of the toy
model simulated in Ref. [33]. The self-assembly properties
can thus be controlled by varying the mixing parameter x
of the surface particles. One can thus speculate about the
more complex structures that could arise when mesoparticles
in metastable states (e.g., that shown in Fig. 5) interact with
each other. We plan to perform extensive Brownian dynamics
computer simulations of simplified models to investigate the
self-organized structures that can develop in these systems.

Finally, we note that there have been experimental observa-
tions on the formation of stripe patterns formed by immiscible
ligands coadsorbed on the surface of gold and silver nanopar-
ticles [34]. Supporting atomic simulation studies have shown
similar stripe formation for surfactants on spherical surfaces
[35]. It would be interesting to see if such structures are
captured by the simple density-functional approach employed
in the present study.
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APPENDIX A

We recall here the conditions for phase coexistence in the
binary mixture [21]. The thermodynamic stability conditions
are given by

2
<%) >0, (Al
2
<2T£> >0,  (Alb)
2f\ (9f Pf\°
(5),(5), - Gan) -0 e

where f is the Helmholtz free energy per particle and v = p~.

The first inequality ensures mechanical stability (positive
compressibility), the second inequality is the condition against
spontaneous demixing at constant volume, and the final
inequality ensures stability at constant pressure. With the free-
energy density from Egs. (3) and (5), the stability conditions
can be reduced to

1+ pVo(x) > 0, (A2a)
1 —px(1—=x)x >0, (A2b)
1+ pVi(x) — p*x(1 — x)A > 0, (A2¢)

where we have defined the following parameters:
X =201 — (011 + 02),
A =07, — Dby,
Vi(x) = (1 = x)dy; + x0.

The first inequality (A2a) is always fulfilled for the
Gaussian interaction, since Vo(x) is strictly positive. Phase
separation is possible provided that condition (A2b) or condi-
tion (A2c) is violated. Below we consider phase coexistence
at constant volume, resulting in violation of condition (A2b).

1. Phase separation at constant volume

Violation of condition (A2b) requires x > 0,
X =7[21RY, — (€, RY) + €5, R3,)] > 0. (A3)

Whether phase separation is possible or not depends on the
choice of the parameters elf"j and R;;. From Eq. (A3) we see
that a simple choice is Ri; = Ry, = Ryp and €}, > €] = €3,.
For this choice of parameters, it is physically intuitive that the
system might phase-separate, as the energy penalty for unlike
particles being close to each other is higher than that for like
particles.

The physically unstable region of the phase diagram is given
by stability condition (A2b). Instability occurs first, when

1—px(1—x)x =0.
Thus the spinodal line is given by

ps(x) = (A4)

x(1—=x)x

The binodal (phase coexistence line) is determined by chemi-
cal and mechanical equilibrium. This means that the chemical
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potential of both particle species (1 and 2) as well as the

pressure is equivalent in both phases (A and B):

pm1(p,xa) = p1(p,xp),
m2(p0,x4) = p2(p,xp), (AS)
p(p,x4) = p(p,xp).

Chemical potential and pressure are obtained from the free-
energy density via

af af
w=7s ‘”(%)X ‘X(a);
_ (9
r=-(%).

After simplification, one finds
B = In[pA*(1 — x)] + p(1 — x)d11(0) + pxd12(0), (A6)
Bua = In(p2’x) + p(1 — x)012(0) 4 pxD5(0), (A7)
Bp = p+ 30" Vo(x). (A8)
with

Vo(x) = (1 — x)*011(0) + 2x(1 — x)912(0) 4 x*022(0).

2. Phase separation at constant pressure

Phase separation at constant pressure is possible provided
that condition (A2c) is violated, which is only possible if A >
0. Using 9;;(k = O):ei*j Rizjn, we obtain

A= ”2[(€T2)2R?2 - €T1€;2R121 R%z] > 0.

The unstable region of the phase diagram is also given by
condition (A2c), and we obtain the spinodal line from

14+ pVi(x) — p>x(1 — x)A = 0.

Solving for the density leads to

V, Vi(x)? +4x(1 — x)A
py(x) = 1(X)+\/2x1((1)6)_x+)Ax( x) _ (A9)

To determine the binodal line, it is convenient to work with
the Gibbs free-energy density g(x, p), where the pressure p is
the independent variable. Thus we have to perform a Legendre
transform of the free-energy density f(x,v),

g, p) = F0(p. ) + pu(p.x) = F,p(px) + —2—.
p(p.x)
Therefore, we need the density p as a function of pressure,
which is obtained by inverting Eq. (AS8). The quadratic
equation in p has two solutions: one is negative and therefore
physically irrelevant, and the other one is given by

—14/14+28pVo(x)

Vo(x)

p(p.x) = (A10)
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Finally, the Gibbs free-energy density is
Be(x,p) =In[A*p(p,x)] — 1+ (1 — x)In(1 — x) + x In(x)

Bp
p(p,x)
With this thermodynamic potential, the coexistence condition

is given by
&)~ (G
0x /) ply, ax/,
Above a critical pressure pc;, the derivative of the Gibbs free
energy shows the typical loops. For fixed p, Eq. (A11) can be
solved numerically using the common tangent construction,
which will not be presented here. Resulting phase diagrams
for various parameters of R;; and ei*j can be found in Ref. [15].

1 N
+ E,O(P,X)Vo(x) +

_ 8(xa,p) — g(xp,p)
XA — XB '

(Al1)

XB

APPENDIX B

The gradient of a scalar field f(¢,6) defined on the surface
of a sphere with radius R is given by

f 1af

1
Vf.0)= R + ——e. (B1)

— ——e

25in0 9 ¢

To numerically compute the gradient, we use a central
difference scheme for the ¢ component,

f(@iv1,0;) — f(¢i—1.0;)
2R? sinf d¢

where i = 1,...,M — 2. We can easily extend the scheme
over the edges of the numerical grid by using (¢y and ¢y—»)
and (¢; and ¢y ;) to obtain the gradient at the position
(¢y-1,0;) and at (¢o,0;). Similarly the 6 component is
computed via

(V)p(¢i.0;) = . (B2)

o S(@i0is) — f(9in0i-1)
(V fe(ei,0)) = SR 0

where j = 1,...,N — 2. When computing this component of
the gradient on the edges of the numerical grid, one has to keep
in mind that the j = 0 row of the array bends around the north
pole (also, the j = N — 1 row bends around the south pole).
The gradient of the points surrounding the north pole is thus
given by

. (B3

f(@i,601) — f(Piym/2.60)

(V £)o(¢.00) = SR . (B4
wherei =0,...,M/2 — 1, and
i,01) = f($i—m/2.0
V Py = LOO T Oizo) = s

2R dO ’

where i = M/2,...,M — 1. We compute the gradient’s 6
component on points surrounding the south pole by using Oy _;
and Oy_, on the right-hand side.

The divergence of a vector field A(¢,0) defined on the
surface of a sphere is given by

9 19
2 2 (Aysin6). (B6
Rsind 36 ¢ T Rsing gg o sin®)- (BO)

The finite-difference method described above for the gradient
can again be employed. However, when computing the second
term on the right-hand side of (B6), it must be recalled that

V-A@@.0) =
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the 6 component of a vector field on the sphere points in the
direction of the south pole. On the edges (6y and 6y _), this
leads to a sign change in the finite-difference scheme. For
points around the north pole, the second term of Eq. (B6) is
given by

d .
£[A0(¢i ,00) sin ] (B7)
_ Ap(¢i,01)sin 01 + Ag(ditmy2,00) sinby (BS)
N 2d6 ’
wherei =0,...,M/2 — 1, and
0 .
3—9[A9(¢i,90) sin 6] (B9)
_ Ap(¢;,01)sin 0y + Ag(di—p/2,00) sin 90’ (B10)
2d6
where i = M/2,...,M — 1. For the points surrounding the
south pole,
d .
%[AG(@,@N—I)SIHQO] (B11D)
_ —Ap(@iym2,0n-1)sinby_; — Ag(¢;,On_2)sinby_o
N 2d6 ’
(B12)
wherei =0,...,M/2 — 1, and
d .
@[A9(¢i,9N—l) sin 6] (B13)
_ —Ag(Pirmp.On-1)sinby_1 — Ag(¢i,On—2)sinby_»
N 2d6 ’
(B14)
wherei = M/2,... M — 1.
APPENDIX C

To compute the interaction energy between two meso-
spheres in various configurations, the density field on the
sphere needs to be rotated. Because of the nonuniform spheri-
cal grid, this is a nontrivial task. For rotations in the ¢ direction,
one can simply map each point onto the neighboring point.
Unfortunately, for rotations in the direction of 6 this is not
possible (see also Fig. 1). Fortunately, we can work around this
problem by performing the rotations in the space of spherical
harmonic functions. One can compute rotation matrices, which
act upon the coefficients of the spherical harmonic expansion,
and hence the rotation is done independently of the numerical
grid. In this appendix, we show how to compute these rotation
matrices.

An arbitrary rotation of a rigid body can be specified using
the three Euler angles «, 8, and y. In a Cartesian coordinate
system, this rotation is generally defined as a rotation around
the z axis by angle o, followed by a rotation around the
new y axis with angle g, and finally a rotation around the
new z axis with angle y. In our spherically symmetric case,
any orientation of the density field can be achieved by using
only angles « € [0,2) and B € [0,7]. The rotated expansion
coefficients &;"/ can be expressed using the following rotation
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matrix:

!
&lnl/ _ Z Tlm ,m(a’ﬂvy)alm’

m=—I

Tlm,’m — e—imy Hlm’,m(ﬂ)eimoz.

We see that the rotation in the ¢ direction around the x axis by
angle o and B is achieved by a simple multiplication with an
exponential (the rotation matrix is diagonal). Rotation in the
0 direction by angle B is given through the matrix Hl’”/”"(,B),
which becomes larger as one goes to higher /-subspaces. Here
we show how to compute this matrix using recursion, slightly
modified from that described in Ref. [36].

Step 1. We compute all H,O””(,B) for m =0,...,l for
every subspace [ up to L + 1, where L is the desired upper
limit. These coefficients are given by the associated Legendre
polynomials P/ (x),

HO™ = (—1y" —EZ . :Z :;: P [cos(B).
Using the symmetry rule
H""(B) = H ™" "(B), (1)
we also obtain HZO"” for m = —1, ..., — [. Furthermore, we

use a second symmetry relation to get Hlml'o(ﬂ) for—I <m' <
L

H""(B) = H"" (). (C2)
Step 2. In every subspace [, we compute Hll’m(,B) form =
1, ...,l using the following recursion:

m 1 —m— 1 —COS(ﬂ) m
H'"™"(B) = _{bz+1 — 2 H

o R ap sty
with
o :\/(l+l+m)(l+l—m)
2L+ D@2 +3)
and

o — sangoy. L= = DU =m)
LS T o T i+ D)

1, m >0,
-1, m<O.

sgn(m) = {

Using the symmetry relations (C1) and (C2), we also obtain
H7"B) form=—1,..., =1, H"'(B) for m’ =0,... .,
and H" 7' () form' = —1,..., —1.

Step 3. We compute Hlmu’]’m(ﬂ) form’=1,...,l —1and
m =m/, ... Il within every subspace [ using

1
ar
_dlmle]m’,mfl(ﬂ) + dlm H]m’,m+l(13)}’

Hlm’+1,m(’8) — {dlm’lelm’—l,m(IB)
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where
sgn(m
£ 2( 2 = m)d +m + D',

With symmetry relation (C2), we can complete all missing
entries in the positive m,m’ triangle in each subspace /. The
negative m,m’ triangle is given through symmetry rule (C1).

Step 4. We compute H,” """ (f) in every subspace [ for m =

=

I,....0,
im 1 1 —cos(B) . o_m—
H" <ﬂ>=b0—{bﬁﬁ'—2 H" ()
I+1
—my1 1+ c08(B) o
—b T S )

—a " sin(ﬂ)Hﬁ;]m(,B)}.
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Again using symmetry relation (C1), we can add the obtained
values to the positive m’, negative m triangle.
Step 5. Finally, we compute the coefficients H," " (8) for
m=—1,...,—1l+1landm =—m’, ...,
1 -
— {d[m I_Ilerl,m(ﬁ)

m'—1
1

+d" H B — A HY,

H" " (B)

and we complete the missing entries for the negative m’,
positive m triangle using symmetry rule (C2). The ma-
trix entries of this triangle can then be projected onto
the positive m’, negative m triangle with symmetry rela-
tion (Cl), which leaves us with the completed rotation
matrix.
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