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Pattern formation in oscillatory media without lateral inhibition
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Spontaneous symmetry breaking instabilities are the most common mechanism for how biological, chemical,
and physical systems produce spatial patterns. Beginning with Turing’s original paper, so-called lateral
inhibition—in which negative feedback has greater spread than positive feedback—has been the underlying
mechanism for pattern formation in biological models. Despite this, there are many biological systems that
exhibit pattern formation but do not have lateral inhibition. In this paper, we present an example of such a system
that is able to generate robust patterns emerging from a spatially homogeneous state. In fact, patterns can arise
when there is only spatial spread of the activator. Unlike classic Turing pattern formation, these patterns arise
from a spatially homogeneous oscillation rather than from a constant steady state.
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I. INTRODUCTION

Spontaneous symmetry breaking from a spatially uniform
state is the most common mechanism for pattern formation
in many physical systems [1,2]. Typically, one starts with a
spatially uniform constant solution and then performs a linear
stability analysis to determine when there will be instability.
Depending on the modes that become unstable, complex
spatiotemporal patterns arise that include hexagons, stripes, of
various orientations, and more complicated temporally varying
patterns [2,3]. In a biological or chemical setting, models
for pattern formation begin with two species: an activator
and inhibitor (or excitatory and inhibitory components), and
in order to get pattern formation, assume that the reach of
the inhibitor is greater than that of the activator (so-called
lateral inhibition). However, there are many systems where
the negative (inhibitory) feedback does not spatially extend
beyond the positive (activator) feedback. Furthermore, it may
be that the spatially uniform state is not constant, but rather is
oscillatory. Thus, it is of general interest to see whether or not
lateral inhibition is necessary to get pattern formation in any
homogeneous system and if not, how such patterns might arise.

In the nervous system, symmetry-breaking patterns have
been associated with visual hallucinations, working memory,
and feature maps. In each of the models that leads to pattern
formation, there is an explicit assumption that the spatial
spread of inhibition extends farther than that of excitation.
However, it has been shown in certain areas of sensory
cortex that inhibition has slightly less or about the same
spread as excitation. For instance, Levy and Reyes present
distance-dependent connection profiles for data from the
primary auditory cortex in the mouse and show that for
two broad classes of interneurons, fast-spiking and non-fast-
spiking cells, the synaptic connection profiles for inhibition
to excitation is narrower than the reciprocal (excitation to
inhibition) connection profile [4]. In this paper, we show that a
spatially extended two population model of cortex can exhibit
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spatiotemporal patterns without assuming lateral inhibition.
We show that for some choices of parameters, it is possible
to get symmetry breaking instabilities even when there is no
spread of inhibition, that is when inhibition is only local.

II. A WILSON-COWAN NETWORK WITH SPATIAL
COUPLING

We begin with the classical Wilson-Cowan (WC) equations
in which there is a population of excitatory neurons connected
to another population of inhibitory neurons:

τe

∂u

∂t
= −u + F [aeeKe(x) � u − aeiKi(x) � v − θe],

(1)
τi

∂v

∂t
= −v + F [aieKe(x) � u − aiiKi(x) � v − θi],

where u, v are the activities of the excitatory and inhibitory
populations, respectively; the parameters τj , j ∈ {e, i} repre-
sent the time scales of the excitatory and inhibitory activities;
the parameters aj k are the coupling strengths from population
k to population j and θj are thresholds; and F (I ) is a
nonlinear function representing the firing rate as a function
of the spatially distributed inputs: Kj (x), j ∈ {e, i} are spatial
interaction functions (typically Gaussian or exponentially
decaying with Euclidean distance) which are convolved with
the activities. In general, Kj (x) = K(x/σj )/σj where σj is
the characteristic spatial length. If σi > σe, we have the classic
version of pattern formation with lateral inhibition, since the
length scale of inhibition exceeds that of excitation. In this
paper, we show results for the exponential kernel that decays
with distance, which for the one-dimensional (1D) spatial
model is given by

Kj (|x|) = 1

2 σj

exp

(
− |x|

σj

)
, j ∈ {e, i}.

Throughout this paper, we let F (I ) = 1/[1 + exp(−β I )] and
β = 50, aee = aie = 1, aei = 1.5, aii = 0.25, θi = 0.4. The
remaining parameter θe and the relative time and space
constants, defined as τ = τi/τe and σ = σi/σe, respectively,
will be varied.
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III. SPATIALLY HOMOGENEOUS SYSTEM

In the absence of spatial connectivity, the system in Eq. (1)
simplifies to a planar system of differential equations given by

τe

du

dt
= −u + F (aeeu − aei v − θe),

(2)

τi

dv

dt
= −v + F (aie u − aii v − θi).

Note that solutions of Eq. (2) are solutions of the partial
integrodifferential equation given in Eq. (1) as long as the
spatial kernels, Ke(x) and Ki(x), are normalized.

In Fig. 1, we show the phase planes and bifurcation
diagrams for the system in Eq. (2), corresponding to two
different values of the threshold parameter, θe = 0.125 and
θe = 0.08. For all values θe of interest, there is an up-
state equilibrium, E := (um,vm), that occurs at the region
of the u nullcline where the slope is positive. Presumed to
be the active state of the visual cortex, Ozeki et al. call this
the inhibitory-stabilized network (ISN) state [5]. Depending
on the time scale τ = τi/τe, the equilibrium point E is either a
stable or an unstable node. The bifurcation diagram as τ varies
is shown in Fig. 1(c) for θe = 0.125. At low values of τ , E

is stable, and as τ increases, it loses stability through a Hopf
bifurcation; a branch of stable periodic orbits emerges from

the Hopf bifurcation, and the green curve in Fig. 1(a) is one
such periodic orbit. Finally, as τ further increases, the curve of
periodic orbits terminates at a homoclinic bifurcation. This is
shown with a blue dot in Fig. 1(c), and the corresponding
homoclinic orbit is the larger of the two closed curves in
Fig. 1(a). For θe small enough, E is the only equilibrium,
and if τ is small enough, it is stable; otherwise, there is a
stable limit cycle, as in Fig. 1(b). In panel (d), we show that
the green curve of limit cycles persists for all τ > τHB when
θe = 0.08.

For the spatially extended WC system, symmetry-breaking
pattern formation can occur at the spatially homogeneous
equilibrium E when there is lateral inhibition (σi > σe) and
τ is small enough so that there are no limit cycles in the
homogeneous system [6]. Figure 2(a) depicts such a case in
which we observe spatially periodic, time-invariant stripes.
While it is possible to obtain pattern formation from a
homogeneous equilibrium in the WC equations when σe � σi ,
the conditions require careful tuning of parameters and the
difference between the two length scales is small (see the
Appendix for calculations). However, since in most cortical
circuits the spatial extent of inhibition is generally less than
that of excitation, we now let σi = 6.67 < 10 = σe, and
increase τ = 0.4 so that there is a bulk oscillation, i.e., a
spatially homogeneous, temporally periodic solution, as shown
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FIG. 1. Phase plane and bifurcation diagram of the ISN state. (a) Phase plane for θe = 0.125 with periodic orbit (PO), τ = 0.6, and
homoclinic (HC), τ = 0.6764; (b) Phase plane for θe = 0.08. with PO, τ = 0.6. (c) Bifurcation as τ increases when θe = 0.125, showing three
equilibria: stable node, SN; unstable saddle, US; unstable node, UN; equilibrium point E. Stable PO’s grow from a Hopf bifurcation (HB) of
the upper equilibrium E and terminate at a homoclinic, HC; (d) same as (c) but for θe = 0.08 to show the PO’s exist for all τ > τHB .
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FIG. 2. Simulations for a network (n = 256) of coupled WC-
type neurons. (a) Classic Turing patterns from a steady state
when θe = 0.08, σe = 10, σi = 20, and τ = 0.2. (b) Reducing σi

to 6.67 and increasing τ = 0.4 induces a spatially homogeneous
periodic oscillation. (c) Further increasing τ = 0.6 results in periodic
spatiotemporal patterns.

in Fig. 2(b). Further increasing τ = 0.6 causes the spatially
homogeneous oscillation to become unstable, which results in
a pattern that is periodic in both space and time, as shown in
Fig. 2(c).

IV. LINEAR STABILITY OF THE SPATIALLY
HOMOGENEOUS OSCILLATION

In order to investigate the bifurcation from a homogeneous
constant state, we simply linearize and take the Fourier
transform resulting in a family of 2 × 2 matrices whose
eigenvalues are easy to compute (see the Appendix). However,
in the present case [e.g., as in Fig. 2(b)], the spatially
homogeneous solution is a periodic orbit, so we must take
a different approach. We linearize Eq. (1) around the spatially
homogeneous periodic solution, (ū(t),v̄(t)), and perturb the
solution with respect to spatial frequency ω. We take the
perturbation to be of the form

U (x,t) = ū(t) + ε u(t) ei ω x, V (x,t) = v̄(t) + ε v(t) ei ω x,

so that

Ke � U (x,t) = ū(t) + ε K̂e(ω) u(t) eiω x,
(3)

Ki � V (x,t) = v̄(t) + ε K̂i(ω) v(t) eiω x,

where K̂j (ω) are the Fourier transforms of Kj (x). After a
Taylor expansion and collecting order ε terms, we obtain a
family of linear two-dimensional equations, parametrized by
wave number, ω:

ut = −u + bee(t)K̂e(ω)u − bei(t)K̂i(ω)v,
(4)

τvt = −v + bie(t)K̂e(ω)u − bii(t)K̂i(ω)v,

where bjk(t) = ajk F ′[aj,e ū(t) − aj,i v̄(t) − θj ] and where
τ = τi/τe is the time constant of inhibition relative to excita-
tion. If the homogeneous state of the system is an equilibrium
point, then bjk are just constants and the stability reduces to the
usual Turing-type analysis for constant steady states [7]. If, on
the other hand, the homogeneous solutions are oscillatory (as
will be the case for τ > τHB), then Eq. (4) is a linear periodic
system which we can write as X′ = A(t ; ω)X with

A(t ; ω) =
(

−1 + bee(t)K̂e(ω) −bei(t)K̂i(ω)

(bie(t)K̂e(ω))/τ (−1 − bii(t)K̂i(ω))/τ

)
.
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FIG. 3. Diagram to show the boundaries for instability in terms
of the trace (Tr) and determinant (D) of the Monodromy matrix.

Here we include the parameter ω to emphasize that the
solutions depend on the wave number perturbation. We solve
this linear T -periodic equation with initial conditions X = I ,
where I is the identity matrix, to form a principal matrix of
solutions. After one period, we obtain the Monodromy matrix
M(ω) := X(T ; ω) which, for our system, is a 2 × 2 matrix,
parametrized by ω. If any of the eigenvalues of M(ω) have
magnitude greater than 1 for some value of ω, then the limit cy-
cle will lose stability with spatial mode ω. With a 2 × 2 matrix
M , there are three ways to lose stability: (i) a real eigenvalue
increases above 1; (ii) a real eigenvalue decreases below −1;
(iii) a complex pair obtains a magnitude greater than 1.

One need only check the determinant (D) and the trace (Tr)
of M(ω) to test these conditions: (i) Q1 := 1 − Tr + D > 0;
(ii) Q2 := 1 + Tr + D > 0; (iii) Q3 := 1 − D > 0. That is, if
any of these test functions falls below 0 as some parameter
such as ω changes, then an instability will occur. Figure 3
shows a schematic of these conditions.

With this background, we numerically solve the spatially
homogeneous equations for one period, compute the Mon-
odromy matrix, and then look for zero crossings of the
three quantities. We have found that only Q2 changes sign
as ω varies, so henceforth, this is the only test function
that we follow. We note that Q2 signifies a period-doubling
bifurcation, so we expect the bifurcatiing solution to repeat
every other cycle, such as the pattern shown in Fig. 2(c).

There are three parameters of interest to us: (1) the
inhibitory space constant σi , (2) the inhibitory time constant
τi , and (3) the excitatory threshold θe. Since space and time
can be rescaled, the inhibitory space and time constants in
Figs. 4–7 are relative to those of excitation: τ = τi/τe and
σ = σi/σe. The excitatory threshold, θe, switches the system
from one to three equilibria and determines if the limit cycles
terminate on a homoclinic orbit [see Fig. 1(a)]. We find that
for large enough space constant σ , the quantity Q2(ω) has two
roots that signify an interval of wave numbers ω, for which the
homogeneous limit cycle is unstable. In Fig. 4, the blue curves
show the graph of Q2 as a function of wave number ω for a
fixed value of σ . By varying σ , we can cause the two roots,
indicated by the green curve in Fig. 4, to come together at a
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FIG. 4. Surface plot of the test function Q2 as a function of (σ,ω) for θe = 0.08 and τ = 0.5. Each blue curve is Q2 as a function of ω for
fixed σ . The green curve indicates the level set Q2 ≡ 0 as σ and ω vary, and the right panel depicts the green curve in the gray plane. As σ

decreases, the two zeros come together at the turning point of the green curve; this sets the minimal σ for pattern formation, which in this case
is σ ≈ 0.716, indicated by the vertical dashed line.

double root. This corresponds to a turning point of the green
curve in the (σ,ω) plane, as seen in the right panel. The critical
value of σ at which this occurs sets the boundary for pattern
forming instabilities.

From here, we can follow the critical value of σ as τ varies
for different choices of θe to obtain a family of curves that
delineate where the homogeneous limit cycle is unstable. In
Fig. 5, we show these curves for the exponential kernel and find
several qualitatively different aspects of them. Consider when
θe = 0.125, large enough so that there are three equilibria. In
this case, limit cycles exist for τ values between the Hopf
and the homoclinic (τHC ≈ 0.67, for θ = 0.125) bifurcations,
and the instabilities occur between the solid and dashed (red)
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FIG. 5. Stability diagram for the homogeneous periodic orbit
as the parameters (σ ) and time constant (τ ) vary for the spatially
extended WC model. The homoclinic (HC) line corresponds to
θe = 0.125. Hopf bifurcations occur at the minima of each of the
lower plotted curves.

curves. The Hopf bifurcations (independent of σ ) occur at
the values of τ that are minima for the lower pattern forming
curves. When θe < 0.097 83 (the value for a saddle node of
equilibria), e.g., θe = 0.08, there is a unique equilibrium point
and a spatially homogeneous limit cycle for all τ > τHB . That
is, there is no homoclinic boundary. In this case, there is a
turning point in the stability curve which bounds the minimal
value of σ for pattern formation away from zero (shown by
the three upper solid curves). In Fig. 5, we show the stability
curves for several values of excitatory threshold where there
is no homoclinic: for θe = 0.097 (violet), the system is near
the saddle node bifurcation of equilibria, and for θ = 0.088 41
(blue), there is a cusp at σ = 0. Here, we emphasize that σ

can extend all the way down to σ = 0 for some choices of
θe, so that patterns may occur even when there is only local
inhibition when θe ∈ (0.088 41,0.097 83).

From the stability boundaries shown in Fig. 5, it is clear
that there are regions where σ < 1 and the homogeneous state
loses stability. What is more interesting is that there is an upper
bound on τ for which the uniform state loses stability, which is
to say that inhibition can neither be too slow nor too fast. For θe

values that yield a turning point in the curve (e.g., θe = 0.08),
the upper boundary increases with increasing σ . As σ passes
through 1, the excitatory and inhibitory populations have
identical spatial scales. Moreover, the upper boundary occurs
at a value of τ < 1, so the symmetry-breaking mechanism
relies on the difference in time scales. As we further increase
the spatial scale so that σ > 1, the upper boundary passes
through τ = 1 and there can occur patterns when the time
scales of excitatory and inhibitory populations are the same.

Next we compare the behavior of the theoretical stability
curves with the behavior of the 1D spatial model. We discretize
Eq. (1) into 256 points for each population, start close to the
equilibrium point (with some added heterogeneity to break
the symmetry) and then integrate over a range of parameters.
We track the spatial variance of the simulation in order to
automatically determine the strength of the pattern.
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FIG. 6. Comparison between the stability diagram from the linear theory and the full simulations. (a) θe = 0.08: patterns remain entirely in
the stability region. (b) θe = 0.088 41: when the boundary breaks open at σ = 0. (c) θ = 0.97: slightly less than the value of the saddle-node
bifurcation. (d) θe = 0.125: The upper boundary (horizontal, dashed line at τ = 0.6764) is the homoclinic, and patterns can exist in regions
where there is no limit cycle (above the line).

Figure 6(a) shows the case of a single equilibrium point
(θe = 0.08) in which patterns seem to exist only in regions
of parameter space where the uniform oscillation is unstable
to spatial perturbations. Again, we remark that if τ is too
large, then the uniform oscillation is always stable for σ < 1.
Figure 6(d) shows that the bottom boundary is limiting for
patterns but the top boundary (determined by the homoclinic
bifurcation of the homogeneous state) is not the limiting
boundary. This means that there are patterns for parameter
regimes in which there is no homogeneous limit cycle. There
is no a priori reason that we would expect the linear stability
analysis to predict the regime of nonlinear pattern formation;
it is just a condition for the uniform state to be unstable.

V. PATTERN FORMATION WITH NO SPATIAL SPREAD
OF INHIBITION

Looking at Figs. 6(c) and 6(d), there appear to be regions
where there are patterns in the case of σ = 0, which is very
surprising since there is now only one length scale in the
system. Since this phenomenon seems to depend on θe, we
consider the behavior when σ = 0 and vary τ and θe. In the
Appendix, we show that no pattern formation can arise from a
constant state when σi = 0 (that is, σ = σi/σe = 0). Figure 7
shows the regime in (θe,τ ) where there exist oscillations to the
uncoupled system (the bulk oscillation). For θe to the left of the
saddle-node value, θSN ≈ 0.097 83 (labeled SNIC in Fig. 7),
there is only one equilibrium point and it is unstable for τ

above the curve of Hopf bifurcations. For θe > θSN , the bulk
oscillation exists for τ between the Hopf bifurcation curve and
the lower section of the homoclinic curve. Furthermore, within
the region where there is a bulk oscillation, there is a curve
labeled PF, above which the bulk oscillation is unstable and
we expect pattern formation. Interestingly, this region extends
slightly below θSN for a limited band of τ where there is only a
limit cycle and a single equilibrium point. The smallest θe such
that there is a range of τ values for which the bulk oscillation
is unstable is approximately θe ≈ 0.088 41 and corresponds to
the cusp seen in Fig. 5 at σ = 0.

VI. TWO-DIMENSIONAL NETWORK

Thus far, we have only considered the Wilson-Cowan
equations with 1D spatial coupling and analyzed the stability
of the bulk oscillation to certain wave number perturbations.
However, the analysis for the 2D system will be identical to that
of the 1D system, and in fact, it is the same for n-dimensional
systems, as long as the spatial coupling profile decays with the
Euclidean distance. Here we take the kernel to be the decaying
exponential,

Kj (
√

x2 + y2) = 1

2 π σ 2
j

exp

(
−

√
x2 + y2

σj

)
, j ∈ {e, i}.

Then we can use the curves in Figs. 5 and 6 to find parameters
where we would expect patterns in the 2D spatially connected
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FIG. 7. Phase diagram showing regions where there is a periodic
orbit (PO) and pattern forming instabilities as τ and θe vary with
no spread of inhibition (σ = 0). The shaded region labeled UO,
bounded between the homoclinic (HC) and pattern forming (PF)
curves, indicates instabilities to the bulk oscillation when σ = 0. The
upper branch labeled HTC is the curve of heteroclinic orbits (joining
the saddle point with the down state), while the lower branch labeled
HC is the curve of homoclinics. These come together at a turning
point, corresponding to a saddle node on an invariant circle (SNIC).
The vertical dashed line is θe = 0.094, showing an interval of τ values
that give rise to pattern formation when there is one equilibrium.
The black dot at (θe,τ ) = (0.094,0.8) corresponds to parameters in
Fig. 8(c).

network, though the analysis will indicate nothing about the
stability of the pattern itself.

To illustrate the geometry of the period-doubled branch
of solutions, we create an array of 256 by 256 excitatory
and inhibitory neurons with periodic boundary conditions and
simulate the 2D spatially connected network. We present the
spatiotemporal patterns in Fig. 8 as a series of five frames
over equal time intervals for one period T of the period-
doubled oscillation. To simulate perturbing from the spatially
uniform oscillation, we impart small random fluctuations to
initial conditions near the periodic orbit. When the uniform
oscillation is unstable, the system may tend to the sorts of
spatiotemporal patterns shown in Fig. 8, in which spatially
alternating active and quiescent states in the first column
frames switch positions at half a cycle (not shown) between
the third and fourth column frames.

In Fig. 8(a), we let θe = 0.125 and the rest of the parameters
be the same as in Fig. 2(c) to show pattern formation in the
presence of a down state. Then in Fig. 8(b), we increase τ

to 0.7, which is above the homoclinic bifurcation indicated in
Fig. 5. Here we remark that the linear stability indicates pattern
formation for the parameter set in Fig. 8(a), since the point
(σ,τ ) falls well between the lower stability curve and the upper
homoclinic boundary of Fig. 5. However, for the parameter set
in Fig. 8(b), there is no uniform state oscillation, yet a pattern
emerges. Similar to the reduced model in Fig. 9(b), the period-
doubled oscillations seem to be stable even past the homoclinic

(a) t = 0 t = 4 T/5

(b) t = 0 t = 4 T/5

(c) t = 0 t = 4 T/5

FIG. 8. Five frames over one period for simulations of the 2D
Wilson Cowan model with N = 256 × 256 neurons. Spatiotemporal
patterns when σe = 10 and parameters: (a) σi = 6.67, θe = 0.125,
τ = 0.6, T = 11.3; (b) σi = 6.67, θe = 0.125, τ = 0.7, T = 24.5; (c)
σi = 0, θe = 0.094, τ = 0.8, T = 30.1. These parameters correspond
to the black dot at (θe,τ ) = (0.094,0.8) in Fig. 7. See [8] for the
corresponding movies.

bifurcation at τHC = 0.6764. Last, Fig. 8(c) shows pattern
formation in the case when there is only local inhibition, i.e.,
σi = 0, and the parameters (θe,τ ) = (0.094,0.8) correspond to
the point on the vertical line within the shaded area of Fig. 7.

VII. A REDUCED MODEL

We now describe a simple, highly reduced model that
helps explain the difference in behavior between Figs. 6(a)
and 6(d). We create a network of two pairs, u1,2, v1,2, with
coupling between them. The coupling of pair 2 to pair 1 has the
form (1 − qe)u1 + qeu2 and (1 − qi)v1 + qiv2, with a similar
coupling for pair 1 to pair 2. That is, the coupling kernels Ke,Ki

are replaced with their two-point discrete analogs. If qe,i = 0,
then there is no coupling, and if qe,i = 0.5, then the coupling
is essentially all-all. We choose qe = 0.166 and qi = 0.05 so
that the inhibitory coupling “spread” is less than a third of the
excitatory. In Fig. 9, we show the two bifurcation diagrams
for the reduced system where respectively θe = 0.08 and θe =
0.125: In panel (a) where there is only one equilibrium point
and the homogenous limit cycle exists for all τ > τHB , we see
that the periodic orbit becomes unstable at a period doubling
bifurcation, and as τ further increases, the stable branch of
period-doubled orbits connects back to the periodic orbit. This
is qualitatively the same picture as Fig. 6(a). In contrast, panel
(b) shows that while the periodic orbit becomes unstable at a
period-doubling bifurcation as in (a), it does not connect back
to the branch of periodic orbits; instead, the stable period-
doubled branch continues past the homoclinic bifurcation of
the unstable periodic branch just as in Figs. 6(d) and 8(b).

VIII. DISCUSSION

In this paper, we have shown that if the homogeneous state
is a periodic solution rather than an equilibrium point, then
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FIG. 9. Bifurcation diagram for the pair of coupled WC equations. Labeling is the same as in Fig. 1 with an additional label for the unstable
periodic orbits (UPO). (a) For θe = 0.08, the curve of period-doubled orbits connects back to the branch of unstable periodic orbits, stabilizing
the homogeneous periodic solution for all τ beyond the second PD point. (b) For θe = 0.125, unstable periodic orbits terminate at a homoclinic,
HC. The inset shows u1 and u2 over two periods for τ = 0.7 > τHC .

it is quite easy to obtain pattern formation even when the
inhibition has a much smaller spread than the excitation. In
fact, the variance maps in Figs. 6(c) and 6(d) compared with
the analytic curves from Figs. 5 and 9 show that when τ is
close to the homoclinic bifurcation there can be spontaneous
pattern formation even if there is no inhibitory spread. A
similar surprising result is that there can be patterns even
when the excitatory and inhibitory interactions are identical;
in both instances, there is only one characteristic length
scale. In these cases, we observe from Fig. 5 that whenever
σ < 1, the regions of instability lie below the line τ = 1.
This suggests that the symmetry-breaking mechanism must
result from the difference in time scales of excitatory and
inhibitory populations. Indeed, if the time scales and the space
scales are the same, then we conjecture that no patterns can
spontaneously arise from the oscillatory state.

Though we have found some similar work on pattern
formation in the literature, there are notable differences
between these results and results presented in this paper. For
instance, Kuramoto [9] has shown the existence of complex
spatiotemporal patterns. He derives an equation for the spatial
phase gradient that has the form θt = aθ2

x − b θxx − c θxxxx

which can be derived from any system of spatially coupled
oscillators in the long-wave limit. The same analysis can
be applied to the Wilson-Cowan system [10], but to get
the coefficients b,c > 0 requires lateral inhibition. Since the
Kurmoto result is a long-wave instability, we believe the
mechanism in these papers is different from ours which is
a finite wavelength instability.

As seen in Figs. 2(c) and 9, the pattern formation arises via
a period doubling bifurcation of the spatially homogeneous
oscillatory state. In this sense, it is quite reminiscent of
bifurcations seen in uniformly periodically forced systems.
Crawford [11] and Silber et al. [12] studied these phenomena
using symmetry and bifurcation methods and [11] derived a
normal form for this bifurcation. However, their setup was
more abstract, so it is unclear whether or not they needed
lateral inhibition to obtain the pattern forming states. In a
more closely related paper, Rule et al. [13] study the Wilson
Cowan equations with uniform periodic driving and found

pattern formation both through period doubling and a pitchfork
bifurcation. In this paper, they required lateral inhibition. Yang
et al. [14] used Floquet theory to analyze pattern formation
in either an intrinsically oscillatory or a periodically forced
chemical system. The authors found a variety of patterns aris-
ing from a period-doubling bifurcation much as we have seen
here. However, they require lateral inhibition in their model.

More recently, Challenger et al. [15] studied general
two-variable reaction diffusion equations when there was
a bulk oscillation. They provide some approximations for
conditions on spatial patterns, but once again, the authors
require lateral inhibition. Another paper worth mentioning
is [16], in which Steyn-Ross et al. consider a mean field
model of cortex with inhibitory diffusive coupling to study
interneuronal gap junctions. They show that for large values
of the inhibitory diffusion constant Di , Turing patterns can
emerge, while for smaller values of Di , the homogeneous
fixed point can pass through a Hopf bifurcation to give rise
to a bulk oscillation. Then, by tuning the inhibitory rate and
diffusion constants, so that the system is near a codimension
2 Turing-Hopf bifurcation, they show complex spatiotemporal
patterns. Though this seems like a similar setup as ours,
the symmetry-breaking mechanism is different: While they
analyze perturbations from a homogeneous fixed point and find
patterns arising from competing Turing and Hopf instabilities,
we linearize around a homogeneous oscillation and show
patterns arising from a period-doubling bifurcation. Moreover,
they take the diffusion constant of inhibition to be much greater
than that of excitation, and thus, keeping with the theme, they
require lateral inhibition. Whether or not other systems such
as these reaction diffusion systems can show the same types
of bifurcations in the absence of lateral inhibition remains an
open question.
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APPENDIX

1. Linear stability from a spatially homogeneous equilibrium

Here we show how to find parameters to obtain pattern
formation when σe > σi in the WC network with spatial
coupling, when considering perturbations from a spatially
uniform equilibrium. We make a change of variables to make
it easier to explicitly find parameters and consider

ut = −u + ge[aeeKe(x) � u − aeiKi(x) � v],

τvt = −v + gi[aieKe(x) � u − aiiKi(x) � v],

where gμ(J ) = [f (J − θμ) − f (−θμ)]/f ′(−θμ) for μ = e,i.
(We can readily change to the usual WC equations with a
linear change of variables.) This convenient transformation
assures that gμ(0) = 0 and g′

μ(0) = 1. As usual, we suppose
that Kμ(x) = K(x/σμ)/σμ so that the shapes of the interaction
kernels are the same up to a space constant. Let Hμ(ω) be the
Fourier transform of the kernels, which are normalized so that
Hμ(0) = 1. If σe < σi , then He(ω) � Hi(ω) with equality only
at ω = 0. When we linearize around the homogeneous state
(0,0) and take the Fourier transform we see that the resulting
matrix (parametrized by ω) has a determinant proportional to

D(ω) = 1 + aiiHi(ω) + (aeiaie − aiiaee)He(ω)Hi(ω)

− aeeHe(ω). (A1)

We want the determinant to be positive for ω near zero and then
to become negative for some interval of ω bounded away from
0. We also require that the trace be negative, but since the trace
is −1 + aeeHe(ω) − [1 + aiiHi(ω)]/τ , we can always choose
τ small enough to ensure that this is negative for all ω. Strictly
speaking, we require only that D(0) > 0, but in practice, it is
generally true that Q := aeiaie − aeeaii is also positive. Note
that for any reasonable kernels, He(ω) → 0 as ω → ∞ so that
D(ω) > 0 for ω large. We can write the determinant as

D(ω) = 1 + (aii + QHe(ω))Hi(ω) − aeeHe(ω),

which makes it clear that decreasing σi [increasing
Hi(ω)] always makes the determinant more positive

and thus pulls the system away from pattern forming
instabilities.

2. Conditions on parameters for pattern formation without
lateral inhibition

Now we want D(ω) to have a negative minimum value
at some value of ω while staying positive when ω = 0. To
obtain pattern formation without lateral inhibition, we will set
σe = σi and then if D(ω) falls below zero, by continuity, we
can choose σi < σe so that D(ω) < 0. Now let w = He(ω) =
Hi(ω) and b = aee − aii so that D(ω) = 1 − bw + Qw2. We
require that this quadratic have a local minimum at some value
of w ∈ (0,1). Then the extremum is wmin = b/(2Q), and this
is a minimum only if Q > 0, as we assumed. Then we must
have Q > b/2, since wmin ∈ (0,1). Evaluating D(ω) at the
minimum, we have

D(ωmin) = 1 − b2/(2Q) + b2/(4Q) = 1 − b2/(4Q).

Since this must be negative and D(1) = 1 − b + Q > 0, we
obtain three constraints: (1) Q > b − 1, (2) Q > b/2, and (3)
Q < b2/4, where only (1) and (3) matter. That is, we need

b − 1 < Q < b2/4. (A2)

If we choose parameters so that (A2) is satisfied, then we
should be able to obtain pattern formation when σi = σe. So
by continuity, we can find parameters for pattern formation
from a spatially homogeneous equilibrium point when σi is
slightly less than σe. Note that this is all in the linearized
regime, and so, we must be careful that the nonlinearities do
not prove to be an issue (e.g., we get subcritical bifurcations
or other homogeneous equilibria).

3. No spread of inhibition

We close with a remark that with no spread of inhibition,
there can be no pattern forming instability from a homoge-
neous equilibrium for then Eq. (A1) becomes

D(ω) = 1 + aii + (aeiaie − aiiaee − aee)He(ω).

This is monotonic in ω so there can be no value of ω > 0
where D(0) > 0 and D(ω) < 0.
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