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Discharging dynamics in an electrolytic cell
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We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between
two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards
the electrodes, forming electrical double layers. After the system reaches steady state and the external current
decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to
a uniform spatial concentration. At voltages on the order of the thermal voltage VT = kBT /q � 25 mV, where
kB is Boltzmann’s constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped
nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is
not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979); P. Kornilovitch and Y.
Jeon, J. Appl. Phys. 109, 064509 (2011)]. In fact, at sufficiently large voltages (several VT ), the current during
discharging is no longer monotonic: it displays a “reverse peak” before decaying in magnitude to zero. We
analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via
asymptotic and numerical techniques in three regimes. First, in the “linear regime” when the applied voltage V

is formally much less than VT , the charging and discharging currents are antisymmetric in time; however, the
potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on
the RC timescale of the cell, λDL/D, where L is the width of the cell, D is the diffusivity of ions, and λD is the
Debye length. Second, in the (experimentally relevant) thin-double-layer limit ε = λD/L � 1, there is a “weakly
nonlinear” regime defined by VT � V � VT ln(1/ε), where the bulk salt concentration is uniform; thus the RC

timescale of the evolution of the current magnitude persists. However, nonlinear, voltage-dependent, capacitance
of the double layer is responsible for a break in temporal antisymmetry of the charging and discharging currents.
Third, the reverse peak in the discharging current develops in a “strongly nonlinear” regime V � VT ln(1/ε),
driven by neutral salt adsorption into the double layers and consequent bulk depletion during charging. The
strongly nonlinear regime features current evolution over three timescales. The current decays in magnitude on
the double layer relaxation timescale, λ2

D/D; then grows exponentially in time towards the reverse peak on the
diffusion timescale, L2/D, indicating that the reverse peak is the results of fast diffusion of ions from the double
layer layer to the bulk. Following the reverse peak, the current decays exponentially to zero on the RC timescale.
Notably, the current at the reverse peak and the time of the reverse peak saturate at large voltages V � VT ln(1/ε).
We provide semi-analytic expressions for the saturated reverse peak time and current, which can be used to infer
charge carrier diffusivity and concentration from experiments.

DOI: 10.1103/PhysRevE.94.012601

I. INTRODUCTION

Charge carriers accumulate at a charged interface, forming
electric double layers comprising a diffuse layer and fixed
charge on a surface [1]. Electrical double layers are a
key component of electrochemical systems. For example,
capacitive desalination exploits double layers adjacent to
high surface area electrodes to separate ions from the bulk
solution [2–4]. Electrochemical capacitors store charge at the
electrode-electrolyte interface for energy storage applications,
and are notable for their high power compared to batteries and
energy density compared to conventional capacitors [5–8]. A
simple device exhibiting charge separation is an electrolytic
cell, e.g., parallel plate blocking electrodes that charge and
discharge in response to cycling the applied voltage [9]. An
applied voltage leads to a separation of ionic charge in solution
that generates a non-uniform electric field across the device,
with a higher electric field in the double layers and a lower
electric field in the electroneutral bulk of the cell. The ions
accumulate in double layers adjacent to the electrode surface
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that are typically thin compared to the width of the cell. The
width of the diffuse double layer is characterized by the Debye

length, λ̂D =
√

ε̂k̂B T̂ /2q̂2ĉ0, where ε̂ is the permittivity, k̂B is

Boltzmann’s constant, T̂ is temperature, q̂ is the charge of a
proton, and ĉ0 is the initial concentration of ions. Variables
and parameters with a carat superscript are dimensional,
while those without a carat are dimensionless. When the
applied voltage is switched off, the cell discharges as the
ions eventually return to a uniform concentration distribution.
The external current spikes in response to the step changes in
voltage, and then eventually decays in magnitude to zero. This
spike and decay in the magnitude of the external current is
seen during both the charging and discharging process.

One might expect that given the globally cyclic nature of the
charging and discharging process, the temporal evolution of
the external current during charging would be antisymmetric
(i.e., opposite in sign but equal in magnitude) to the current
during discharging. However, experiments at high voltages
compared to the thermal voltage VT in nonpolar fluids doped
with surfactant [10–13] show that while the current during
charging monotonically decays, the discharging current is
nonmonotonic, resulting in a maximum and minimum in
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the current. The maximum in the magnitude of the current
is referred to as the “reverse peak” [13]. Nonpolar fluids
are doped with surfactant that self-assemble into inverse
micelles to stabilize charges, thereby preventing undesirable
buildup of large electric potentials [14], in systems ranging
from petroleum [15,16] to electronic inks [10,17]. Novotny
and Hopper [12] reported a reverse peak in the external
current while measuring the current response to a field applied
to xylene doped with Aerosol OT. They suggest that the
non-monotonic current response stems from dissociation and
recombination of the charge carriers, in this case surfactant
micelles. Novotny [11] performed similar experiments for
blocking and nonblocking electrodes, and compared to numer-
ical solutions of the Poisson-Nernst-Planck (PNP) equations
describing the diffusion and migration of charge carriers
in a fluid. Novotny included a term for bulk dissociation
and recombination of the micellar charge carriers, as well
as Faradaic reactions at the electrode interfaces to account
for nonblocking electrodes. Novotny found that the blocking
electrode model matches experiments when dissociation and
recombination are included, to account for charge transfer
between micellar charge carriers.

Kornilovitch and Jeon [13] measured the current carried
by poly-isobuthylene succinimide inverse micelles in IsoparM
during charging and discharging of parallel plate electrodes
and also compared the results to the numerical solution
of the PNP equations. They did not include a term for
dissociation and recombination, yet observed a reverse peak;
thus recombination is not necessary to the formation of a
reverse peak. Kornilovitch and Jeon [13] proposed a relation
between the time the reverse peak occurs t̂p, measured from
the time when the voltage is turned off, to the diffusivity of the
charge carriers, D̂ ∼ 0.1(L̂2/t̂p), accurate to 50%, where L̂ is
the width of the device. Their analysis assumes that the charge
carriers are monodisperse and have equal diffusivities. This
effort to provide an estimate of the charge carrier diffusivity
can supplement existing characterization methods for charge
transport in doped nonpolar fluids, including measuring
conductivity as a function of dopant concentration [18] and
performing dynamic light scattering for charge carrier mobil-
ity [10]. The transient, frequency-dependent current measured
during electrical impedance spectroscopy (subjecting material
to small amplitude AC voltage) can also be fit to standard
circuit models to calculate the double layer capacitance and
Debye length of doped nonpolar fluids [19,20]. Further, in a
discharging experiment the total concentration of the charge
carriers in the cell can be calculated by integrating the current
with respect to time at high voltage [13,21]. The charge carrier
mobility can be calculated from the initial current during
charging and discharging [21], however this is challenging
due to the initial spike in the current.

At high voltages V � VT , the dynamics during discharg-
ing are fundamentally different from the dynamics during
charging [12,13]. Bazant et al. [9] performed asymptotic
analysis and numerical computations to model the charging
dynamics of an electrolytic cell at the experimentally relevant
limit of thin Debye lengths, λ̂D � L. They solved the PNP
equations for charge transport in three regimes based on
the magnitude of the applied voltage V̂ compared to the
thermal voltage, V̂T = k̂B T̂ /q̂. The “linear regime” where

the applied voltage is less than the thermal voltage, formally
V̂ � V̂T , is characterized by a uniform bulk salt concentration
profile everywhere in the cell, where the salt concentration is
equal to the mean of the cation and anion concentration.
The double layers behave as linear (voltage-independent)
capacitors here, and the charging dynamics is on the RC

timescale. The “weakly nonlinear” regime occurs at an applied
voltage 1 � V̂ < V̂T ln 1/ε. Here, at the limit of thin double
layers λ̂D � L̂, the salt concentration is uniform in the bulk
electroneutral electrolyte, but the double layers behave as
nonlinear capacitors, meaning that the total charge stored
increases nonlinearly with the applied voltage. Again, charging
is on the charging RC timescale, but now capacitance is
a function of voltage. In the “strongly nonlinear” regime,
V̂ � V̂T ln 1/ε, the bulk is depleted of ions due to neutral
salt adsorption by the double layers, where depletion refers to
a bulk salt concentration lower than the initial concentration
ĉ0. In contrast to the linear and weakly nonlinear regimes, here
charging occurs on the diffusion timescale. Bazant et al. [9]
report asymptotic and numerical solutions for the linear and
weakly nonlinear regimes, and derive effective macro-scale
equations for the strongly nonlinear regime. Beunis et al. [22]
solved the PNP equations at specific limits of the dynamics of
charging, including an extreme case of full charge separation at
very large voltage V̂ � V̂T ln 1/ε, resulting in transient space
charge layers and a power-law decay in the external current.
The possibility of a transient space-charge was also suggested
by Bazant et al. [9].

We adapt the analysis of Bazant et al. [9] to solve for the
current during discharging in the linear and weakly nonlinear
regime. The initial condition for each of these analyses is the
steady-state solution derived by Bazant et al. [9] after the
system has fully charged. In the linear regime, the charging
and discharging current are found to be antisymmetric,
although the potential and charge density are not. In the
weakly nonlinear regime, the magnitude of the discharging
current decays to zero over a longer period of time than the
charging current, breaking the antisymmetry between current
during charging and discharging. However, the current in the
weakly nonlinear regime monotonically decays in magnitude,
indicating that an analysis of the strongly nonlinear regime,
where neutral salt is transferred between the double layer
and the bulk, is necessary to capture the reverse peak in
the current. At applied voltages several times larger than the
thermal voltage during charging, the bulk is depleted of ions
due to the large capacitance of the double layers. This bulk
depletion and subsequent replenishment during discharging is
a characteristic feature of the strongly nonlinear regime that is
not included in the weakly nonlinear analysis.

This paper begins with a presentation of the governing
Poisson-Nernst-Planck equations and boundary conditions.
Numerical calculations used to verify our asymptotic results
are presented in Sec. III. In Sec. IV, we solve the linear
regime equations via a Laplace transform for small voltages.
In Sec. V, we compare the discharging current to the charging
current in the weakly nonlinear regime. We present numerical
solutions to the PNP equations for the strongly nonlinear
regime in Sec. VI and analyze the dynamics of discharging
at three relevant timescales. We then provide a discussion on
the physics behind the reverse peak. In Sec. VII, we quantify
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FIG. 1. Schematic of discharging dynamics in an electrolytic cell immediately before discharging (a) and at steady state at long times (b).
(a) Initially, at t̂ = 0 ions are concentrated in double layers at the electrodes and uniformly distributed in the bulk. At t̂ = 0, the applied field is
switched off and (b) the ions eventually redistribute to a uniform concentration profile.

the saturation of the reverse peak at very large voltage and
provide semi-analytic expressions for the reverse peak current
and time. The charge carrier diffusivity and concentration can
be estimated from these expressions. Finally, we conclude in
Sec. VIII with a summary of our findings and suggestions for
future work.

II. MATHEMATICAL MODEL

We consider a binary, symmetric electrolyte containing
ions of equal diffusivity sandwiched between planar, parallel,
blocking electrodes. In the absence of an applied field or a
charged electrode surface at steady state, the ionic concen-
tration within the electrolyte is uniform. When a potential
difference is applied across the electrodes, ions migrate
leading to an external current that charges the electrodes.
The system reaches steady state when the ion flux decays
to zero throughout the cell. This redistribution of ions is
reflected in the external current, which spikes when the applied
voltage is suddenly switched on then decays to zero at steady
state. There are no Faradaic reactions so the ion flux at the
electrodes is always zero. We use the variable t̂ to denote
time during the discharging process, whereas time is denoted
as ŝ during charging. The applied voltage is switched on at
ŝ = 0 and switched off at t̂ = 0. Figure 1 depicts the moment
when the applied voltage is switched off. The ions initially
pinned in the double layer redistribute into the electroneutral
bulk, discharging the parallel plate electrodes. As t̂ → ∞, the
ions return to a uniform concentration profile and the external
current again reaches zero. Thus, the system considered here
is such that the total number of ions in the cell is conserved
throughout time. That is, the electrolytic cell is closed, as
opposed to being in contact with a reservoir across which
ions could be exchanged during the charging and discharging
processes. Our goal is to quantify the external current dynamics
during discharging of the electrolytic cell.

We apply the PNP equations to model the discharging
dynamics. We neglect the presence of a Stern layer at the
electrode surfaces to focus on the simplest case of discharging
dynamics. The PNP equations consist of equations for the
flux of ions driven by diffusion and migration, a charge
conservation equation, and Poisson’s equation relating the
gradient of the electric field to the local charge density. The

cell is thin in the x̂ direction (Fig. 1) but wide and long in the
ŷ and ẑ directions. Hence, we assume that the transport is one
dimensional in the x̂ direction. The flux density of cations,
ĵp, is

ĵp = −D̂
∂p̂

∂x̂
− D̂q̂

k̂B T̂
p̂

∂φ̂

∂x̂
, (1)

where p̂ is the cation concentration, φ̂ is the electric potential,
and D̂ is the diffusivity of the ions, assuming equal diffusivity.
The flux density of anions ĵn is

ĵn = −D̂
∂n̂

∂x̂
+ D̂q̂

k̂B T̂
n̂
∂φ̂

∂x̂
. (2)

The charge conservation equations are

∂p̂

∂t̂
= −∂ĵp

∂x̂
and

∂n̂

∂t̂
= −∂ĵn

∂x̂
. (3)

Poisson’s equation is

∂2φ̂

∂x̂2
= − q̂

ε̂
(p̂ − n̂). (4)

The boundary conditions include no flux conditions for the
ions at the electrode-electrolyte interface,

∂p̂

∂x̂
= − q̂

k̂B T̂
p̂

∂φ̂

∂x̂
and

∂n̂

∂x̂
= q̂

k̂B T̂
n̂
∂φ̂

∂x̂
, at x̂ = ±L̂. (5)

The electric potential φ̂(x̂ = ±L̂) = 0 at the electrode inter-
faces for t̂ > 0. At t̂ < 0, the cell is at steady state following the
charging process driven by a voltage V̂ , so the charging steady
state solution is the initial condition for discharging. In the
linear and weakly nonlinear regime, we use Bazant et al.’s [9]
steady state solutions as the initial condition. In the strongly
nonlinear regime, we solve the PNP equations during charging
numerically and use the numerical solution when the current
reaches zero (within an error tolerance) as the initial condition
for discharging.

We non-dimensionalize the above equations by normalizing
length x̂ by L̂; the electric potential φ̂ by V̂T ; and ion
densities p̂ and n̂ by ĉ0, the initial uniform ion concentration
before charging. Bazant et al. [23] show that the relevant
timescale for the exponential decay in the current during
charging in the linear regime is the RC time, t̂ ∼ L̂λ̂D/D̂,
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FIG. 2. Magnitude of the current resulting from step changes in voltage at ε = 0.01. Time is scaled by the RC timescale. (a) The applied
voltage is turned on at s = 0. The current decays monotonically towards zero during charging. (b) The applied field is switched off at t = 0.
At low voltages V = 0.5,3,7, the magnitude of the current decreases monotonically towards zero during discharging. At larger voltages,
V = 10,13,25,40, the magnitude of the current decreases to a minimum, then reverses and increases to reach a maximum, the reverse peak,
followed by a monotonic decay towards zero. At large voltage, V = 25,40 the current appears to saturate; the curves for V = 25,40 overlap.

where λ̂D is the Debye length. Two dimensionless groups
emerge: the dimensionless Debye length ε = λ̂D/L̂ and the
dimensionless applied voltage V = V̂ /V̂T . These two groups
fully characterize the charging and discharging dynamics, and
remain constant throughout the charging-discharging cycle.
Recall, all unhatted variables are dimensionless. The resulting
dimensionless charge conservation equations (3), rewritten in
terms of the mean salt concentration c = 1

2 (p + n) and half
the charge density ρ = 1

2 (p − n) are

∂c

∂t
= ε

∂2c

∂x2
+ ε

∂

∂x

(
ρ

∂φ

∂x

)
(6)

and
∂ρ

∂t
= ε

∂2ρ

∂x2
+ ε

∂

∂x

(
c
∂φ

∂x

)
,

where ε = λD/L � 1 at the experimentally relevant thin
double layer limit. The dimensionless form of Poisson’s
equation (4) is

−ε2 ∂2φ

∂x2
= ρ. (7)

The dimensionless boundary conditions are

∂ρ

∂x
= −c

∂φ

∂x
,

∂c

∂x
= −ρ

∂φ

∂x
, and φ = 0 at x = ±1. (8)

After solving for the concentration, charge density, and
potential, the external current can be calculated from Gauss’
law [23]. The external current is equal to the change in the
electric field with time at the electrode surface, and can be
calculated at either electrode due to symmetry in the electric
field about x = 0. The dimensionless expression for the current
J in the external circuit is

J = ε
∂2φ

∂x∂t

∣∣∣∣
x=−1

, (9)

where J is scaled by 2ÂD̂ĉ0q̂/L̂, and Â is the surface area of
the electrode.

III. NUMERICAL SOLUTION TO THE PNP EQUATIONS

The dimensionless PNP equations (6),(7) along with the
boundary conditions (8) are solved numerically using MAT-
LAB’s pdepe solver, a finite-difference based, initial-value
problem solver. The numerical solution provides insight on
the behavior of the system at a range of applied voltages V

and Debye lengths ε to guide our asymptotic analyses. The
experimental and numerical results from Kornilovitch and
Jeon [13] indicate that as the applied voltage increases for
a fixed value of ε � 1, the dynamics transition from linear to
nonlinear, indicated by the appearance of a reverse peak in the
magnitude of the current. We solved the PNP equations for
ε = 0.01 and voltages ranging from V = 0.5–40 in Fig. 2.

Here, the time during charging is s, where the applied volt-
age undergoes a step change from φ(±1) = 0 to φ(±1) = ±V

at s = 0. The current during charging decays monotonically
for all V . The time variable during discharging is t , where the
applied voltage is switched off at t = 0, so that φ(±1) = 0
for t > 0. After the applied voltage is switched off, the
external current ultimately decays in magnitude towards zero
at steady state. However, the decay is only monotonic at lower
applied voltages (V = 0.5,3,7). At V � 10, the magnitude
of the current reaches a minimum before reversing towards
a maximum referred to as the reverse peak. As the applied
voltage increases further (V = 25,40), the current appears to
saturate, meaning that the reverse peak does not shift with
increasing voltage. After the reverse peak, the current decays
exponentially in time for all voltages, with a similar slope.
This indicates that the time scale for the decay in the current
at a specific value of ε is constant across a range of applied
voltages. We aim to identify the charge transport dynamics that
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result in the asymmetry between charging and discharging
in the nonlinear regimes, and the limiting factor leading to
saturation of the reverse peak.

IV. LINEAR DYNAMICS

We follow the analysis of Bazant et al. [9] describing the
ion dynamics during charging to solve for the charge density
and potential profiles during the discharging process. At low
applied voltages where the applied voltage is less than the
thermal voltage, formally V � 1, all quantities are written as
a regular expansion in V , resulting in c = c0 + V c1 + O(V 2),
ρ = Vρ1 + O(V 2), and φ = V φ1 + O(V 2). The expansions
are inserted in Eq. (6), yielding

∂2c1

∂x2
= 0. (10)

Integrating Eq. (10) results in c1(x) = a(t)x + b(t). The no-
flux boundary conditions (8) to O(V ), ∂c1

∂x
= 0 at x = ±1,

require that a = 0. Finally, the integral of the concentration∫ 1
0 c1dx = 0, as the number of ions is conserved in the absence

of Faradaic reactions, thus b = 0 and c1 = 0. The concentra-
tion is thus equal to the initial concentration in the electrolyte,
c0 through O(V ). The O(V ) charge density evolves according
to the linear Debye-Falkenhagen equation [24], written in
terms of ρ = Vρ1 as

1

ε

∂ρ

∂t
= ∂2ρ

∂x2
− 1

ε2
ρ. (11)

The initial condition for this equation is the steady state charge
density ρss after charging [9],

ρss(x) = −V
sinh(x/ε)

sinh(1/ε)
. (12)

The linearized boundary conditions (8) are
∂ρ

∂x
= −∂φ

∂x
, at x = ±1. (13)

We solve Eq. (11) by a Laplace transform L in time, where
L(f (t)) = f̌ (T ) and T denotes the Laplace variable. The
Laplace-space quantities are denoted by a check superscript.
The Laplace transformed Debye-Falkenhagen equation is(

T

ε
ρ̌ + V

ε

sinh(x/ε)

sinh(1/ε)

)
= ∂2ρ̌

∂x2
− 1

ε2
ρ̌. (14)

Assuming antisymmetry in the charge density about x = 0,
the solution is

ρ̌ = A sinh (mx) − V ε

m2ε2 − 1

sinh(x/ε)

sinh(1/ε)
, (15)

where m =
√

T/ε + 1/ε2 and A(T ) is an as yet unknown
function of T . Inserting Eq. (15) into the Laplace transform of
Poisson’s equation (7) and integrating once yields

∂φ̌

∂x
= − A

mε2
[(m2ε2 − 1) cosh (m) + cosh (mx)]

+ V

m2ε2 − 1

sinh (x/ε)

sinh (1/ε)
. (16)

By requiring the potential φ(t,0) = 0 due to antisymmetry,
and applying the boundary conditions (13) we find that

A(T ) = m2ε3V

(m2ε2 − 1)[m(m2ε2 − 1) cosh (m) + sinh (m)]
.

(17)
Integrating Eq. (16) yields the Laplace transform of the
electrical potential,

φ̌ = − A

m2ε2
[m(m2ε2 − 1)x cosh (m) + sinh (x/ε)]

+ V ε

m2ε2 − 1

sinh (x/ε)

sinh (1/ε)
. (18)

At long times, T → 0, the charge density (15) decays
exponentially. Specifically, at this limit, the charge density
can be expanded as

ρ̌S→0 =
V
2 csch (1/ε)[x cosh (x/ε)+(2ε−3 coth (1/ε)) sinh (x/ε)]

1+T coth (1/ε)
+ O(T ). (19)

This Laplace-space equation for the charge density at long
times can be inverted to yield

ρt→∞ = V

2
sech (1/ε)[x cosh (x/ε) + (2ε − 3 coth (1/ε))

× sinh (x/ε)] exp (−t tanh (1/ε)). (20)

This reveals that the time scale for charge density relaxation
in the linear regime is

τ = coth (1/ε), (21)

where time is scaled by the RC time, L̂λ̂D/D̂. This agrees
with the timescale found by Bazant et al. [9] for the charging
process. For comparison, in the charging case, the Laplace

transform of the charge density is ρ̌charge = T A sinh mx, where
A is given in Eq. (17).

Equations (15) and (18) for the charge density and electric
potential in Laplace space, alongside Eq. (17) for the parameter
A, can be inverted numerically using an Euler summation
method [25]. The numerically inverted solution for charge
density is compared to the long-time solution (20) and
numerical solution to Eqs. (6)–(8) in Fig. 3 for V = 0.5 and
ε = 0.05. The agreement between numerics and the Laplace
transform solutions indicates that the assumption that the
concentration is uniform and equal to one throughout the cell
is valid at low voltages.

In the linear regime, the external current during charging
and discharging is antisymmetric. However, the potential and
charge density profiles are not. In Fig. 4, we show the potential
and charge density during charging and discharging. At s1
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FIG. 3. The numerically inverted Laplace transform solution (15)
(dash) for the charge density and the long-time solution for the
charge density (20) (line) at V = 0.5 and ε = 0.05 are compared
to the numerical solution of the PNP equations (6)–(8) (circle) at
t = 0.01,1,5. Only the cathodic half of the cell is shown.

and t1, the magnitude of the current |J | = 0.25; at s2 and t2,
|J | = 0.05. The two pairs of curves show that, at the same
current magnitude in the charging and discharging cycle, the
potential and charge density profiles are not equivalent. This is
counterintuitive given the antisymmetry of the external current
[Fig. 4(c)]. At t1 = s1, the current is equal to |J | = V/2, or
half of its maximum value |J (t = 0)| = V , indicating that the
charging and discharging processes are at the halfway point. As
time continues the charge density during charging increases,
while the discharging charge density decreases, emphasizing
the asymmetry of the charging and discharging dynamics.
When the applied voltage at the electrode switches to zero,

01-
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Linear potential drop 
in Ohmic bulk

Curvature due to
 charge density
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FIG. 5. During discharging, the potential is zero at the electrode
and the midpoint. The curvature in the potential is due to the charge
density in the double layer according to Poisson’s equation (7). The
electric field is negative in the double layer and positive in the bulk.
Cation migration and diffusion oppose each other in the double layer,
whereas they do not in the bulk.

the potential profile rapidly switches in response [Fig. 4(a)],
to the potential profile shown in the schematic in Fig. 5.
The maximum in potential is located at an O(ε) distance
from the electrode, where the charge density in the double
layer causes curvature in the potential according to Poisson’s
equation (7). In the double layer, the migration of cations is
directed towards the electrode due to the negative electric field,
while cation diffusion is toward the midpoint of the cell driven
by the steep drop in concentration from the double layer to the
bulk. The potential is linear in the electroneutral bulk, where
cation migration is towards the center. The potential profile
also holds in the weakly nonlinear regime. In the strongly
nonlinear regime, charge density in the bulk leads to curvature
in the bulk potential [Fig. 9(b)] during discharging according
to Poisson’s equation (7).

V. WEAKLY NONLINEAR DYNAMICS

When the applied voltage is on the order of the thermal
voltage, the salt concentration is not uniform throughout the
cell. In order to screen the surface charge on the electrodes,
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the thin double layers adsorb neutral salt from the bulk [24]
at a concentration that depends nonlinearly on the applied
voltage [26]. This nonlinear capacitance is characteristic of the
weakly nonlinear regime [9]. To a first approximation, accu-
mulation of ions in the thin double layer does not significantly
deplete the bulk of ions, so the bulk salt concentration is c = 1
to leading order in ε. Bulk diffusion, accordingly, is negligible
in this regime. To solve for the external current during
discharging in this weakly nonlinear regime, we address the
PNP equations (6)–(8) in the thin-Debye-layer limit, ε → 0.
Equations (6)–(8) are singular as ε → 0, motivating the use of
matched asymptotic expansions [27]. In the weakly nonlinear
regime, the electrolytic cell comprises the double layer, or
inner region of width x ∼ O(ε), adjacent to the electrode
and the bulk, or outer region of width x ∼ O(1), centered
around the midpoint of the cell. The boundary conditions (8)
apply at the literal electrode-electrolyte interface.

Bazant et al. [9] apply matched asymptotics to the PNP
equations (6),(7) for charging in the weakly nonlinear regime.
In the bulk, the position x ∼ O(1) as ε → 0. Bazant et al. [9]
perform regular expansions in ε in the bulk, and coordinate
rescaling in the inner region, the Debye layer. The Debye
layer is shown to have a quasi-equilibrium Gouy-Chapman
structure. Regular expansions in ε in the bulk are inserted into
Eqs. (6),(7), yielding the leading order bulk concentration,
cc = 1, an asymptotically small charge density ρc, and bulk
potential

φc = jc(s)x, (22)

where jc is the current density to leading order in ε. The
subscript c refers to the charging process. The position, x is
the outer coordinate where x = ±1 corresponds to the outer
edge of the inner region. Matching between the double layer
and the bulk shows that the current density jc is asymptotic
to the external current J and is given by the solution to the

differential equation [9]

Cc

djc

ds
= −jc and jc(s = 0) = V, (23)

where Cc is the capacitance of the double layer,

Cc = cosh [(jc − V )/2]. (24)

The capacitance (24) is a function of the total voltage and
the flux of ions jc from the bulk to the double layer. As ions
flow from the bulk to the double layer during charging, the
capacitance increases. It can be shown that the current density
jd during discharging is similarly given by the solution of

Cd

djd

dt
= −jd and jd (t = 0) = V, (25)

where Cd = cosh (jd/2) is the differential capacitance of the
double layer. The initial condition for discharging can be
calculated from φd = jd (t)x, where the potential is φd (0, −
1) = −V at x = −1. This shows that the potential drop in the
bulk is linear, which is consistent with the applied potential at
V = 0.5 in Fig. 4. The initial current is thus jd (0) = V . With
this initial condition, the implicit solution to Eq. (25) is

t = Fd (jd ) − Fd (V ), where Fd (u) = −
∫ u

0

cosh z/2

z
dz.

(26)
For comparison, the current in the charging case jc, is given
by the implicit solution to [9]

s = Fc(jc − V ), where Fc(u) = −
∫ u

0

cosh z/2

z + V
dz. (27)

The current during charging jc is not antisymmetric to the
discharging current jd in the weakly nonlinear regime. As
stated previously, the current density jd is asymptotic to the
external current J . In Fig. 6 we compare the numerical solution
to Eq. (26) for the current density jd to the numerical solution
to Eqs. (6)–(8) for the external current J and the numerical
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FIG. 6. (a) Current during discharging jd (dot), given by Eq. (25), compared to the current during charging j0c (dash), given by Eq. (27),
and the numerically calculated current J (line) during discharging for three applied voltages, V = 0.5,1,3 and ε = 0.05. (b) Concentration at
time t = 0 for V = 0.5,1,3. At V = 3, the bulk concentration is not equal to unity due to salt adsorption in the double layer and ion depletion
in the bulk, which invalidates the weakly nonlinear analysis.
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solution to Eq. (27) for the current density during charging
jc at V = 0.5,1,3 and ε = 0.05. At low applied voltages
V � 1 (linear regime), the current density during charging,
discharging, and the external current match, as expected.
However, deviations arise at V = 1, and are strongly apparent
at V = 3. First, when comparing the charging and discharging
current densities in Fig. 6, the discharging process occurs at a
more rapid pace than charging. During charging, migration and
diffusion oppose each other during the formation of the double
layers. Conversely, during discharging the bulk potential and
diffusion fluxes both promote the movement of cations from
the electrode to the bulk, as depicted in Fig. 5. Secondly,
J �= V at t = 0. Instead, the current J < 3 initially for V = 3.
To leading order, the flux jd = c0V and c0(x) = 1 for all x

at t = 0. Figure 6(b) shows that the bulk concentration at
V = 3 and t = 0 is lower than 1, c0 ∼ 0.87. If we insert
this bulk concentration c0 = 0.87 and V = 3 into jd = c0V ,
we find jd = 2.61. At t = 0, |J | = 2.68, according to the
numerical solution for J at V = 3, so the correction in the
bulk concentration c0 captures the decrease in current at t = 0.
At long times for V = 3, the external current J matches jd

because c0 → 1 as t → ∞, thus the effect of initial bulk
depletion on jd does not play a role as t → ∞. We conclude
that the drop in the magnitude of the external current at t = 0
is due to an increase in the adsorption of ions in the double
layer, balanced by depletion of ions in the bulk.

The weakly nonlinear analysis breaks down when the total
concentration in the double layer, cD ∼ c0ε exp V to O(ε)
according to the Gouy-Chapman model [28,29], is on the
order of the concentration in the bulk, c0. This occurs at an
applied voltage (normalized by VT ) V ∼ ln 1/ε. At ε = 0.05,
the breakdown is predicted at V = 3, in agreement with the
results in Fig. 6. Bazant et al. [9] define a similar limit
for the weakly nonlinear analysis during charging; namely,
4ε sinh2(V/4) � 1.

The weakly nonlinear analysis presented here captures the
asymmetry in the current between charging and discharging
stemming from nonlinear capacitance in the double layer.
However, the analysis does not predict a reversal in the current
during discharging. Indeed, the current is monotonic. We must
therefore conclude that the non-monotonic current at higher
voltages is due to bulk diffusion, indicating that the reversals
in the current must occur on the diffusion timescale. In the
following section, we numerically investigate the effects of
bulk depletion and diffusion on the current at large voltages.

VI. STRONGLY NONLINEAR DYNAMICS

When the applied voltage is larger than V ∼ ln 1/ε, the
double layers adjacent to the electrodes deplete the bulk of
ions during charging. The weakly nonlinear analysis assumed
that the bulk concentration was equal to the initial uniform
concentration; at larger voltages, this assumption breaks down,
indicating a transition to the strongly nonlinear regime. The
strongly nonlinear regime is characterized by the development
of a “reverse peak”, or a maximum in the magnitude of the
current during the discharging process, due to neutral salt
desorption from the double layer to the bulk.

Recall, before the electric field is switched on, the ions are
uniformly distributed throughout the cell. After the field is
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FIG. 7. The current at a fixed double layer thickness, ε = 0.01,
shows the development of the reverse peak as V increases. The
current calculated from the numerical solution to the PNP equations
is compared to the weakly nonlinear current jd (dash) for V = 3 and
V = 7. The transition from weakly to strongly nonlinear occurs at
V ∼ − ln 0.01 = 4.7.

applied, the ions separate to form double layers adjacent to the
electrodes. Once the system reaches steady state, the external
current decays to zero, and the applied field is switched off.
After an initial spike, the magnitude of the current decays to a
minimum. After this point, ions from the double layer diffuse
and migrate into the bulk, leading to an acceleration in the
current to a reverse peak, before the current magnitude decays
to zero. The current during discharging is shown in Fig. 7 for
ε = 0.01 and applied voltages between V = 3 and V = 13,
from which this behavior is clearly observed. The V = 3 case
is in the weakly nonlinear regime. The current is compared
to the current density jd (26) calculated from the weakly
nonlinear analysis, which qualitatively matches the numerical
results. The weakly nonlinear asymptotics deviate from the
numerical solution at short times due to bulk depletion, as
discussed in Sec. V. As the voltage increases to V = 7, the
weakly nonlinear analysis no longer matches the current,
but the latter is still monotonic (Fig. 7). As the voltage
increases further (V = 10,13), the reverse peak emerges and
becomes more pronounced in comparison to the minimum in
the magnitude of the current.

The asymmetry between the charging and discharging
processes is highlighted by the development of the reverse
peak. In order to better understand the origin of the reverse
peak, we investigate the current on three timescales relevant to
the discharging dynamics. The largest of these is the diffusion
time, t̂D = L̂2/D̂, followed by the RC time t̂RC = L̂λ̂D/D̂,
and finally the double layer relaxation time, t̂λ = λ̂2

D/D̂.
In Fig. 8, the current is plotted for pairs of V and ε that fall

within the strongly nonlinear regime but do not completely
deplete the bulk of salt during charging. The emergence of
the reverse peak in cases where the concentration in the bulk
is larger than O(ε), as shown in Fig. 9(c) for V = 13 and
ε = 0.01, indicates that total charge separation is not required
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for a reverse peak in the current. Figure 8(a), scaled on the
double layer relaxation time, shows the initial spike in current,
followed by a minimum in the current that occurs at an O(1)
time. Time is plotted on a log-log scale here. On this scale, the
current is approximately linear leading up to the minimum in
current magnitude.

In Fig. 8(b), time is scaled by the RC time t̂RC for three
values of ε and applied voltage V . When plotted on a log-
linear scale, the decay in current after the reverse peak is
linear, corresponding to an exponential decay in the current
at long times. The timescale b for the exponential decay J ∼
exp (−bt) is O(1), indicating that the decay is occurring on the
RC time t̂RC . This is consistent with the exponential decay in
the current in the linear regime (21), where b = coth(1/ε) ∼ 1
for small ε. Finally, the current is rescaled on the diffusion
time t̂D in Fig. 8(c). The time at which the reverse peak occurs
is on the order of the diffusion time, indicating that the rapid
growth in the current before the reverse peak is driven by the

diffusion of ions from the double layer to the bulk (Fig. 9).
The exponential increase in the current magnitude is on the
timescale a, where J ∼ exp(at) and a ∼ O(1) preceding the
reverse peak.

While the current during discharging provides insight into
the dynamics of the cell, the concentration and potential
profiles enable a closer look. Figure 9 shows the evolution
of the current magnitude |J |, the potential, φ, concentration
c, and charge density ρ for ε = 0.01 and V = 13 initially, at
the minimum and maximum in current. The cathodic half of
the cell is shown in Fig. 9; equivalent dynamics occur in the
anodic half.

Immediately after the applied field is switched off, the
potential at the electrode switches from −V to 0. Charge den-
sity causes curvature in the potential, according to Poisson’s
equation (7). At t = 0, the large, positive charge density in
the double layer is reflected in an increase in potential. As
depicted in Fig. 5, the maximum in potential is outside of
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the double layer, where the charge density rapidly decays to
zero. Initially, cations are concentrated in the double layers and
depleted in the bulk [Fig. 9(c)]. From the first time-point to
the second time-point, the latter corresponding to a minimum
in the magnitude of the current, anions from the bulk of
the cell migrate towards the maximum in potential, briefly
increasing the charge density and potential, as indicated by
the small arrows in Figs. 9(b) and 9(d). From the minimum in
current (t = 0.32) to the reverse peak (t = 46), cations from
the double layer diffuse and migrate into the bulk driven by
strong concentration gradients, decreasing the concentration at
the electrode, increasing the bulk concentration, and yielding
an exponential rise in the magnitude of the current with time
[Figs. 9(a) and 9(c)]. The charge density decreases in the
bulk as both cations and anions enter, leading to a drop in
the potential. As time approaches t = 46, the concentration
gradient weakens, and the bulk concentration reaches O(1).
Following the reverse peak, the cell behavior can be described
by a linear RC circuit: the bulk resembles an Ohmic resistor in
series with the double layer, represented as a linear capacitor.
Accordingly, at times after the reverse peak, the current decays
exponentially on the RC timescale, as shown in Fig. 8, until the

concentration profile is uniform and the current reaches zero.
This is akin to the linear dynamics in Sec. IV. It is evident that
the reverse peak is due to the onset of bulk depletion.

VII. REVERSE PEAK SATURATION AT VERY
LARGE VOLTAGE

At larger voltages, V � 25 at ε = 0.01, the discharging
current appears to saturate (Fig. 2). This saturation is due to
total charge separation and complete bulk depletion of salt
during charging. In Fig. 10, the magnitude of the current at
the reverse peak and the time of the reverse peak scaled by
the diffusion time are plotted against ln ε at voltages V =
15,20,30,40, and 55. It is evident from the overlap in data
points at V � 30 that the reverse peak has saturated in time
and current magnitude, whereas at V = 15 and 20 the peak
is shifting in time despite saturation in the magnitude of the
current at the reverse peak. The current magnitude Jp and time
of the reverse peak tp scale as ln 1/ε. Therefore, we fit Jp and
tp for V = 55 to the expression a ln 1/ε + b using the data
points for ε = 0.001 through 0.01. The resulting expressions
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for the peak current Jp and peak time tp are

Jp = −aj ln 1/ε − bj and tp = at ln 1/ε + bt , (28)

where aj = 0.755 ± 0.005, bj = 0.085 ± 0.03, at = 0.116 ±
0.004, and bt = 0.093 ± 0.02. The error in these constants
is the standard deviation of the points from the fitted ex-
pressions. The expression for the peak current (28) can be
re-dimensionalized as

Ĵp = (−aj ln 1/ε − bj )
Â0D̂

ε2
, (29)

where Â0 = Âε̂k̂B T̂ /q̂L̂3. The dimensional peak time is

t̂p = (at ln 1/ε + bt )
L̂2

D̂
. (30)

The correlations (29) and (30) can be used to infer the charge
carrier diffusivity D̂ and concentration ĉ0 from experiments.
To perform this experiment, the electrolytic cell should be
discharged at a sufficiently large voltage V̂ such that the reverse
peak saturates in current and time. Equation (30) can be solved
for diffusivity,

D̂ = (at ln 1/ε + bt )
L̂2

t̂p
. (31)

This expression can be inserted into Eq. (29), which is solved
for ε. The result for ε is inserted into Eq. (31) to obtain D̂.
The charge carrier concentration ĉ0 can be calculated from

ε = 1/L

√
ε̂k̂B T̂ /2q̂2ĉ0. This is a single-point measurement to

estimate diffusivity and charge carrier concentration; one only
needs the value of t̂p and Ĵp.

We applied this method to Kornilovitch and Jeon’s [13]
experimental results for the saturated reverse peak in current in
an OLOA 11000-doped, Isopar M system. Those experiments
were performed in a 10 μm thick cell, with 0.5 wt.% OLOA
11000 at temperature T = 10 C. Figure 1 D in their paper

show a peak time of t̂p = 1.63 s and a peak current of Ĵp =
−6.3 × 10−8 A, at V̂ = 8 V. These values were inserted into
Eqs. (29) and (30) to yield a diffusivity D̂ = 3.2 × 10−11 m2/s,
dimensionless Debye length ε = 0.024, and charge carrier
concentration ĉ0 = 37 nmol/L. These values are consistent
in magnitude with values predicted by Kornilovitch and
Jeon’s [13] method, D̂ = 7 × 10−12 and ĉ0 = 12.15 nmol/L
at V = 1.16 V. Their method was based firstly on estimating
the skewness of the reverse peak for a range of charge carrier
concentrations, and secondly integrating the discharging cur-
rent over all times to obtain the charge carrier concentration.
We emphasize that our approach requires only a single-point
measurement.

VIII. CONCLUSIONS

This work was motivated by the asymmetry between the
current during charging and discharging of an electrolytic
cell, which has been experimentally observed [10–13]. This
asymmetry arises when the applied voltage is on the order of
the thermal voltage or larger. We analyzed the discharging
process in three regimes defined by the applied voltage
magnitude via asymptotic analysis and numerical methods.
We derived asymptotic solutions for the current in the linear
and weakly nonlinear regimes that can be directly applied
to analyzing experimental data. For the strongly nonlinear
regime, we identified three relevant timescales for discharging
dynamics and the impact of bulk depletion on the emergence
and ultimate saturation of the reverse peak.

The discharging dynamics are linear when the applied
voltage is smaller than the thermal voltage. We solved the
charge transport equations via Laplace transforms in the linear
regime, where the concentration is uniform throughout the cell
to leading order. We find that the timescale for the exponential
decay in the current during discharging is the RC timescale,
and that the current is anti-symmetric to the charging current.
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Interestingly, the electric potential and charge density are not
antisymmetric between charging and discharging. This can
be attributed to a complementary diffusion and migration
fluxes during discharging (Fig. 5), where both point towards
the midpoint of the cell, compared to opposing diffusion and
migration flux during charging.

At an applied voltage on the order of the thermal voltage,
nonlinear capacitance in the double layers results in weakly
nonlinear dynamics. We analyzed the weakly nonlinear dy-
namics via matched asymptotics for thin double layers and
derived an asymptotic expression for the external current. The
asymptotic current matches the current calculated from the
numerical solution to the PNP equations provided V � ln 1/ε.
At V ∼ ln 1/ε, the asymptotic current deviates from the
numerical solution at early times due to neutral salt adsorption
in the double layers and depletion in the bulk, indicating a
breakdown in the weakly nonlinear analysis. Our work shows
that bulk depletion results in the emergence of the reverse peak
in current. The reverse peak occurs on the diffusion timescale,
indicating that the diffusion of ions from the double layer
to the bulk drives the acceleration in current. The timescale
for the exponential decay in the magnitude of the current
following the reverse peak is the RC timescale. At long
times, the discharging cell behaves as a linear RC circuit, and
mimics the behavior of the linear regime. At very large voltage
(V � ln 1/ε), the reverse peak saturates due to total depletion
of the bulk salt during charging. We fit the current and time of
the saturated reverse peak to develop expressions (29) and (30)
correlating the peak current and time to ε and the charge
carrier diffusivity D̂. These correlations can be used to infer
the value of these two parameters as well as the charge carrier
concentration ĉ0 from experiment, as we have demonstrated.

In this work, we solved the PNP equations for a binary,
symmetric electrolyte. When the diffusivities of the ions are
unequal, it can be shown that the decay in the external current in
the linear regime is on the ambipolar RC time, λ̂DL̂/D̂a . Here,
D̂a is the ambipolar diffusivity, D̂a = 2D1D2/(D1 + D2),

where D1 and D2 are the cation and anion diffusivities. Recall,
the reverse peak occurs on the diffusion timescale. When
the ions have unequal diffusivities, it is likely that multiple
reverse peaks in the current will be observed at timescales
corresponding to the diffusivity of the two species and the
ambipolar diffusivity. This is an interesting problem for future
work; charge carriers of opposite sign are not necessarily of
equal size in surfactant doped non-polar fluids.

The PNP equations assume a dilute solution of non-
interacting ions. This can lead to an unphysically large
concentration of ions in double layers at large voltages. Kilic
et al. [30,31] analyze the dynamics of a charging electrolytic
cell at large voltage by incorporating the effects of steric
hindrance of ions, via Bikerman’s model [32]. Steric hindrance
can be especially important for charge transport in doped
nonpolar fluids as the charges are encapsulated in micelles.
For reference, OLOA 1100 inverse micelles in dodecane are
around 7 nM in diameter [20]. Kilic et al. [30,31] show that
including steric hindrance via Bikerman’s model limits the ion
concentration in the double layers, which grows exponentially
with voltage in the standard PNP equations. Note that more
sophisticated theories of steric hindrance yield concentrations
that do in fact grow with voltage, albeit at a much slower
rate than predicted by PNP theory (see Gillespie [33] for a
detailed discussion). In any case, with steric hindrance, the
weakly nonlinear regime will extend to higher voltage than
VT ln 1/ε. The emergence of the reverse peak would likely be
shifted to higher voltage using Bikerman’s model [32]. This is
an interesting problem for future work.
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d’un électrolyte, J. Phys. Theor. Appl. 9, 457 (1910).

[29] David Leonard Chapman, Li. A contribution to the the-
ory of electrocapillarity, Philos. Mag. Ser. 6 25, 475
(1913).

[30] Mustafa Sabri Kilic, Martin Z. Bazant, and Armand Ajdari,
Steric effects in the dynamics of electrolytes at large applied
voltages. I. Double-layer charging, Phys. Rev. E 75, 021502
(2007).

[31] Mustafa Sabri Kilic, Martin Z. Bazant, and Armand Ajdari,
Steric effects in the dynamics of electrolytes at large applied
voltages. II. Modified Poisson-Nernst-Planck equations, Phys.
Rev. E 75, 021503 (2007).

[32] J. J. Bikerman, XXXIX. Structure and capacity of electrical
double layer, Philos. Mag. Ser. 7 33, 384 (1942).

[33] D. Gillespie, A review of steric interactions of ions: Why
some theories succeed and others fail to account for ion size,
Microfluid. Nanofluid. 18, 717 (2015).

012601-13

http://dx.doi.org/10.1063/1.3554445
http://dx.doi.org/10.1063/1.3554445
http://dx.doi.org/10.1063/1.3554445
http://dx.doi.org/10.1063/1.3554445
http://dx.doi.org/10.1021/la046751m
http://dx.doi.org/10.1021/la046751m
http://dx.doi.org/10.1021/la046751m
http://dx.doi.org/10.1021/la046751m
http://dx.doi.org/10.1016/0927-7757(93)80026-B
http://dx.doi.org/10.1016/0927-7757(93)80026-B
http://dx.doi.org/10.1016/0927-7757(93)80026-B
http://dx.doi.org/10.1016/0927-7757(93)80026-B
http://dx.doi.org/10.1016/j.displa.2005.10.001
http://dx.doi.org/10.1016/j.displa.2005.10.001
http://dx.doi.org/10.1016/j.displa.2005.10.001
http://dx.doi.org/10.1016/j.displa.2005.10.001
http://dx.doi.org/10.1021/la903182e
http://dx.doi.org/10.1021/la903182e
http://dx.doi.org/10.1021/la903182e
http://dx.doi.org/10.1021/la903182e
http://dx.doi.org/10.1016/S0021-9797(02)00029-2
http://dx.doi.org/10.1016/S0021-9797(02)00029-2
http://dx.doi.org/10.1016/S0021-9797(02)00029-2
http://dx.doi.org/10.1016/S0021-9797(02)00029-2
http://dx.doi.org/10.1016/j.jcis.2014.08.052
http://dx.doi.org/10.1016/j.jcis.2014.08.052
http://dx.doi.org/10.1016/j.jcis.2014.08.052
http://dx.doi.org/10.1016/j.jcis.2014.08.052
http://dx.doi.org/10.1016/j.jcis.2006.03.050
http://dx.doi.org/10.1016/j.jcis.2006.03.050
http://dx.doi.org/10.1016/j.jcis.2006.03.050
http://dx.doi.org/10.1016/j.jcis.2006.03.050
http://dx.doi.org/10.1103/PhysRevE.78.011502
http://dx.doi.org/10.1103/PhysRevE.78.011502
http://dx.doi.org/10.1103/PhysRevE.78.011502
http://dx.doi.org/10.1103/PhysRevE.78.011502
http://dx.doi.org/10.1137/040609938
http://dx.doi.org/10.1137/040609938
http://dx.doi.org/10.1137/040609938
http://dx.doi.org/10.1137/040609938
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.1063/1.1739933
http://dx.doi.org/10.1063/1.1739933
http://dx.doi.org/10.1063/1.1739933
http://dx.doi.org/10.1063/1.1739933
http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1080/14786444208520813
http://dx.doi.org/10.1080/14786444208520813
http://dx.doi.org/10.1080/14786444208520813
http://dx.doi.org/10.1080/14786444208520813
http://dx.doi.org/10.1007/s10404-014-1489-5
http://dx.doi.org/10.1007/s10404-014-1489-5
http://dx.doi.org/10.1007/s10404-014-1489-5
http://dx.doi.org/10.1007/s10404-014-1489-5



