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Useful scars: Physics of the capsids of archaeal viruses
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We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under
tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the
ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by
a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous
structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface
of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced
subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature
of defect-free particle arrays on a surface with zero Gauss curvature.
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I. INTRODUCTION

The protein shell—or capsid—that surrounds the genome
of a virus has become a proving ground for new methods
of microscopy, structure determination, and micromechan-
ics [1]. Viral capsids also provide interesting realizations
of the statistical mechanics of interacting particles confined
to curved surfaces [2]. Most spherical capsids obey the
elegant icosahedral construction principle of Caspar and Klug
(CK) [3]. Simulation studies of simple particle models [4]
have provided a physical basis for the CK model. Separately,
thin-shell elasticity theory has developed into an important
tool for understanding the global shape of viral shells [2,5]
and the response of viral shells to mechanical deformation [1].

Forty years ago a new domain of life was discovered: the
Archaea [6]. Archaea resemble rodlike bacteria (prokaryotes)
in size and shape but their metabolism is closer to that of
plant and animal cells (eukaryotes). Other properties, such
as the structure of their membranes, are unlike those of
either prokaryotes or eukaryotes. Many—though not all—
of the Archaea survive in extreme environments of high
temperatures, salinity, or acidity. They are infected by an
equally exotic family of double (ds) or single-stranded (ss)
DNA phage viruses: the archaeal viruses [7]. Many archaeal
viruses have unusual morphologies (see Fig. 1) that appear to
be unrelated to viral capsids that obey the CK construction.

The aim of this article is to develop a physical description
for the capsids of a group of archaeal viral shells typified

*Presently at the Department of Radiological Sciences and the
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by the spindle-shaped Acidianus, a two-tailed archaeal virus
(ATV) [11] shown in Fig. 2.

ATV presents a unique characteristic: it undergoes a
dramatic shape change outside the host cell. At first, when
released from the host, the ATV is lemon- or spindle-shaped
and does not have any tails (Fig. 2, top). Subsequently, ATV
may grow tails, from opposite ends, that appear to be composed
of a cylindrical tube of capsid proteins surrounding a central
filamentous structure. Tails may become ≈ 750 nm long [11].
During tail growth, the ATV loses half of its volume but
its area expands only slightly [11], which suggests that the
number of capsid proteins is nearly constant. The tail growth
process is controlled by the temperature of the surrounding
medium [9]: at T ≈ 85 ◦C, the tails fully grow in about one
hour, at T ≈ 75 ◦C complete tail growth occurs in seven to
eight days, while at T ≈ 4 ◦C no tail growth is detected in
vitro. Tail growth may increase the probability of contacting a
host cell in the surrounding environment [9,11] and it appears
that the speed of tail growth is linked to the availability of host
cells in the surrounding medium. The tail growth process is
the subject of active research motivated by questions about the
structure and function of the tails and the source of the energy
for the growth of the tails.

We start in Sec. II with a continuum description of the
ATV capsid, followed by simulations of models of discrete
protein arrays of the ATV capsid in Sec. III. We conclude with
a summary and discussion in Sec. IV.

II. CONTINUUM THEORY OF ATV CAPSIDS

The continuum description of ATV is based on three
assumptions.
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FIG. 1. Electron microscopy images of archaeal viruses. (a) Sul-
folobus spindle-shaped virus. (b) Acidianus two-tailed virus (ATV).
(c) Acidianus bottle-shaped virus. (d) Sulfolobus neozealandicus
droplet-shaped virus. Scale bars equal to 100 nm. Reprinted by
permission from Macmillan Publishers [8]. Originally adapted from
Refs. [9] and [10].

(i) The protein capsid of the ATV virus is a closed, isotropic,
fluid or viscoelastic sheet of fixed area A. This is motivated
by the fact that the massive conformational changes observed
for the ATV capsid are inconsistent with positionally ordered
capsid proteins.

(ii) The conformational change of the ATV capsid with
temperature is assumed to be driven by the growth of a
central, cylindrical filamentous structure. We will define L

to be the length of this filament and a its radius. The assembly
free-energy gain per unit length of filament, the extension
force, will be denoted by τ . This extension force refers to bare
filament sections not adhering to capsid material. The adhesion
free-energy gain per unit length due to attractive interactions
between the capsid proteins and the filament will be denoted by
w. If capsid proteins in contact with filament material undergo
any conformational changes then this is to be included in w.

(iii) The enclosed genome is a uniform, isotropic fluid or
viscoelastic medium in a state of mechanical equilibrium.

FIG. 2. Cryoelectron micrographs of the conformational change
of ATV and its reconstruction. Scale bars represent 50 nm. Reprinted
by permission from Macmillan Publishers [8]. Originally adapted
from Ref. [11].

This means that the free-energy per unit volume f of the
genome can depend only on the density of the enclosed
double-stranded (ds) DNA material. The ratio Vm/V will serve
as a dimensionless measure of the density of the enclosed
DNA material. Here, V is the capsid volume and Vm is the
minimum volume of the 62 kbp double-stranded (ds) ATV
DNA genome. Vm can be estimated to be about 3 × 105 nm3,
assuming standard ds B-DNA parameters. The volume V of
an ATV capsid before tail growth is about twice larger than
the volume of the capsid with fully extended tail groups, so
the genome density roughly doubles during tail growth.

The large change in volume means that the capsid must
be water permeable. As a result, the genome must exert a
uniform osmotic pressure � on the capsid (Pascal’s law).
The osmotic pressure is related to the free-energy density
f (Vm/V ) by � = −f + (Vm/V )f ′. The equation of state
�(Vm/V ) of aligned DNA has been measured in osmotic
compression experiments of DNA bundles [12,13]. In the
absence of condensing agents, the osmotic pressure is about
104 Pa at half the maximum B-DNA packing density, and this
will be our estimate of the ATV osmotic pressure before tail
growth. The osmotic pressure inside ATV capsids after tail
growth is more difficult to estimate. Osmotic pressures inside
the λ phage virus, which has a genome length comparable to
ATV, have been measured to be in the range of 106 Pa [14].
These very large osmotic pressures are believed to be an
important driving agent for the injection of the viral genome
into host cells [14].

In this description, the total continuum free energy has the
general form

G = f V + γA − τL − 2wX. (2.1)

Here, γ is the surface tension of the capsid generated by the
osmotic pressure. The assumption of fluidity of the capsid
means that γ is uniform along the capsid surface under
conditions of mechanical equilibrium. Next, 2X is the length
of two symmetric, capsid-covered tail sections extending from
the central body of the capsid of volume V .

Based on Fig. 2, we look for minima of this free energy in
the shape of a body of revolution matched to the capsid-covered
tail sections at matching points that are a distance ±(L −
2X)/2 from the center (Fig. 3). Minimizing the free energy first
with respect to the overall filament length L while keeping the

2a

L - 2X

2c

FIG. 3. Capsid with zero contact angle in the shape of an
unduloid. The smallest diameter is 2a, the largest diameter is 2c.
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central body fixed—so for a fixed value of (L − 2X)/2—leads
to the condition

τ + w = 2πaγ. (2.2)

Next, minimizing G with respect to X at fixed L leads to

w/(2πa) = γ (1 − cos θ ), (2.3)

with θ the contact angle between the central body of the capsid
and the filament at the two matching points. This is Young’s
law of the general theory of wetting [15]. Finally, minimization
of G with respect to the shape of the capsid leads to the Laplace
law [15]

� = 2γH. (2.4)

Here, H is the local mean curvature of the capsid surface.
Since, by assumption, the osmotic pressure of the interior of
the virus is uniform and since γ is uniform as well, the capsid
surface must be a surface of constant mean curvature. For ATV
osmotic pressures in the range of 104 Pa and mean curvatures
in the range of 1/(100 nm), the surface tension would be in the
range of 5 × 10−4 N/m.

There are only a few surfaces of constant mean curvature
with axial rotational symmetry and, of these, only the unduloid
surfaces [16] resemble ATV capsids.1 Unduloids are surfaces
of revolution obtained by rotating an elliptical catenary [17].
Figure 2 (bottom micrograph) suggests that for ATV capsids
with fully developed tails the contact angle is small or zero.2

In the following we will assume for simplicity that θ = 0 so
w = 0. According to Eq. (2.2), this means that γ = τ/(2πa).
For the estimated value of the surface tension, the extension
force τ of the ATV central filament would be in the range of
50 pN.

The unduloid shape with zero contact angle is shown in
Fig. 3 and it is fully determined by the smallest and largest
diameters 2a and 2c. The constant mean curvature H of the
body of the capsid equals 1/(a + c). The mean curvature of
the capsid covering the tail groups equals 1/a, so there is a
mathematical singularity at the matching points.

If we define the parameter k as k2 = 1 − (a/c)2 then the
dimensionless volume V/c3, area A/c2, and length (L −
2X)/c of the unduloid can be expressed in terms of c, using
results from Ref. [16]:

V/c3 = 2π

3
{[2 + 3(a/c) + 2(a/c)2]E(k) − (a/c)2K(k)};

(2.5)

(A − 4πaX)/c2 = 4π (1 + a/c)E(k); (2.6)

(L − 2X)/c = 2E(k) + 2(a/c)K(k), (2.7)

1There is an interesting resemblance between the shape of an ATV
capsid at various stages of tail growth with that of droplets wetting a
cylindrical fiber, which indeed are described by unduloids.

2It is possible that the contact angle is actually nonzero but that
the capsid profile is smoothed out because of the effects of a large
Helfrich bending energy.

τ3

τ1

τ2

τmin

1 Vm/Vmax Vm/V

Π

FIG. 4. Graphical construction for the capsid volume. Vertical
axis: osmotic pressure �. Horizontal axis: dimensionless density
Vm/V with Vm the minimum volume corresponding to densely
packed double-stranded (ds) DNA. Solid black line: Schematic
equation of state of ds DNA under physiological conditions in the
absence of condensing agents. The osmotic pressure diverges at
Vm/V = 1. Dashed curves: τ/[πa(3V/4π )1/3] for different values
of the extension force τ . At the minimum value τmin, the length L of
the central filament equals the diameter 2c of the unduloid

where K(k) and E(k) are complete elliptical integrals of the
first and second kind. Moreover, the Laplace law reduces to

�(Vm/V ) = τ/[πa(a + c)]. (2.8)

These equations are to be solved by first inverting Eq. (2.5) to
express c(V ) in terms of the volume V . Next, the intersection of
a plot of the equation of state �(Vm/V ) as a function of V with
τ/[πa(a + c(V )] determines the volume V for different values
of τ and hence c. The values of X and L as a function of τ then
follow from Eq. (2.6), respectively, (2.7). An example is shown
in Fig. 4 for a schematic form of �(Vm/V ) and for the case
that the ratio c/a between the largest and smallest unduloid
diameter is large compared to one. In that case Eq. (2.5) reduces
to c(V ) � (3V/4π )1/3.

For increasing extension forces τ , the enclosed volume
shrinks and approaches the close packing limit Vmin. The
capsid becomes increasingly elongated with increasing τ ,
consistent with Fig. 2. With decreasing τ , when c increases, X
shrinks as L/2 − c(V ) according to Eq. (2.6) and vanishes at
a critical extension force τmin, where the area of the unduloid
equals the maximum available area A and L = 2c(V ).

For τ less than τmin, the capsid surface no longer has the
shape of an unduloid. It is in contact only with the very tip
of the filament. This regime of small τ is most easily treated
by starting from the case that there is no central filament.
In the absence of a central filament, the capsid is spherical
with a radius R0 subject to the minimum osmotic pressure
�0(Vm/V0) = 2γ0/R0. The radius R0 is determined by the
fixed area constraint A = 4πR2

0, which fixes the volume as
V = (4/3)πR3

0 . The minimization of G reduces to the problem
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of determining the shape of a circular sheet of radius R

with a tension γ0 subjected to a point force τ exerted in the
normal direction. This is a standard exercise [15], leading
to a protrusion profile ζ (r) = ζ ln(R/r)/ ln(R/a) where ζ is
the maximum height of the protrusion. This profile should
correspond to the two protrusions of Fig. 2 (top micrograph).
The corresponding energy is

G(ζ ) � [4πγ0/ ln(R0/a)]ζ 2 − 2τζ. (2.9)

The capsid tension thus generates a harmonic restoring force
for ζ . Minimizing with respect to ζ gives a linear force-
displacement curve:

ζ (τ ) � τ/[4πγ0/ ln(R0/a)]. (2.10)

As an example, for the protrusion to have a size in the range
of 10 nm with a tension γ0 in the range of 5 × 10−4 N/m,
the polymerization force τ must be in the range of 50 pN,
consistent with the earlier estimate. “Passive” polymerization
forces near thermal equilibrium, as measured for microtubules
and actin filaments, are in the range of 10 pN or less [18],
which suggests that the polymerization force for the ATV
central filament is an active process involving consumption
of ATP.

The full force-extension curve is obtained by matching the
linear and nonlinear regimes at τ = τmin as shown in Fig. 5.

This continuum theory is, at least qualitatively, consistent
with the currently available observations for the case of ATV
with fully extended tail groups. The increase in osmotic
pressure produced by the tail growth suggests that one of the
roles of the ATV shape change is to prime the capsid for

L

2R0

τmin τ

X

FIG. 5. Force-extension curve of the central filament as a plot
of filament length L versus extension force τ . For τ less than τmin,
when the length X of the tails is zero, the filament only indents the
capsid and the force-extension curve is approximately linear. For
larger values of the extension force, the capsid develops tails. The
area of the capsid limits the maximum value of the filament length.

release of the genome through one of the tails after the virus
has attached itself to a host cell.

If assumption (i) of continuum theory, capsid fluidity,
indeed is valid then this sets ATV capsids apart from CK
viral capsids in a fundamental way. The CK construction
for viral capsids is based on the assumption that the capsid
proteins form an ordered array. So under which conditions
could viral capsids be in a fluid state? It is certainly possible
to generate capsid fluidity by reducing the energy scale for
attractive interactions between capsid proteins towards the
thermal energy kBT . However, capsid fluidity has to be
consistent with the requirement that the ATV capsid is strong
enough to absorb the tension generated by the osmotic pressure
of the enclosed genome, which we estimated to be of the order
of 5 × 10−4 N/m or larger. In the next sections we will use
numerical modeling to explore under what conditions a viral
capsid can have a sufficient amount of capsid protein transport
from the main body of the capsid to the tails on relevant time
scales while retaining a sufficient level of lateral stiffness to
absorb the tension.

III. SIMULATIONS OF ATV CAPSID PROTEIN ARRAYS

Simulations were performed on particle arrays placed on
scaffolds with various shapes. The particles interacted with
each other via radial pair potentials with a minimum at a
spacing rm of 6 nm with variable binding energy ε. These
particles do not represent individual ATV capsid proteins.
Instead, they represent—in a coarse-grained representation—
oligomers composed of five, six, or seven proteins, known as
capsomers. The minimum spacing rm between the particles
is about twice the size of a capsid protein. It should be
noted though that currently it is not known if ATV subunits
indeed preassemble into capsomers. However, in many known
cases the proteins of viral capsids preassemble into roughly
circular pentamer and hexamer oligomers. A radial pair
potential, with short-range repulsion representing the relative
incompressibility of capsomers and the longer-range attraction
representing hydrophobic attraction between the rims of the
capsomers, is a crude but reasonable coarse-grained potential
for the interaction between protein capsomers. Particle arrays
of this type placed on spherical surfaces have earlier been
shown to reproduce the CK construction [19] of small spherical
viral capsids so they are the natural starting point for numerical
models of ATV.

About 103 of these particles, the estimated number of
capsomers of an ATV capsid, were placed on unduloid
scaffolds based on the CK construction principle (Sec. III A).
We used Monte Carlo (MC) annealing to test whether the CK
constructed states were in fact ground states. Next, we carried
out kinetic Monte Carlo (KMC) simulations and evaluated
the mean-square displacements (MSDs) of the particles as
a function of time. From the MSDs we obtained particle
transport rates for different values of ε. We also carried out
KMC simulations on spheres and cylinders in order to compare
with particle kinetics on spherical capsids in the absence of the
tails, and particle kinetics on the cylindrical tails. Finally, we
placed the particle array under tension in order to verify the
Laplace’s law of continuum theory and the ability of capsids
in the fluid state to absorb tension.
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(a)

(b)

FIG. 6. Spiral construction: (a) Initial unduloid. (b) Eight equidis-
tant spirals covering the unduloid surface and constructed according
to the method of Appendix B (one spiral is colored in red to highlight
spacing).

A. Caspar-Klug construction for unduloid capsids

The CK construction for the capsids of cylindrical
viruses [3] places capsid proteins along an array of interlock-
ing, equidistant spirals of fixed pitch (Archimedean spirals)
and radius where every protein has the same local symmetry as
every other protein. In order to construct similar particle arrays
on an unduloid, we covered the unduloid with Archimedean
spirals separated by a constant spacing [see Fig. 6(b)]. In
Appendix B, we construct a general differential equation for
curves covering surfaces of revolution. In Fig. 6(b) we show
an unduloid covered by eight of these spirals. The minimum
pitch is reached at the maximum diameter of the unduloid,
after which the pitch increases again in a symmetric fashion.

Next, we placed particles along the spirals that interacted
with each other via a Lennard-Jones (LJ) pair potential given
by

V (r) = ε[(rm/r)12 − 2(rm/r)6]. (3.1)

Here, r is the spacing between two particles, ε the binding
energy, and rm the interparticle spacing at the minimum of
V (r). The spacing between the spirals was equal to ≈ rm.
Particles were placed sequentially along the spirals starting
from the two endpoints, as shown in Fig. 7.

As particles were added, the particle array was periodically
allowed to relax by letting the particles make random moves,
followed by a zero-temperature Monte Carlo relaxation step.
An unduloid can be almost completely covered by this method,
apart from a few small gaps around the equator that were filled
by hand. If this same procedure is applied to five equidistant
spirals covering a sphere then the T = 7 and T = 13 CK
construction is recovered (e.g., see Fig. 23 in Appendix B).

In order to visualize the capsomers represented by the
particles, we performed a Voronoi tessellation, as shown in
Fig. 8. Voronoi cells with five edges, colored blue, represent
pentamers, cells with six edges, colored gray, represent
hexamers, while cells with seven edges, colored red, represent
heptamers. For comparison, an icosahedral particle array
covering a sphere is composed of hexamers plus twelve
pentamers distributed over the vertices of an icosahedron [e.g.,
see Fig. 12(a)].

FIG. 7. Sequential placement of particles on the eight helices
covering the unduloid of Fig. 6. The arrays is constructed first on two
half unduloids, which are then merged. Any holes left after merging
are filled with particles

Isolated heptamers and pentamers can be viewed as seven-
fold, respectively, fivefold disclination defects of a hexagonal
array of capsomers, while heptamer-pentamer pairs can be
viewed as dislocation defects [20]. In Fig. 8(a), two rings of
isolated dislocations can be seen to surround the unduloid
midway between the equator and the necks of the unduloid,
while a ring of dislocation pairs surrounds the equator. Next,
in Fig. 8(b), a view of the unduloid along its axis shows eight
strings of dislocations emerging in a spiral pattern from the
two endpoints as well as an accumulation of heptamers near
the ends. Such dislocation strings can be viewed as grain
boundaries of a hexagonal lattice.3

B. Monte Carlo annealing

In order to determine whether the CK construction cor-
responds to the ground-state configuration, we carried out
annealing Monte Carlo simulations of unduloids covered by
particle arrays placed according to the spiral construction

3The appearance of the grain boundaries can be understood by
cutting eight identical adjoining triangular wedges from the ends of a
cylindrical tube. Gluing together the edges of these adjoining triangles
produces eight grain boundaries. The spiral arrays at the ends of the
unduloid is a twisted version of this construction.
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(a)

(b) (c)

FIG. 8. Voronoi construction corresponding to the initial particle
configuration covering the unduloid. Cells with five edges are colored
blue (pentamers), cells with six edges gray (hexamers), and cells
with seven edges red (heptamers). (a) Side view showing isolated
dislocations. (b) Front view showing eight spiral dislocations strings.
(c) Front view overlaid with construction spirals.

method and interacting via LJ potentials. The particle positions
were constrained to a discrete mesh with a mesh size a that
was small compared to the lattice constant rm of the particle
array (a = rm/16). We imposed fixed boundary conditions at
the two necks of the unduloid by fixing in place eight particles
forming rings at the ends of the unduloid. The system was
initially heated to a temperature well above the binding energy
ε of the LJ potential after which the temperature was slowly
reduced back to nearly zero (T ∼ 10−3ε). Further details of the
simulated annealing procedure are summarized in Appendix C.
The annealing procedure was first performed for the case of
about 1000 particles placed on a cylinder in the hexagonal
ground-state configuration. The heating pulse produced large
amounts of heptamers and pentamers [Fig. 9(b)]. After
annealing, the system returned to the defect-free ground state
[Fig. 9(c)].

We then repeated the annealing procedure for an unduloid
covered by 920 particles. Figure 10 shows the initial state (the
spiral construction), a snapshot of an intermediate state with
large disorder shortly after the heating pulse, and a snapshot
of the final state.

As a consequence of the annealing, the spiral grain-
boundary defects that initially were attached to the endpoints in
the CK construction broke free from the ends of the unduloids
and ended up as free-floating dislocation strings. The detached
strings were either charge neutral, i.e., with equal numbers
of pentamers and heptamers, or the number of pentamers
exceeded the number of heptamers by one.

These observations are consistent with the fact that particle
arrays placed on surfaces with positive Gauss curvature
lower their elastic energy by the introduction of fivefold

(a)

(b)

(c)

FIG. 9. Annealing of a cylinder. (a) Initial state; (b) intermediate
state after the heating pulse; and (c) final state.

disclinations [20,21], while sevenfold disclinations lower their
elastic energy in saddlelike sections of the surface with
negative Gauss curvature [22] (see also Fig. 16). Finally, dislo-
cations minimize their elastic energy in surface sections with
zero Gauss curvature. Mobile disclinations and dislocations
placed on an unduloid will, at finite temperatures, perform
some form of Brownian motion in this curvature-determined
energy landscape that is also influenced by interactions
between the defects.

(a)

(b)

(c)

FIG. 10. Monte Carlo annealing. (a) Initial state with spiral order.
(b) Intermediate state after heating pulse (images corresponds to 1000
Monte Carlo steps, see also Fig. 11). (c) Final state.
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FIG. 11. Evolution of the energy (left vertical axis) and capsomer
numbers (right vertical axis) versus Monte Carlo steps during the
annealing of an unduloid. The vertical dashed line corresponds to the
intermediate state shown in Fig. 10(b).

The total interaction energy and the number of pentamers,
hexamers, and heptamers is shown in Fig. 11 as a function
of the number of MC steps. Following the heating step, the
energy increased very rapidly from an initial value of about
−1500ε for the spiral structure to a highly defected state
with an energy of about −500ε. During cooling, the energy
decreased to approximatively −2600ε, which is well below
the energy of the CK spiral construction. In the final state,
the number of hexamers has increased while the number of
pentamers and heptamers has decreased.

We can conclude that for particle arrays interacting with a
radial pair potential of the LJ form, the CK spiral construction
is not the lowest-energy state for an unduloid.

We repeated the annealing procedure for the case of a
spherical shell covered by 1002 particles, starting from a
T = 100 CK icosahedral state (Fig. 12). After Monte Carlo
annealing, this array also did not return to the CK state (Fig. 12
c). The final state was again defected and had a lower energy
(� −3100ε) than the CK state (� −2400ε). The final state of
the sphere was again characterized by free-floating scars.

Particle arrays covering spherical surfaces are in fact known
to undergo a transition as a function of sphere radius from a
state with 12 fivefold disclinations to a state with a distribution
of grain-boundary type scars [23]. These scars relax the elastic
stress that accumulates around the fivefold disclinations when
the size of the sphere increases. As a check, we repeated the
annealing procedure for a small CK shell (a T = 7 shell, see
Appendix E) and found that this shell indeed had no defects
in the final configuration, apart from the 12 pentamers.

We conclude that the defect strings distributed over the
central section of the unduloid have the same physical origin
as the scars that are present in the ground state of particle
arrays covering large spherical surfaces.

C. Mean-square displacement and viscoelasticity

In order to examine the transport properties of unduloid-
shape capsids, we next carried out kinetic Monte Carlo (KMC)

(a) (b)

(c)

FIG. 12. Annealing of a particle array covering a sphere.
(a) Initial, (b) intermediate (image corresponds to about 1/8 of the
annealing simulation time), and (c) final configurations.

simulations with particles performing a Brownian random
walk on the underlying fine discrete mesh. The bare diffusion
coefficient D0 ∝ a2ν0 of single particles on the mesh, with
1/ν0 the KMC time step and a the mesh size, was kept fixed,
which means that the temperature was fixed (further details
are summarized in Appendix D). Initial states were produced
by the annealing method presented in Sec. III B, except for the
sphere for which we adopted the CK construction as the initial
state. We computed mean-square displacements (MSDs) as
a function of time for different values of the dimensionless
inverse binding energy kBT /ε of the LJ interaction potential.
Specifically, we increased kBT /ε by increments of 0.75
between adjacent MSD plots (as marked on some of the curves
in Figs. 13 and 14).

Figure 13 shows MSD versus time plots for the case of
cylindrical surfaces.

For comparison, we show also the MSD versus time plot
for a single-particle (black line), which is linear on a log-log
scale with slope one, as expected for simple diffusion. The
MSD plots for the interacting particles can be divided into two
groups. For kBT /ε less than or equal to 3.25, the late-time
MSD is, within error bar, independent of time. For kBT /ε

larger than or equal to 4.00, the slope of the late-time MSD-
time plots is close to one, consistent with single-particle self-
diffusion. This suggests that a melting transition takes place
at a value of kBT /ε between 3.25 and 4.0. The self-diffusion
coefficient is in general not an ideal dynamical characteristic
for melting transitions because self-diffusion coefficients are
not zero below a melting transition [24]. However, simulation
studies of arrays of particles interacting via LJ pair potentials,
either with periodic boundary conditions [25] or as particle
clusters [26], report that around the melting transition the self-
diffusion coefficient does increase by more than an order of
magnitude over a small temperature interval. This is consistent
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FIG. 13. Mean-square displacement (MSD) 〈u2〉/r2
m on a cylinder

versus time on a log-log scale. Time is expressed in units of the inverse
step frequency ν0 and distance in units of rm, the equilibrium spacing
of the LJ pair potential. The dimensionless inverse potential depth
kBT /ε is increased in multiples of 0.75 as indicated for some of the
curves. The horizontal line is the MSD of a hexagonal lattice at the
melting point. The black solid line is the MSD of an isolated particle.

with the rapid onset of self-diffusion seen in Fig. 13, so it is
indeed reasonable to assume that a melting transition did take
place for kBT /ε between 3.25 and 4.0. Interestingly, numerical
simulations of two-dimensional LJ hexagonal arrays report

FIG. 14. Mean-square displacement 〈u2〉/r2
m (MSD) of a particle

array on an unduloid, with rm the equilibrium spacing of the ordered
lattice. The dimensionless inverse potential depth kBT /ε is increased
in multiples of 0.75 as indicated for some curves. The horizontal red
solid line is the late-time MSD of the particles on a flat Lennard-Jones
hexagonal lattice at the melting point. The upper black solid line has
a slope for an MSD proportional to t (diffusion) and the lower black
solid line has a slope for an MSD proportional to tα with α � 0.5
(subdiffusion). For kBT /ε = 7 subdiffusion crosses over to diffusion
at a scale t∗ determined by the intersection of these black lines.

that at the melting transition 〈u2〉/r2
m � 0.021 [27], which can

be viewed as a version of the Lindemann melting criterion. For
our case however, the late-time value of 〈u2〉/r2

m for kBT /ε =
3.25 was about twice larger. This relative stabilization of an
ordered array on a cylindrical surface as opposed to a planar
surface is attributed to the restriction on thermal fluctuations
imposed by the cylindrical geometry.

Next, we repeated the simulations on an unduloid surface
with results shown in Fig. 14.

The MSD-time plots no longer saturate at late times, even
for the smallest value of kBT /ε. Instead, for larger kBT /ε the
MSD-time plots show a change in the slope α on a log-log
plot from about 0.5 (subdiffusion) to about 1.0 (diffusion).
The crossover for the case of kBT /ε = 7 takes place at time
t∗ obtained from the intersection of the two solid lines shown
in Fig. 14. As kBT /ε is reduced, the crossover time t∗ shifts
to higher values and for kBT /ε less than about 1.75 we only
observe subdiffusion.

If an MSD-time plot has the power-law form 〈u2(t)〉 ∝ tα

then that translates in the frequency domain to 〈u2(ω)〉 ∝
1/|ω|1+α . The fluctuation-dissipation theorem states that
〈u2(ω)〉 = (2kBT /ω)Im[1/G(ω)] for thermally equilibrated
particle systems, where G(ω) is the frequency-dependent
complex dynamic modulus of the particle system. For a
Newtonian fluid Im[1/G(ω)] ∝ 1/ω while for an ordered
solids, Im[1/G(ω)] ∝ ω at low frequencies. Materials that,
as in the present case, have a low-frequency complex modulus
G(ω) ∝ ωα with an exponent α that lies in between these
two limits are viscoelastic. This means that, though they
are not simple liquids, when subject to a constant shearing
stress they undergo a steadily increasing shear deformation.
When applied to the ATV capsid, this means that the steady
shear stress generated by the tail sections can produce large-
scale deformations of the capsid shape for values of kBT /ε

that are well below the melting point of the cylindrical
sections.

The mechanism underlying the viscoelasticity at small
kBT /ε is the stress-induced motion of the defects arrays
present in the ground state. We saw that particle arrays on both
unduloid and spherical surfaces contain unbound dislocations
and scars. Two-dimensional materials with free dislocations
and/or mobile grain boundaries indeed are known to have the
flow properties of viscoelastic materials [28].

The late-time MSDs of unduloid, sphere, and cylinder were
all fitted to straight lines. These slopes were then averaged
over six different KMC simulations for each value of kBT /ε

to arrive at the effective diffusion coefficients shown in Fig. 15.
The single-particle diffusion coefficients of particle arrays
covering either an unduloid or a sphere lack the onset feature
shown clearly by the diffusion coefficients of the cylindrical
surface. The obvious interpretation is that the intrinsic defects
that are present in the case of the unduloid and the sphere, but
not in the case of the cylinder, prevent freezing. The diffusion
coefficients for the unduloid case lie, in general, between those
of the cylinder and the sphere.

We propose that ATV tail growth is enabled by transport
of particles from the main body of the capsid to the roots
of the growing tails where they are absorbed into the tails.
It still is possible that particle transport at the minimum
cross section of the unduloid is significantly less than the
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FIG. 15. Average late-time slope of the MSD vs time as a function
of kBT /ε with ε the LJ binding energy. The average slope together
with its standard deviation (error bars) were obtained from six
different KMC analyses per kBT /ε and per geometry. Black line:
unduloid. Red line: sphere. Blue line: cylinder. Vertical dashed line:
estimated melting point for the cylinder.

one at the maximum cross section, in which case tail growth
would be suppressed. In order to check for nonuniformity
of the MSDs, we repeated the previous simulations using
periodic boundary conditions so transport in the neck regions
is not suppressed (previous simulations were carried out with
fixed boundary conditions at the necks). An example of a
simulation result with periodic boundary conditions is shown
in Fig. 16 for kBT /ε = 2.5. Figure 17 shows that MSDs
computed using periodic boundary conditions are, within error
bars, the same in the tail and in the central regions. Thermal
production of defects in the neck region is comparable to that
in the main body except that there is an excess of isolated
heptamers. This is consistent with the fact that the elastic
energy of sevenfold disclinations is minimized in regions of
negative Gauss curvature [20]. Equilibrated particle arrays
placed on surfaces with negative Gauss curvature have indeed
been observed to carry a distribution of sevenfold disclination
defect [22].

FIG. 16. Late-time snapshot of a simulation with periodic bound-
ary conditions at kBT /ε = 2.5

FIG. 17. Average MSD slope vs time as a function of kBT /ε for
an unduloid with periodic boundary conditions. Black line: MSD of
particles in the center (central third). Red line: MSD of particles in
the tails (initial and final thirds). Blue line: all particles.

In order to estimate the transport rates of protein oligomers
on ATV, we use the fact that the self-diffusion coefficient
D of particles as part of an array must be proportional
to the diffusion coefficient of isolated particles. Physical
self-diffusion coefficients can thus be obtained by dividing
numerically computed self-diffusion constants by the bare
diffusion coefficient D0 ∝ a2ν0 and then multiplying with
experimentally measured single-particle diffusion coefficients
under appropriate conditions. As an example, for kBT /ε =
2.5, which is well below the melting point for the cylinder,
the effective diffusion coefficient obtained from the late-time
(so with t > t∗) MSD-time slope is 0.5 × 10−4 (our units).
Dividing by the single-particle diffusion coefficient D0 �
2.7 × 10−3 in our units and multiplying by the diffusion
coefficient of a particle in water with the size of ATV capsid
oligomer (about 10−6 cm2/s) leads to an effective diffusion
coefficient of about 2 × 10−8 cm2/s. If the size of the ATV
virus is estimated to be 100 nm (Fig. 2), then a capsid
oligomer could diffuse over the length of the ATV body in
≈ 1.25 × 10−1s.

D. Tension fluctuations

The final step was to examine the properties of particle
arrays under tension. Recall that, according to continuum
theory, tension across the surface of closed shells is generated
by a pressure difference across the surface of the shell. The
first aim is to verify that for discrete arrays the same is true and
that the Laplace law is obeyed. Also, according to Laplace’s
law, a local tension reduction must be compensated by an
increase in the local mean curvature, thus a bulge formation.
If the stretching along the bulge produces a further decrease
of the tension then the curvature will increase even further,
eventually leading to an aneurysm-type rupture. Therefore,
if there is a tension reduction along the scars and defects or
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FIG. 18. (a) Averaged normal forces per unit area computed with
a particle array under tension on an unduloid. The system was under
an applied tension of approximately 5% while kBT /ε = 0.05. Note
that there are significant pressure variations. (b) Corresponding defect
array. Note that there is some correlation between low-pressure
regions and heptamers. (c) Capsid rupture under a larger applied
tension of ≈ 6%.

any other source of tension variation, this could lead to an
aneurysm-type mechanical instability.

We performed MC simulations of tense particle arrays,
using as our starting configuration a representative particle
array obtained in the MC analyses presented in Sec. III B
[see Fig. 18(b)]. The initial array was typically in a state of
slight compression. Next, we instantaneously decreased the
equilibrium distance rm of the LJ potential by δr , which places
the system under tension corresponding to a strain of δr/rm.
We then carried out MC simulations to allow the particle arrays
to relax towards equilibrium. For kBT /ε = 0.05, the array did
not rupture for stretching strains δr/rm below about 0.05 while
for stretching strains of 0.06, the system did rupture, as shown
in Fig. 18(c). The rupture strain decreased for lower values of
ε.

We then computed the forces exerted on each particle and
added the component of each force in the direction normal to
the surface. Subsequently, we divided the total normal force
component by the area of the Wigner-Seitz cell centered at
each particle and calculated a site pressure � at the position
of that particle. We then averaged � in space over the ring of
nearest neighbors and in time over 30 MC steps equally spaced
over the last ten percent of the duration of the simulation. We
computed the local in-plane stretching tension τi in a similar
fashion. The local value τi was found to be within a factor two
of the Laplace law value 2�H , with H the mean curvature. The
discrepancy is attributed to the discreteness of the underlying
mesh and the discreteness of the particle array, which limits
the applicability of continuum theory.

Figure 18(a) shows the pressure distribution for an imposed
stretching strain of 0.049. About 96% of the surface was
under tension. If the imposed tension is decreased, then the
fraction of the surface under tension decreases further. The
pressure scale is shown in units of 0.043ε/r3

m, with an average
pressure of about ten units. For ε = 5kBT , T = 300 K, and

rm = 6 nm, the average pressure would be about 40 kPa,
close to the pressure we estimated as relevant for ATV
before tail growth. The standard deviation of the pressure
fluctuations—approximately 24 kPa—is comparable to the
mean. The pressure variations that can be seen in Fig. 18(a)
are, at least in part, correlated with the distribution of defects
in Fig. 18(b), though scars are not lines of low tension.

IV. SUMMARY

We propose a model for the capsid of the ATV archaeal
virus as a viscoelastic membrane under tension generated by
genomic osmotic pressure. According to continuum theory,
the capsid has the shape of a surface of constant mean
curvature, specifically that of an unduloid. Growth of the
central filament reduces the capsid volume, compresses the
genome and increases the osmotic pressure. The increase in
osmotic pressure suggests that one of the roles of the ATV
shape change could be to prime the capsid for release of the
genome through the tails after the virus has attached itself to a
host cell.

In order to further study the mechanisms underlying the tail
growth, we performed simulations of particle arrays covering
an unduloid. We found that for radial interaction potentials,
the CK spiral construction is unstable against the formation of
scars and other defects that appear to be an intrinsic feature
of the thermodynamic ground state of large particle arrays on
an unduloid, just as they are on spherical surfaces. Because of
the presence of these defects, the body of the capsid remains
viscoelastic at capsomer-capsomer interaction strengths well
above the onset point of positional order on the cylindrical
tail sections. This viscoelasticity would allow for the large
observed shape changes.

Is the capsomer transport rate sufficiently high for the
tail growth of an ATV virus? For kBT /ε = 2.5 the effective
late-time self-diffusion coefficient is in the range of 2 ×
10−8 cm2/s. If one assumes that tail growth requires a supply
of about ten circumferential oligomers for the growth of one
oligomer length of tail, this leads to a tail extension rate of
about 300 nm/minute.

The most serious concern we encountered with the pro-
posed model is that of rupture generated by tension nonuni-
formity. The range of imposed tension strains over which the
particle array is fully under tension yet does not rupture is
small. Moreover, inside this range, the surface is subject to
large-scale pressure fluctuations that may lead to mechanical
instability of the aneurysm type. We believe, but have not
yet shown, that anisotropic pair potentials could increase the
stability range and suppress the fluctuations by organization
of particles into polymeric linear arrays, e.g., into spirals
as shown in Ref. [29] for a polyelectrolyte on a spherical
surface. When wound around the unduloid according to the
CK spiral construction these polymers might suppress rupture
and aneurysm instabilities. In the presence of a sufficient level
of thermal fluctuations, the protein chains still would be able
to slide past each other so the shear elastic modulus would be
zero for longitudinal sliding transport while the shear modulus
in the transverse direction would remain finite. We hope to
address these questions in future work.
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If the proposed description does apply, then ATV capsids
would be very interesting model systems from the viewpoint
of the statistical physics of particle arrays on curved surfaces.
While scar-type defects of particle arrays covering spheres
have been discussed in the colloid literature, they have not
(yet) been seen for large spherical viral shells. In the proposed
description, scars are an intrinsic feature of the capsid of
ATV viruses and play a functional role in maintaining the
viscoelasticity of the capsids that allow for the growth of the
tails, even when the capsomers have relatively high binding
energies.

Experimental tests of the proposed model should be
possible. The level of resolution of current electron microscopy
should be sufficient to confirm (or disprove) the presence of
scars along the capsids of ATVs. The 100 nm ATV capsids also
may just be large enough for tracking fluorescently labeled
capsid proteins that could measure MSD-time plots.

An interesting challenge for the proposed model is the fact
that in the early stage of tail growth the capsid does not appear
to be a surface of constant mean curvature. We proposed earlier
that this may be due to nonuniformity of the osmotic pressure.
In fact, a variety of puzzling capsid shapes have been reported
for other archaeal viral capsids that—at least at first sight—
also do not resemble surfaces of revolution of constant mean
curvature (e.g., see Fig. 1). It is not known if that is due to
some form of internal structure or to pressure nonuniformity.

Is the tense-surface description of viscoelastic or fluid
capsids restricted to archaeal viruses? Observational bias
towards ordered viral capsids whose atomic structure can be
resolved by x-ray diffraction may have obscured the possibility
that viral capsids could be in a quasifluid state. Significant
levels of fluidity, structural disorder, and pleomorphism have
been reported for the archaeal HRPV virus [30] and HRPV
itself may be related to the Bunyaviridae family of nonarchaeal
viruses. Members of the Bunyaviridae family indeed appear
to be characterized by pleomorphism [31].
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APPENDIX A: UNDULOID

The unduloid is a surface of revolution with a constant mean
curvature. This surface arises from the minimization of surface
area subject to the constraint of fixed volume. The quantity to
be minimized in such a case is∫ L

0
{y(x)

√
1 + [dy(x)/dx]2 − λy(x)2}dx, (A1)

where y(x) is the curve that is rotated about the x axis and λ is
the Lagrange multiplier corresponding to the constant volume
constraint. The quantity λ can also be seen as representing the
internal pressure of an enclosed isotropic substance. Standard
methods lead to the following relation:

y(x)√
1 + [dy(x)/dx]2

− λy(x)2 = C, (A2)

where C is a constant. This equation is readily manipulated
into the form

dy(x)

dx
= ±

√
y(x)2 − [C + λy(x)2]2

λy(x)2 + C
, (A3)

which leads us to the quadratures solutions∫
λy2 + C√

y2 − (λy2 + C)2
= ±

∫
dx. (A4)

The left-hand side of (A4) can be rewritten in the following
form ∫

y2 + r1r2√
(r1 − y)(y − r2)(y + r1)(y + r2)

, (A5)

where

r1 = 1

2

[
1

λ
+

√
1

λ2
− 4

C

λ

]
; (A6)

r2 = 1

2

[
1

λ
−

√
1

λ2
− 4

C

λ

]
. (A7)

The integral in (A5) can be expressed in terms of elliptic
integrals. The solutions of interest arise from a positive
discriminant in (A6) and (A7), leading to real values for the
roots r1 and r2.

Taking the Lagrange multiplier λ to be positive, we can
distinguish between two cases, corresponding to two possible
signs of the combination C/λ. If C/λ is positive, which
is the condition that is relevant to the work reported here,
then the graph on the left-hand side of Fig. 19 applies.

The two red curves in that graph correspond to ±(λy2 +
C). The straight line is at 45◦ with respect to the two axes.
According to (A2), we must have y � C + λy2. The equality
in this expression holds if dy(x)/dx = 0. Furthermore, we
restrict y(x) to be positive, as it corresponds to the radius
of the surface of revolution. The solution to the minimization
equation must therefore lie in the portion of the upper quadrant
of the left-hand graph for which the black line lies above the
upper red parabola. In this case, both r1 and r2 are greater
than zero and correspond to the two points of intersection of

FIG. 19. The two possibilities for the parameters in the quadrature
equations leading to a minimum surface of revolution with fixed
volume. The case illustrated on the left relates to the work reported
here.
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FIG. 20. A minimizing surface corresponding to the conditions
illustrated on the left-hand side of Fig. 19.

the black line with the upper parabola. At those points the
derivative dy(x)/dx vanishes.

We can go further and scale out the constant
√

r1r2. Then,
the only remaining parameter determining the surface of
revolution is, say, the rescaled smaller root, r1/

√
r1r2. The

other scaled root is its inverse. A surface corresponding to
these conditions is shown in Fig. 20.

APPENDIX B: PARTICLE PLACING ON A SURFACE
OF REVOLUTION

In this section we discuss a strategy to place spherical parti-
cles of the same diameter (representing protein capsomers) on
a surface of revolution so that the particles are (approximately)
evenly distributed. As described in the previous section, let
a surface of revolution be described by the function y(x),
where x represents the distance along the axis of symmetry
(Fig. 21.) A simple strategy to place the particles on this
surface would be to wrap them along helices. In order to
evenly distribute particles on a noncylindrical surface the
pitch of the helices must change as they wrap around the
surface.

Let us consider m helices winding around the surface (as
shown schematically in Fig. 21). We assume that the helices are
closely spaced so that the distance between helices measured
along the surface may be approximated by their straight line
distance. Let us consider two adjacent helices 1 and 2 as shown
in Fig. 21 and choose two points A and B on each helix,
respectively, at the same meridional angle θ . The distance

x

y

z

1 2

A
B

C

D

FIG. 21. Schematic of helices on a surface of revolution.

|AB| approximated by the arc length is
√

1 + (dy/dx)2dx.
Similarly, the distance between points A and D placed at the
same x is y(dθ/dx)dx. Consequently for the right triangle
DAB, the angle ψ (�ADB) is given by

sin ψ =
√

1 + (dy/dx)2√
1 + (dy/dx)2 + y2(dθ/dx)2

. (B1)

The perpendicular distance d between the helices is given
by

d = |AC| = |AD| sin ψ. (B2)

If the helices are to be evenly spaced everywhere, d must be
a fixed constant for the surface. Moreover, for the m helices
evenly spaced at every cross section, it is clear that |AD|
is proportional to y, since m|AD| = 2πy. This observation
together with Eq. (B2) implies

y
√

1 + (dy/dx)2√
1 + (dy/dx)2 + y2(dθ/dx)2

= r2, (B3)

where r2 is an arbitrary constant. If the helices are assumed
to arise perpendicularly at x = 0, i.e., dθ/dx(0) = 0, then it
is clear from (B3) that r2 represents the radius of the surface
of revolution at x = 0. We solve this (first-order) differential
equation for θ (x) by choosing an initial condition θ (0) = θ0 to
distinguish each of the m helices. Each helix is then described
by the parametric equation

r(x) = xi + y(x) cos[θ (x)]j + y(x) sin[θ (x)]k. (B4)

We note that while (B3) may be solved numerically for
an arbitrary surface of revolution, for the cases considered
here—cylinder, sphere, and unduloid—it is possible to solve
the equation in closed form. For a cylinder of radius r ,
defined by the equation y(x) = r , the construction is trivial.
We now summarize the results for the unduloid and the
sphere.

1. Helices on an unduloid

Making use of (A5), we can rewrite (A4) as

dy

dx
= ±

√(
r2

1 − y2
)(

y2 − r2
2

)
y2 + r1r2

. (B5)

Using (B5) in (B3) and writing θ as a function of y, we
obtain

dθ

dy
= r1 + r2

r2

1√
r2

1 − y2
, (B6)

which can be integrated to yield

θ (y) = r1 + r2

r2
arcsin(y/r1) + θ0. (B7)

2. Helices on a sphere

In the case of the sphere, it is more convenient to choose
the azimuthal angle φ to be the independent variable, instead
of x. The transformation between φ and x is given by x =
1 − cos φ, while the surface of the sphere, as a surface of
revolution, is defined by y(φ) := sin φ.
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FIG. 22. Helix uniformly covering the sphere.

Rewriting (B3) in terms of φ, we obtain

dθ

dφ
= ±

√
sin2 φ − sin2 φo

sin φ sin φo

, (B8)

where, for convenience, we write r2 = sin φ0. This equation
can be integrated to yield

θ (φ) = csc φ0

[
−

√
− sin2 φ0 tanh−1

(
cos φ

√
cos(2φ) − 1√

cos(2φ0) − cos(2φ)

)

+ i ln(
√

cos(2φ0) − cos(2φ) + i
√

2 cos φ)

]
+ θ0.

(B9)

By suitably choosing φ0, we can cover the surface of a
sphere using just one helix as shown in Fig. 22 or using five
helices as shown in Fig. 23 to obtain a CK T = 7 icosahedral
structure.

APPENDIX C: METROPOLIS MONTE CARLO
ALGORITHM

We use the Metropolis Monte Carlo method to calculate the
particle positions on an underlying fixed grid corresponding to
the particle ground state (Sec. III B). The algorithm proceeds
as follows.

(1) (Particle move) A particle is chosen at random and
moved to a node in its first neighbors ring. The node to which
the particle moves is also chosen at random and the set of

FIG. 23. Five helices covering a sphere. The T = 7 construction
is recovered when they are decorated with particles.

FIG. 24. A zoomed-in view of the underlying lattice on which
the particles move.

possible moves includes the particle’s original location, i.e.,
the particle may be left in place. The particles move on a fine
underlying triangular lattice with mesh size a. We choose a =
rm/16, where rm is the particle equilibrium distance (Fig. 24).

(2) (System energy) For each move of a particle k, the new
energy of the entire system Enew,k and change in energy �Ek =
Enew,k − Eold,k are computed. Enew,k and �Ek are computed
after only particle k has moved.

(3) (Move acceptance or rejection) If for particle k,
either �Ek < 0 or η < exp (−�Ek/T̃ ) the move is accepted,
otherwise it is rejected. Here T̃ = kBT and η ∈ [0,1] is a
randomly chosen number.

(4) (Annealing at constant temperature) Steps 1 through
3 are repeated for each of the N particles of the system.

(5) (Temperature schedule) The pseudo temperature T̃

is lowered according to T̃t+1 = αT̃t and steps 1 through 4 are
repeated, i.e., steps 1 through 4 are carried out only once at

constant T̃ . α = T̃final

T̃initial

1/M
where M is the number of Metropolis

Monte Carlo steps at different temperatures.
The steps outlined in the foregoing are summarized in

Algorithm 1.

Algorithm 1 Metropolis Monte Carlo Algorithm

Consider a system of N particles k moving on an underlying fine
lattice (Fig. 24). Each node on the finer lattice is denoted by n and
the subset of nodes in the first ring of neighbors of particle k is
denoted by �k . �k includes the node at which particle k is. The
system initial scaled temperature is T̃init and the final scaled

temperature is T̃final. We define α = T̃final
T̃initial

1/M

For t ∈ {1,2, · · · ,M} do � Decrease temperature
T̃t = αT̃t−1

For k ∈ {1,2, · · · ,N} do �Iterate over particles
Randomly choose a particle k.
Randomly select a node n̄ ∈ �k

Move particle k to n̄. We denote this state Sk .
pk ← e−�Ek/T̃t

η ← RAND[0,1]
If �Ek < 0 ∨ η < pk then �Accept criterion

Accept Sk

end if
end for

end for

012404-13



L. E. PEROTTI et al. PHYSICAL REVIEW E 94, 012404 (2016)

In order to calibrate the parameters governing the Metropo-
lis Monte Carlo algorithm, i.e., initial and final temperatures
and rate of temperature decay, we first compute the minimum
energy configuration for known cases, i.e., the particle con-
figuration on a cylinder (Fig. 9) and on a small icosahedral
geometry corresponding to a T = 7 virus (Appendix E). Sub-
sequently, we apply the same minimization algorithm to the
unknown unduloid case. Since the minimum energy particle
configuration is likely to be nonunique, we repeat the analyses
several times to ensure that the computed configuration is
representative of the particles minimum energy states.

In all the simulations reported in Sec. III B and Appendix E,
we set T̃initial = 5, T̃final = 5 × 10−3 and the total number of
Monte Carlo steps is equal to 15000. Each complete Monte
Carlo step corresponds to N attempted particle moves, where
N ≈ 1000 for the cylinder, sphere, and unduloid geometries.

APPENDIX D: KINETIC MONTE CARLO METHOD

For the diffusive transport studies discussed in Sec. III C, we
use the null process method [32], a version of the kinetic Monte
Carlo method that is based on the familiar n-fold method [33].
This method was originally introduced in the context of large
reaction-diffusion systems with a fixed number of processes.
According to the null process method, the system is divided
into a number of cells or subsystems and a modified version of
the n-fold algorithm is applied to each subsystem. To achieve
synchrony, null events are introduced. In a subsystem, a null
event represents no change to the subsystem but retains a
finite probability of being selected. However, the algorithm
is designed such that there is at least one subsystem in which
the null event never occurs. Consequently, the method still
retains the rejection-free paradigm of the n-fold scheme. A
parallel generalization of this scheme has been developed in
Ref. [34].

To apply the method to the problem at hand, we divide the
system of N particles into subsystems each with one particle.
Each particle (indexed by k ∈ {1,2, . . . ,N}) is randomly
perturbed while holding the others fixed. The rate of every
such a transition is computed according to

rk = νoe
−�Ek/T̃ , k ∈ {1,2, . . . ,N},

where ν0 is a constant that determines the time scale. After
rk is computed for all particles, each move is accepted with
probability pk = rk/rmax, where rmax is the maximum rate:

rmax = max
k∈{1,2,··· ,N}

{rk}.

The rejection probability of 1 − pk is equal to the probability
of acceptance of the null event. Finally, time increments are
chosen according to a Poisson distribution:

�t = − ln ξ

rmax
,

where ξ ∈ (0,1) is a random number from a uniform dis-
tribution. A pseudocode for this method is summarized in
Algorithm 2.

Algorithm 2 Kinetic Monte Carlo Algorithm

Divide the system of N particles into N subsystems with one
particle each.
For every time step do:
For k ∈ {1,2, · · · ,N} do

Randomly perturb particle k while holding others fixed. Call
this state Sk .

Compute rate rk for such a transition to Sk according to:
rk ← νoe

−�Ek/T̃ ,

where ν0 is a constant scaling for time.
end for
rmax ← maxk∈{1,2,··· ,N}{rk} � Compute max. rate
For k ∈ {1,2, · · · ,N} do

pk ← rk/rmax

η ← RAND(0,1)
If pk > η then � Accept Sk with probability pk

Accept Sk

end if
end for
ξ ← RAND(0,1) � �t from Poisson distribution
�t ← − ln ξ

rmax

Tests

We verified our algorithm with two of the tests discussed
in Ref. [34]: (i) diffusion of particles on a lattice without
interactions and with absorbing boundary conditions; and (ii)
diffusion of identical particles with annihilation interaction
given by the reaction A + A → 0.

For the first case, we use a two-dimensional square lattice
with 1229 noninteracting particles subjected to the condition
that any particle reaching the boundary is absorbed (that is,
removed). The time dependence of the concentration is plotted
in Fig. 25 and agrees well with the theoretical prediction
reported in Ref. [34].

The second test case involves identical interacting particles
(A) on a square lattice. The interaction is governed by
the reaction A + A → 0, that is, two particles within a
(prescribed) threshold interaction radius annihilate each other.
The time-dependent concentration (with 961 particles at time
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FIG. 25. Concentration vs time for diffusion problem with no
particle interactions and absorbing boundary conditions.
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FIG. 26. Concentration vs time for diffusion problem with anni-
hilation reaction A+A → 0

t = 0) is shown in Fig. 26. The asymptote for large t agrees
with a 1/t dependence for the concentration and it is in
agreement with the theoretical prediction [34].

APPENDIX E: ANNEALING OF T = 7 STRUCTURE

We additionally validate the Monte Carlo annealing pro-
cedure used in Sec. III B and presented in Appendix C for
small spherical viruses, such as T = 7. The initial particles’
distribution corresponding to the capsomers of a T = 7

FIG. 27. Initial, intermediate (at 1100 Monte Carlo steps) and
final capsomers configuration during Monte Carlo annealing of a T =
7 virus structure. Due to the particles’ motion during the annealing
procedure, the initial and final capsomers configurations are rotated
with respect to each other.

structure is constructed according to the procedure described
in Appendix B2 [Fig. 27(a)]. Subsequently, the Monte Carlo
algorithm presented in Appendix C is applied, maintaining
the same analysis setup (e.g., initial temperature, rate of
temperature decay, depth of the Lennard-Jones potential) as
for the unduloid, cylinder, and sphere cases. Following the
initial temperature increase, heptamers are formed as the
energy of the system increases [Fig. 27(b)]. As the temperature
is gradually lowered, the ground state corresponding to a
T = 7 structure is recovered [Fig. 27(c)]. Due to the motion
during the annealing procedure, the particles in the final
configuration do not occupy the same positions as at the
beginning, but the T = 7 structure is rotated as shown by the
superimposed initial and final capsomer outlines [Fig. 27(c)].
This result verifies that, using the adopted procedure, the
particles undergo large enough displacements (i.e., do not
necessarily fall back into their original positions) and explore
other possible configurations.
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