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Size-dependent regulation of synchronized activity in living neuronal networks
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We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical
neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days
in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that
synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small
(∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes
destabilized in the small networks. A computational modeling of neural activity is then employed to explore
the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the
synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2)
enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent
suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that
drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of
synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing,
and our work constructively clarifies an aspect of the structural basis behind this.
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I. INTRODUCTION

Temporal regulation of coherent neuronal activity is critical
for the development and functioning of the brain [1,2].
The mammalian brain is a complex network of interacting
subsystems, which consist of several tens to hundreds of
neurons [3,4]. Although the dynamics in complex networks
is strongly affected by the number of its constituent nodes
[5,6], its effect on coherent activity is nontrivial since multiple
parameters, such as network topology, node degrees, and
coupling strengths also influence the dynamics. Because
of this, a defined experimental system to determine how
synchronous activity is generated and regulated in living
neuronal networks of finite sizes is needed.

A network of cultured neurons provides a simple yet
irreplaceable model system for studying the dynamics of
neuronal systems. After several days of culture, neurons form
synaptic contacts, and the network begins to spontaneously
generate bursting activity that propagates across the whole
network within several tens to hundreds of milliseconds,
which we refer to as the “synchronized” activity [7–18]. This
activity is a network phenomenon, triggered by cooperation
of the local noise dynamics and anatomical connectivity
[17]. One of the major significances of cultured neurons in
neurodynamics research is their controllability. For instance,
using a micropatterned surface as a scaffold for culturing
neurons, it is possible to extrinsically control the number of
neurons comprising each network and the area they occupy
[19–21]. This enables us to constructively study how network
size affects synchrony in a living neuronal system.
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In the current paper, we investigate the mechanism under-
lying the emergence of synchrony in a network of neurons. We
focus especially on the effect of network size in determining
the level of synchrony while maintaining the other parameters,
such as network topology, cell density, and culture duration
constant. Neuronal activity is measured using fluorescence
Ca imaging, and the results are compared with computational
simulations of spiking neural networks with a similar number
of network nodes.

II. MATERIALS AND METHODS

A. Micropatterned cortical networks

Electron-beam (EB) lithography was used to fabricate
micropatterns on coverslips for cell patterning. Poly-D-lysine
(PDL) and 2-[methoxy(polyethyleneoxy)propyl]trimethoxy-
silane (mPEG) were used as cell-permissive and nonpermis-
sive coatings, respectively [22,23]. Briefly, glass coverslips
(diameter, 15 mm; thickness, 0.17 mm; Warner Instruments
CS-15R15) were cleaned in piranha solution and modified with
mPEG. An EB resist was then spin coated on the surface, and
EB lithography was performed. The pattern was transferred
to the mPEG layer by O2 plasma ashing, and the exposed
area was then modified with PDL. The sample was finally
sonicated in tetrahydrofuran and ethanol to remove the EB
resist and the unbound PDL. The coverslips were then sealed
onto the bottom of a 35-mm plastic dish with a 12-mm hole
using a paraffin/petrolatum (3:1) mixture [24].

Primary neurons were obtained from rat cortices at em-
bryonic day 18. Neurons were plated on the micropatterned
coverslips and cocultured with astrocyte feeder cells in
N2 medium [minimal essential medium + N2 supplement
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+ 0.5 mg ml−1 ovalbumin + 10 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES)] [22,24,25]. After
5 days, cytosine arabinoside was added to a final concentration
of 1 μM to stop the proliferation of contaminating glial cells.
The cells were maintained in culture for 10 days before neural
activity was measured.

Fluorescence Ca imaging was used to evaluate spontaneous
neuronal activity of the micropatterned neuronal networks.
The cells were first rinsed in HEPES-buffered saline (HBS)
containing (in mM): 128 NaCl, 4 KCl, 1 CaCl2, 1 MgCl2,
10 D-glucose, 10 HEPES, and 45 sucrose. Then the cells
incubated at 37 °C in HBS containing 2 μM Fluo-4 AM and
0.01% Pluronic F-127. After 30 min, the cells were rinsed with
HBS and incubated for an additional 10 min to complete the
deesterification of the loaded dyes. Imaging was conducted
on an inverted microscope (Nikon Eclipse TE300) equipped
with a 20× objective lens (numerical aperture, 0.75), 100 W
mercury arc lamp, fluorescence filter (EX 470/20, DM 500,
BA 515), and a cooled-CCD camera (Hamamatsu Orca-ER).
All recordings were made at room temperature. Images were
collected at 5 Hz on HCIMAGE software (Hamamatsu).

The image sequences were analyzed offline with the
IMAGEJ (NIH) and custom-written Perl programs. To detect
neural activity of each cell, a circular region of interest was
manually set around the soma of the cell, and the change in
relative fluorescence intensity �F/F was calculated from raw
fluorescence intensity F using a previously reported algorithm
[26]. A time derivative of �F/F was then calculated and
was thresholded at 2.58 × SD (standard deviation) of noises
to mark the onset of burst firing [27]. This procedure was
necessary in order to extract the rising phase of the Ca signals,
which corresponds to the timing of burst neural firing. The
SD of the noise was determined from ten cells recorded in
the presence of a Na-channel blocker, tetrodotoxin (1 μM).
Sporadic action potentials were neglected in the analysis. The
termination of the bursting activity was determined from the
time point where the derivative returned back to zero.

B. Spiking neural network models

The network model consisted of N leaky integrate-and-fire
neurons with the value for N ranging from 20 to 2000.
All neurons were excitatory and were connected randomly
[15,16] with an average node degree of k. γ -aminobutyric
acid (GABA), the principal inhibitory neurotransmitter in the
cortex, acts as an excitatory neurotransmitter in young cultures
and transiently acquires its inhibitory action starting at around
6 DIV (days in vitro) [14,17,18,28,29]. This reversal of the
GABA function is known as the GABA switch and completes
by 18 DIV [14,28]. Since the culture used in this paper
was at the early stage of the GABA switch, we constructed
our computational network solely with excitatory neurons to
simplify the model.

A total of at least 50 networks was sampled for each N,
and we denote the average k of the sampled networks as 〈k〉.
Considering that an axon of a neuron grows longer than a side
of a micropattern L, the number of target neurons that a neuron
synapses on can also be expected to increase proportionally
with L. This implies that 〈k〉 may be proportional to

√
N since

N is nearly proportional to the micropattern area L2 in networks

FIG. 1. Primary rat cortical neurons grown on micropatterned
substrates at 10 DIV. The size of the micropatterns were as fol-
lows: (a) 200 × 200 μm2 (small), (b) 500 × 500 μm2 (medium), and
(c) 1000 × 1000 μm2 (large). Scale bars: (a) and (b) 100 μm and
(c) 200 μm. (d) The number of cells on each micropattern. The boxes
indicate the span from the median to the first and third quartiles, the
whiskers indicate the whole data spread, and circular plots indicate
the mean. The number of cells was determined from phase-contrast
micrographs.

with a constant cell density [see Fig. 1(d)]. Therefore we
simply assumed the average node degree to be 〈k〉 = √

N . We
further considered culture-to-culture variations in the density
of synaptic connections by distributing k normally around
〈k〉 with a SD of 0.3 × 〈k〉. Networks that exhibit bursts
with physiologically implausible durations were occasionally
sampled for N > 1000. We excluded the sample from the
statistics when there was more than one burst with a duration
of over 10 s.

Major parameters used in the simulation were taken from
previous reports, and their values are physiological [30–32].
The membrane potential of a neuron i at time t , Vi(t) was
calculated by

τmem
dVi(t)

dt
= EL − Vi(t) + Rin Itot(t),

where τmem = 20 ms is the membrane time constant, EL =
−74 mV is the resting potential, Rin = 40 M� is the input
resistance, and Itot(t) is the input current [30]. The time step
dt was 0.1 ms, and each calculation was carried out for 200 s.
When Vi(t) exceeded the threshold value of Vth = −54 mV,
an action potential was generated, and the membrane potential
was reset to Vreset = −60 mV [30]. After an action potential,
the membrane potential was held constant at Vreset for 1 ms,
which reflects the absolute refractory period.

The total input current Itot(t) was calculated based on the
model described by French and Gruenstein [31],

Itot(t) =
∑

j

Ij (t) + IK(Ca)(t) + Iref(t) + ξ (t),
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where Ij (t) is the synaptic input from neuron j , IK(Ca)(t) is the
Ca-dependent K current, Iref(t) is the refractory current, and
ξ (t) is the noise. The synaptic current was calculated by

Ij (t) = gsyn(t)[Esyn − V (t)],

gsyn(t) =
∑

k

Asyn

[
exp

(
− t − tj,k

τsyn1

)
− exp

(
− t − tj,k

τsyn2

)]
,

where gsyn(t) is the synapse conductance at time t , Esyn =
0 mV is the synaptic reversal potential, Asyn = 5 nS is the
maximal synapse conductance, τsyn1 = 5.3 and τsyn2 = 0.2 ms
are the synaptic time constants, and tj,k is the time of the kth
firing of neuron j . The function and time constants were taken
from Ref. [32], and the synapse conductance was adjusted to
resemble the model for cultured neurons in Ref. [31].

The current IK(Ca)(t) was given by

IK(Ca)(t) = gK(Ca)c(t)[EK − V (t)],

dc(t)

dt
= cStep

∑
k

δ(t − tk) − c(t)

τCa
,

where gK(Ca) = 10.0 nS μM−1 is the Ca-dependent K conduc-
tance, c(t) is the intracellular Ca concentration, EK = −75 mV
is the reversal potential of the K current, cStep = 0.1 μM is the
step influx of Ca triggered by an action potential, tk is the
time of the kth action potential, and τCa = 2700 ms is the time
constant of Ca dynamics.

The third term Iref(t) is the refractory current calculated by

Iref(t) = −gref

(
1 + t − tk

τref

)−1

Pref(t − tk)[V (t) − Vreset],

Pref(t − tk) =
{

1 for tk < t < tk+1,

0, otherwise,

with gref = 150 nS and τref = 12 ms. This term suppresses
burst firing at supraphysiological frequencies.

The fourth term is the noise current given by

ξ (t) = MN

∑
k

α
(
t − tNk ; rN ; τN

)
,

α(s; r; τ ) = e−s/τ − e−s/r

e−s̄/τ − e−s̄/r
with s̄ = rτ ln(r/τ )

r − τ
,

where MN = 1000 pA is the amplitude of the noise, tNk is the
onset of the kth noise event, rN = 30 ms, and τN = 50 ms. The
event was generated by a stationary Poisson process (0.5 Hz).
The rather high value of MN was used to allow neurons to be
reactivated after an occurrence of a network burst that raises
the inhibitory current IK(Ca).

III. RESULTS

A. Size-dependent dynamics of micropatterned
cortical networks

We first investigated the spatiotemporal patterns of sponta-
neous activity in neuronal networks of three different sizes:
200 × 200 μm2 (small; n = 19 networks), 500 × 500 μm2

(medium; n = 17 networks), and 1000 × 1000 μm2 (large;
n = 19 networks). As shown in the phase-contrast micro-
graphs, neurons grew selectively inside the micropattern with

FIG. 2. Fluorescence Ca imaging of micropatterned neuronal
networks. The cells were loaded with the fluorescence Ca indicator
Fluo-4. (a) Time lapse images of a synchronized network burst
observed in a 12-cell network on the small micropattern. (b) and (c)
Cortical networks on (b) medium and (c) large micropatterns loaded
with Fluo-4.

well-spread cell bodies, thick dendrites, and a uniformly grow-
ing axon meshwork [Figs. 1(a)–1(c)]. The average number of
cells in the networks was 23, 124, and 445 for the small,
medium, and large networks, respectively, giving a nearly
constant cell density among the three patterns [Fig. 1(d)].

Figures 2(a)–2(c) show micropatterned neuronal networks
loaded with a fluorescence Ca indicator Fluo-4. Measurements
of spontaneous neural activity revealed that all three of
the networks generate globally synchronized network bursts.
Synchronized activity appeared even in a small network that
consisted of only 12 cells [Fig. 2(a)].

Figure 3(a) shows fluorescence signals from five represen-
tative cells in a large network. Raster plots of neural activity
were obtained from the first derivative of the fluorescence
signals [Fig. 3(b)]. To evaluate the synchronized activity of
the network, we defined “network bursts” as neural activity
that involves >25% of the cells and that persisted for >1 s.
In the case of the representative network shown in Fig. 3(b),
network bursts were detected six times during an imaging
session of 360 s (16.7 × 10−3 Hz). The duration of each
network burst was typically between 2 and 3 s as shown in a
closeup view of the raster plot [Fig. 3(c)]. A comparison of the
micropatterned networks of three different sizes revealed that
the mean frequencies of the network bursts were statistically
insignificant in the case of medium and large networks,
whereas the frequency was significantly reduced in the small
network [Fig. 3(d); p < 0.01].

Another prominent effect of size reduction was the appear-
ance of asynchronous activity in the small networks [Fig. 4(a)].
Such activity was observed both in networks that generated
network bursts (n = 11 of 19) and in those that did not.
To quantify the degree of synchronization, we analyzed the
correlation of neural activity in individual cells by evaluating
the correlation coefficient for neuronal pairs i-j , rij as

rij =
∑

t [fi(t) − f̄i][fj (t) − f̄j ]√∑
t [fi(t) − f̄i]

2
√∑

t [fj (t) − f̄j ]2
,
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FIG. 3. Analysis of spontaneous neural activity in micropatterned
cortical networks. (a) Relative fluorescence intensity of the Ca
indicator Fluo-4 in a large network. Traces from five representative
cells are shown. (b) Raster plot of the spontaneous neural activity for
a large network derived from the relative fluorescence intensity. Each
point corresponds to a bursting activity in a neuron, determined from
the derivative of the fluorescence trace. In this particular example,
synchronized network bursts were detected six times during a 360-s
recording session. Note that a fraction of the neurons randomly
selected from the whole population was analyzed. (c) A closeup
view of a network burst. (d) Frequency of network bursts for the three
network sizes. The boxes indicate the span from the median to the
first and third quartiles, the whiskers indicate the whole data spread,
and the circular plots indicate the mean.

where fi(t) is the relative fluorescence intensity of cell i at
time t and fi is the time averaged intensity. In large and
medium networks, rij was nearly equal to 1 for the majority
of the cell pairs, indicating that the activity was highly syn-
chronized among the entire population. In contrast, networks
that presented relatively low intercellular correlations were
occasionally observed in the small networks [Fig. 4(b)]. A
comparison of multiple networks revealed that the average
correlation coefficient was significantly lower in the small
network compared to the others [Fig. 4(c); p < 0.01]. To
summarize, a reduction in the network size in living neuronal
networks decreased the frequency of synchronized network
bursts and desynchronized neural activity. This effect was
prominent in networks with N < 100 cells for 10 DIV cortical
networks with a nearly constant cell density.

B. Computational modeling of the size effect

We next investigated the cellular mechanism behind this
size effect using computational models of neuronal networks

FIG. 4. Effect of network size on synchrony. (a) Raster plot of
the spontaneous neural activity for a small network. (b) Matrix plot
of correlation coefficients of the network shown in (a). (c) Average
correlation coefficient calculated for each network size. The boxes
indicate the span from the median to the first and third quartiles,
the whiskers indicate the whole data spread, and the circular plots
indicate the mean.

consisting of N excitatory neurons (N = 20–2000) [Figs. 5(a)
and 5(b)]. All parameters for the simulation were derived from
previous reports and are physiologically validated [30–32].
Figures 5(c) and 5(d) show representative raster plots of
networks consisting of 20 and 400 neurons, respectively.
Three characteristic traits could be observed that were in good
agreement with the experimental observations: (1) rhythmic
synchronized firing patterns (network bursts) with a period of
>10 s [Fig. 5(d)], (2) decrease in the frequency of network
bursts with decreasing network size, and (3) decrease in
neuronal correlation with decreasing network size [Fig. 5(c)].
In the current model, the network bursts are triggered by
the stochastic overlap of noise input, whereas its cessation
is governed by the activity-dependent rise in intracellular
Ca concentration and the resulting inhibitory K(Ca) current.
When the network size decreases, neurons have less chance
of simultaneously receiving multiple noise inputs, and this
decreased the occurrence of network bursts.

The decrease in neuronal correlation in smaller networks
was confirmed in the computational models, which were
quantitatively in agreement with the experimental results.
The dependence of the average correlation coefficient on
network size is shown in Fig. 6. As a general trend, the
average correlation coefficient decreased with network size.
In a closer examination, it was found that the average
correlation coefficient decreased gradually with the network
size until N � 100 and then decreased rapidly in networks of
N < 100. The calculated values were in good agreement with
the experimental data both in the N dependency and in the
absolute values.

Figure 7 shows the dependence of the network burst
frequency on network size. The frequency of network bursts
was found to increase with network size, and the values agreed
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FIG. 5. Computational simulation of spontaneous neural activity
in cultured cortical networks of different sizes. (a) and (b) Schematic
of network models. The blue squares are the nodes (neurons), and the
gray lines are the links. (c) and (d) Raster plot derived from the model
network. Number of neurons N and average node degree k were as
follows: (a) and (c) N = 20, k = 4.5 and (b) and (d) N = 400, k = 20.

FIG. 6. Dependence of the average correlation coefficient on
network size. The blue line represents the mean of the simulation
data. For comparison, the experimental results are plotted in red. The
simulation data over a wider range are shown in the inset.

FIG. 7. Dependence of the network burst frequency on network
size. The blue line represents the mean of the simulation data.
For comparison, the experimental results are plotted in red. The
simulation data over a wider range are shown in the inset.

quantitatively well with the experimental data. One exception
was the data for the large network where the model gave
a nearly twofold higher frequency of network bursts. This
is most likely due to the suppression of the growth of node
degree in actual neuronal networks of larger sizes. Indeed,
lowering 〈k〉 from 20 to 17 in a 400-neuron network decreased
the frequency from 37.8 × 10−3 to 20.2 × 10−3 Hz, the latter
of which is close to the experimental value for the large
network.

IV. DISCUSSION

The findings reported herein show that the globally syn-
chronized activity of a cultured cortical network is altered
when the network is composed of less than ∼100 cells.
The computational modeling based on physiologically derived
parameters suggests that the major factor that caused the
dynamics to change in N < 100 networks is the decrease
in the number of synaptic inputs per neuron, although other
factors, such as local network connectivity or the level of noise
[17], can also influence the degree of synchrony. In the current
simulation, the firing of a presynaptic neuron depolarizes the
postsynaptic neuron by ∼2 mV. When networks are scaled and
the number of inputs is 10 (〈k〉 = 10 corresponds to N = 100),
the correlated firing of all presynaptic neurons depolarizes a
postsynaptic neuron by >20 mV, which is sufficient to raise
the membrane potential above its threshold from its resting
potential (Vth = − 54 and Vrest = − 74 mV) and trigger an
action potential. When the network size is smaller, the number
of synaptic inputs decreases. This means that such correlated
activity fails to propagate, thus decreasing the chance of
network bursts to occur.

Previous works have shown that the connectivity in neu-
ronal networks is affected by experimental conditions, such as
cell density [12,13,29] or culture duration [7,29,33], both of
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which correlate positively with neuronal activity. In the current
experiment, we kept cell density and culture duration constant
(Fig. 1), and explored the effect of network size. Therefore,
we simply assumed in the model that the connectivity
(average node degree) increases with the network size as
〈k〉 = √

N .
According to Soriano et al., the average node degree

is approximately 100 for an unpatterned cortical network
of N ≈ 6.5 × 104 cells (500 neurons mm−2 on a 13-mm
coverslip; 14–21 DIV) [29]. For a network of this size, a simple
extrapolation of the square-root relationship gives 〈k〉 ≈ 250,
and this is over two times the literature value. This mismatch
could be caused by the difference in the culture duration and
by the inappropriateness of assuming the square-root growth
of k in very large networks. Axons continue their growth even
after 10 DIV [10], during which the number of synapses
[7,33] and connectivity [29] increase. The deviation from
the square-root dependence in larger cultures is a reasonable
consequence of the finite lengths of axons and dendrites that
are shorter than the coverslip diameter [10]. Indeed, saturation
of the experimentally observed burst frequency in the large
1 × 1mm2 networks [Figs. 3(d) and 7] supports the idea that
the square-root dependence is applicable mainly in small-sized
networks.

From the perspective of information theory, an asyn-
chronous state has a larger capacity for representing infor-
mation in a population coding network [34]. Indeed, the
spontaneous activity of in vivo cortical networks (rat visual
cortex) is less correlated with an average correlation coefficient
of ∼0.1 [35,36]. The findings presented in this paper enable
us to consider the qualitative difference in the spatiotemporal
pattern of spontaneous neural activity of in vivo and in vitro
neuronal networks with regard to the size of the neuronal
ensembles. Neurons of in vitro networks extend axons to a wide
area and form strong synapses on a large number of neurons in
that area. Contrarily, in networks in vivo, axons are guided
by extracellular cues, synapses undergo activity-dependent
pruning during development, and the resulting neuronal
connections are highly structured. Our data imply that the
in vivo networks are composed of densely connected neuronal
modules with weak intermodule connections. This implication
is in agreement with recent brain network analyses, which
revealed the dominance of a modular network structure in the
brain [4]. Moreover, it directs us to a future work that realistic
models of in vivo networks can be fabricated in vitro using
living neurons by creating modular micropatterns. Consecutive
recordings in longer imaging sessions, e.g., ∼30 min [17],
enable richer analysis of the activity statistics and would be
important for studying such networks.

It is interesting to note that synchronization in neurons is
qualitatively different from that of cardiomyocytes in which
synchrony occurs with only two cells. A cardiomyocyte
is another type of cell with an excitatory membrane, and
previous work using a microfabricated device has shown that
the coupling of two cardiomyocytes is sufficient to generate
synchronized beating [37]. In cardiomyocytes, intercellular
coupling is mediated by gap junctions. The observation that
a two-cell ensemble is sufficient to generate synchronized
activity indicates that the firing of a single neighboring cell

is sufficient to increase the membrane potential above the
threshold and to trigger an action potential in a cardiomy-
ocyte. Contrarily, neuronal signal transmission is mainly
mediated by chemical synapses. In central excitatory chemical
synapses, the postsynaptic potential induced by a single cell
is usually on the order of a tenth to a few millivolts [38],
which is not sufficient to increase the membrane potential
above the threshold and to trigger a neuronal action po-
tential. Therefore multiple simultaneous inputs are required
to generate an action potential in a neuron as previously
described as the quorum firing [17,29,39,40]. This requirement
of multiple inputs enables both the synchronous and the
asynchronous states to be present in neural systems, and
we showed this in networks of different sizes. A similar
phenomenon has been demonstrated in developing networks as
well [29].

V. CONCLUSIONS

We reported on a constructive investigation of how the
degree of spontaneous synchronized activity depends on the
network size. Micropatterned substrates were used to restrict
the size of cultured cortical networks. Spontaneous activity
in large networks (∼400 cells) was highly synchronized,
resembling the activity observed in unpatterned networks.
Both the frequency of synchronized firing and the intercellular
correlation of neural activity decreased with network size, and
for networks composed of ∼20 cells, the average correlation
coefficient decreased to <0.4. Using a computational model of
spiking neuron networks, we further showed that the size effect
can be explained through the following three mechanisms:
(1) Poisson firing of individual neurons, (2) positive-feedback
amplification of the activity through excitatory synaptic
transmission, and (3) the Ca-dependent inhibition of generated
bursts. Recent advancements in cortical physiology have
revealed the active roles of spontaneous activity, such as
encoding predictive information [41]. The effect of network
scaling on synchronized bursting events has been considered
in earlier studies, which studied its effect on the frequency
of synchronized bursting and the distribution of interburst
intervals [19,21]. We showed in this paper the transition from
synchronous to asynchronous firing in a size-dependent man-
ner. Our findings provide a structural background regarding
how the spatiotemporal pattern of spontaneous activity is
generated in the brain.
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