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Emergence of the giant weak component in directed random graphs
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The weak component generalizes the idea of connected components to directed graphs. In this paper, an exact
criterion for the existence of the giant weak component is derived for directed graphs with arbitrary bivariate
degree distributions. In addition, we consider a random process for evolving directed graphs with bounded
degrees. The bounds are not the same for different vertices but satisfy a predefined distribution. The analytic
expression obtained for the evolving degree distribution is then combined with the weak-component criterion to
obtain the exact time of the phase transition. The phase-transition time is obtained as a function of the distribution
that bounds the degrees. Remarkably, when viewed from the step-polymerization formalism, the new results
yield Flory-Stockmayer gelation theory and generalize it to a broader scope.
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I. INTRODUCTION

From reactions fueling cells in our bodies to internet links
binding the World Wide Web into a small-world structure,
networks are at the basis of many phenomena. Random-
graph theory sets up a common toolbox studying networks
independently of their context from a probabilistic point of
view. The most basic random-graph model was introduced
by Erdős [1]. This model refers to a set of vertices, where
the probability of two vertices being connected is chosen in
advance as the only model parameter. Vertices from such
a graph satisfy a specific degree distribution, namely the
Poisson distribution. Since Erdős’ first results appeared, many
models yielding other degree distributions followed (see, for
example, [2] and the citations therein). This exploration for
new models was driven by both a theoretical desire and a
practical necessity.

With respect to soft-matter physics, among other disci-
plines, the random-graph theory has been a source of inspi-
ration for coagulation, polymerization, and elasticity models.
In this framework, the set of all admissible graphs yielded
by a model is drastically constrained by the physical context.
There are three main tools providing a means to impose these
constraints: bond percolation on (pseudo)lattices (e.g., as in the
study on the Bethe lattice by Fisher and Essam [3]), a kinetic
perspective on random graphs, and imposing a predefined
degree distribution.

Some notable examples of the kinetic perspective on
random graphs include, but are not limited to, analytic results
obtained by Ben-Naim [4–6], Lushnikov [7–9], Buffet [10],
Gordon [11], and their coauthors; numerical studies of step-
growth and cross-linking polymerization by Kryven et al.
[12–14]; and the algorithmic method introduced by Hillegers
and Slot [15,16]. In the above enlisted cases (with the exception
of Refs. [5,16]), the degree distribution is either very simple
(zero, one, or two edges) or not constrained at all. Models
that implement restrictions on the degree distribution in the
evolving undirected random graphs are considered in [5,17].
This restriction is implemented as a single upper bound on the
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degrees. At the same time, the algorithmic study on directed
graphs (inspired by the polymerization structures) [16] does
allow one to impose the degree bounds as a distribution, yet
the algorithm is applicable only prior to the phase transition.

Clearly, a degree distribution does not define a graph
uniquely. That said, an attractive alternative to the classical
models is to define a random graph by a given degree distribu-
tion assuming that apart from the degree distribution the graph
is absolutely random. This line of research was introduced
by Molloy and Reed [18] and was later developed further by
Newman, Strogatz, and Watts [19]. Studying the properties
of random graphs defined by their degree distribution is not
simply an abstract problem; it has a clear practical motivation.
For instance, one may consider an empirical degree distribu-
tion that is based on measured or observed data. An observer
collecting such data is likely to be either embedded into the
network himself, thus viewing it locally, or to be distanced far
apart, thus observing only the global properties. Indeed, one
may study individual servers of the Internet, but the question
of the global connectivity structure is far less trivial [20], or
one may observe the global properties of a complex polymer
material without exhaustive knowledge on how the individual
molecules are interconnected. Expressing global properties of
random graphs in terms of their degree distribution builds up
an essential link between the local and the global.

In undirected graphs, a connected component is a set of all
vertices that can be reached from a given vertex by following
the edges recursively. Many random graphs are known to
experience a phase transition, i.e., the point when a connected
component, whose size is the same as the order of magnitude
of the whole network, emerges (the giant component). The
idea of the connected component can also be generalized to
directed graphs, i.e., graphs having all edges with a specific
direction. For a selected vertex, (a) out-component is a set
of vertices that can be reached by recursively following all
out-edges forward; (b) in-component is a set of vertices that can
be reached by recursively following all in-edges backward; and
(c) weak component is a set of vertices that can be reached by
recursively following all edges regardless of their orientation.

Even when focusing on weak components alone, one
finds many applied studies exploiting the concept, e.g., in
epidemiology [21,22], data mining [23,24], communication
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networks [25] exploring World Wide Web structure [20,26],
etc. So what information on component sizes can one obtain
just by knowing the degree distribution of a directed random
graph? In the case of undirected graphs, the question has been
answered by Molloy and Reed [27]. A link between the degree
distribution and some properties of directed graphs has been
shown by Chen et al. [28]. A new theory studying the sizes of
in- and out-components was introduced by Newman et al. [19].
A connection between the degree distribution and the giant
weak component, however, has not been investigated in depth.
Moreover, some authors (e.g., in [19,26]) intentionally do
not study weak components separately, arguing that in this
case, the graph effectively becomes undirected and should be
treated with the known formalism. This statement, generally
speaking, is a misconception, since even though we disregard
directional information when calculating the size of the weak
component, the direction of the edges does affect the topology
of the network.

The current paper is organized in two parts. First, a correct
criterion for the existence of the giant weak component will
be derived. This criterion takes the form of an inequality
involving the moments of the degree distribution. This result
complements the prior findings on in-/out-components and
components in undirected graphs. The criterion can be imme-
diately applied to simulated or empirical degree distributions.
In the second part of the paper, an analytic expression for
the bivariate degree distribution is derived for a specific
random-graph time process. In this process, the directed
random graph evolves starting from a set of disconnected
vertices. Similarly to the undirected case considered in [5],
the degree of a vertex is bounded, but the bounds are not the
same for different vertices. Therefore, we deal with a bivariate
distribution of bounds as an input parameter. The probability
of a vertex to receive an edge is proportional to the difference
between the bound and the actual number of edges that are
incident to the vertex. The weak-component criterion is then
applied to obtain the phase-transition time as a function of
the input parameters. Remarkably, these results produce the
Flory-Stockmayer gelation theory [29–31] as a special case,
and thus they constitute a more general theory for gelation.

II. CRITERION OF THE PHASE TRANSITION FOR AN
ARBITRARY DEGREE DISTRIBUTION

In an undirected graph, the degree distribution defines
the probability of having a specific number of edges for a
randomly selected vertex. In a directed graph, each vertex has
an in-degree and an out-degree that counts edges coming to and
leaving from the vertex. For a given directed random graph, a
bivariate degree distribution, u(n,k), n,k = 0,1, . . . , denotes
the probability that a randomly chosen vertex has in-degree n

and out-degree k. There are two extra properties that u(n,k)
has to satisfy to be a valid degree distribution. The total
probability has to sum up to unity,

∑∞
n,k=1 u(n,k) = 1, and

the total numbers of in-edges and out-edges have to coincide,∑∞
n,k=1(n − k)u(n,k) = 0. Let μij denote partial moments of

u(n,k),

μij =
∑
n,k

nikju(n,k). (1)

The edge balance and the normalization condition for u(n,k)
can be rewritten using the moment notation,

μ00 = 1 and μ10 = μ01 = μ. (2)

It is often more convenient to work with generating functions
than actual distributions. The generating function for the
degree distribution is defined as

U (z,w) =
∞∑

n=0,k=0

u(n,k)znwk, z,w ∈ C, (3)

where |z| � 1,|w| � 1. Alternatively, one may rewrite the
equalities (2) in terms of the generating function using a
combination of differentiation and evaluation at point (1,1),

U (z,w)|z=1,w=1 = 1

and (
∂

∂z
− ∂

∂w

)
U (z,w)|z=1,w=1 = 0.

Now, let us introduce a bias into the process of vertex
selection. Suppose we select a vertex that is at the end of a
randomly chosen edge. The degree of the vertex is no longer
governed by u(n,k) since vertices of higher in-degree are more
likely to be sampled. The correct degree distribution in this
case is uin(n,k) = n

μ
u(n,k), which is generated by

Uin(z,w) = μ−1 ∂

∂z
U (z,w). (4)

In similar fashion, consider selecting a vertex that is at the
beginning of a randomly chosen edge. The degree distribution
for such vertices is given by uout(n,k) = k

μ
u(n,k), which is

generated by

Uout(z,w) = μ−1 ∂

∂w
U (z,w). (5)

The weak component is a set of vertices that can be reached
by recursively following all edges regardless of their ori-
entation. When a directed random graph is defined by the
degree distribution only, the temptation is to say that the
distribution of weak-component sizes is essentially the same
as the distribution of component sizes that corresponds to
an undirected degree distribution, d(l) = ∑

n+k=l u(n,k), l ∈
N0. This statement, generally speaking, is not correct since
even though we disregard the directional information when
calculating the size of the weak component, the direction
of the edges does affect the topology of the network. This
fact can be illustrated by a simple example: consider a
bivariate degree distribution that is zero everywhere except for
u(1,0) = 2

3 , u(0,2) = 1
3 . The directed random graph generated

by such a distribution has only components of size 3. On the
other hand, component sizes in the undirected graph generated
by the corresponding degree distribution [d(1) = 2

3 , d(2) = 1
3 ]

are not bounded at all; see Fig. 1.
We will now extend the approach presented in [19] to

cover the case of weak components for the directed graphs.
For a randomly selected vertex, let w(n), n ∈ N0, such that∑

n w(n) = 1 denotes the distribution of weak-component
sizes; w(n) is generated by W (z). Analogously to the definition
of the distributions (4) and (5), consider a biased choice for the
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FIG. 1. An example illustrating how topologies of a directed
graph and the undirected one satisfying an induced degree distribution
may be drastically different. The directed graph on the left consists
of vertices that have either one out-edge or two in-edges. The
corresponding undirected graph on the right consists of vertices that
have either one edge or two.

starting vertex. Suppose one chooses an edge at random and
then selects the terminal vertex of this edge as a root. In this
case, let win(n) [generated by Win(z)] denote the distribution
of weak-component sizes associated with the root. As another
extreme, suppose one chooses an edge at random and then
selects the source vertex of this edge as a root. Similarly to
the prior case, let wout(n) [generated by Wout(z)] denote the
distribution of weak-component sizes associated with the root.

The next step is to derive equalities binding
Win,Wout, Uin, Uout together. Let us start by selecting a vertex
(root) that we arrive at by following a random edge (edge a in
Fig. 2). According to the definition (4), the probability of the
root having n in-edges and k out-edges is uin(n,k). Each of the
out-edges leaving the root is associated with a weak component
of the size win(n) (edges b in Fig. 2), thus the sum of sizes
of all components reached through the out-edges is distributed
according to k-fold convolution win(n) ∗ win(n) ∗ · · · ∗ win(n).
This sum is generated by Win(z)k. A similar argument is
constructed for all in-edges (edges c in Fig. 2): the sum
of sizes for all components reached through the in-edges
is generated by Wout(z)n. A branch of such an exploration
process will terminate in one of the following cases: (a)
when a vertex with at least one in-edge and no out-edges is
reached [this happens with probability Uin(1,0)]; or (b) when
a vertex with at least one out-edge and no in-edges is reached
[probability Uout(0,1)]. The distribution for the sum of sizes

U

Uin

Uout

Win

Wout
Win

Wout

Wout Win

a
e

b

d

c

FIG. 2. Construction of the implicit equation for w(n), the
function generating weak-component sizes.

of all components originating at the root (i.e., being reached
through either an in- or out-edge) is obtained as a summation
over all possible configurations (n,k),∑

n,k

uin(n,k)Wout(z)nWin(z)k.

Interestingly, this summation can be viewed as a bivariate
generating function of the type (4) evaluated at point z =
Wout(z), w = Win(z),∑

n,k

uin(n,k)Wout(z)nWin(z)k = Uin(Wout(z),Win(z)).

On the other hand, the total number of all vertices reachable
from the root plus one (component d in Fig. 2) can also be
considered as the size of the weak component reached by
following an edge forward. Thus one obtains a recurrence
relation,

Win(z) = zUin(Wout(z),Win(z)), (6)

where the factor z provides a unit translation in the component
size distribution in order to include the root in the component
itself. A similar argumentation holds for Wout(z). Suppose one
selects an edge at random and follows it in reverse (edge
e in Fig. 2) to reach a new root vertex. The degree of the
root is described by uout(n,k). The sum of sizes for the weak
components reached by the out-edges is generated by Win(z)k ,
and for in-edges this number is generated by Wout(z)n. The
size of the whole weak component associated with the root is∑

n,k

uout(n,k)Wout(z)nWin(z)k = Uout(Wout(z),Win(z)).

Translating this distribution by unity yields the generating
function for sizes of weak components that are reached by
following an edge backward,

Wout(z) = zUout(Wout(z),Win(z)). (7)

When combined, Eqs. (6) and (7) provide a sufficient means to
uniquely define generating functions Wout(z),Win(z). Finally,
we transit from the sizes of biased weak components to the
sizes of weak components, generated by the function W (z).
Consider a randomly selected vertex. Its degree distribution is
generated by U (z,w). The total sum of all component sizes
reached via in- and out-edges plus 1 is generated by

W (z) = zU (Wout(z),Win(z)), (8)

which is the generating function for the weak-component size
distribution. A similar relation for the giant in-component was
derived in [19]. Even though the triple (6), (7), and (8) defines
W (z) implicitly, some properties of W (z) may be extracted in
an explicit form. For instance, we may find out if the random
graph contains the giant weak component.

Recalling that U (1) = Uin(1) = Uout(1) = W (1) = 1, the
average size of the weak component to which a randomly
chosen vertex belongs is given by

W ′(1) = [zU (Wout(z),Win(z))]′|z=1

=
(

W ′
out(z)

∂

∂z
U (z,w) + W ′

in(z)
∂

∂w
U (z,w)

)∣∣∣
z=1,w=1

+ 1. (9)
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Further on, differentiating Eqs. (7) and (6), applying the
definitions (4) and (5), and evaluating at point z = 1 yields
the explicit expressions for W ′

in(1), W ′
out(1),

W ′
out(1) = N1

A
, W ′

in(1) = N2

A
,

and consequently

(9′)W ′(1) = μ(N1 + N2)

A
+ 1, (9’)

where

A : =
[

2μ
∂2

∂z∂w
U (z,w) −

(
∂2

∂z∂w
U (z,w)

)2

+
(

∂2

∂z2
U (z,w)

)
∂2

∂w2
U (z,w)

]∣∣∣
z=1,w=1

, (10)

N1 : = μ
∂

∂w
U (z,w) −

(
∂2

∂w∂z
U (z,w)

)
∂

∂w
U (z,w)

+
(

∂2

∂w2
U (z,w)

)
∂

∂z
U (z,w)|z,w=1, (11)

N2 : = μ
∂

∂z
U (z,w) −

(
∂2

∂w∂z
U (z,w)

)
∂

∂z
U (z,w)

+
(

∂2

∂z2
U (z,w)

)
∂

∂w
U (z,w)|z,w=1. (12)

Now, by looking at the structure of Eq. (9′), we see that this
expression diverges when A → 0. This is the point that marks
the phase transition as it implies a singularity in the average
component size. Definitions of the moments (1) allow us to
rewrite A in a shorter form: the directed random graph contains
the giant weak component iff

A = 2μμ11 − μμ02 − μμ20 + μ02μ20 − μ2
11 > 0. (13)

It is interesting to compare this result to similar findings
for other types of giant components studied elsewhere; see
Table I. For instance, in undirected random graphs, there is
only one notion for a connected component, and the giant
component [18] exists iff

μ2 − 2μ1 > 0, (14)

where μ1,μ2 are the first two moments of the degree distribu-
tion. If the degree distribution is simply a translated discrete
δ function, d(l) = δ(l − k), thus having μ1 = k, μ2 = k2, the
criterion (14) degenerates to k � 3. From the perspective of
percolation theory, this means that a regular Bethe lattice [3]

admits unbounded clusters of infinite size only if the cor-
responding coordinate number σ = k − 1 � 2. Less trivial
degree distributions generalize this expression to irregular
Bethe lattices. To derive the critical probability, one needs
a dynamic process that assigns a specific degree distribution
to a measure of progress c (or in the case of percolation on
Bethe lattices, probability p). Such a process will be discussed
in Sec. III.

In directed graphs, there are three types of connected
components: in-components, out-components, and weak com-
ponents. The giant in-component [19] exists iff

μ11 − μ > 0. (15)

This inequality is stronger than the criterion (13), meaning that
the existence of the giant in-component is also sufficient for the
giant weak component to exist. Furthermore, the criterion for
the existence of the giant out-component is identical to (15).

For a given directed degree distribution u(n,k), we may as-
sociate a one-dimensional degree distribution by disregarding
the direction of the edges, d(l) = ∑

n+k=l u(n,k). In this case,
one may apply (14) to find out if the giant component exists in
the induced undirected graph [26]. When expressed in terms
of moments of the bivariate distribution, u(n,k), this criterion
reads 2μ11 + μ02 + μ20 − 4μ > 0. The criterion, however,
should not be interpreted as the existence criterion for the
giant weak component, as it refers to a different topology.

III. EVOLVING DIRECTED GRAPHS WITH
ARBITRARY BOUNDED DEGREES

In this section, we construct a time-continuous random
process for evolution of the directed random graph. A specific
feature of this process is that the in- or out-degree of each
vertex is bounded according to a priori specified distribution.
The state of each vertex is described by vector (n,k,nmax,kmax),
where n counts in-edges, k counts out-edges, and nmax, kmax are
bounds on the maximum numbers for edges of each type. The
bounds are not the same for different vertices, and initially,
when no in- or out-edges are present, the whole system is
characterized only by the distribution of bounds P (nmax,kmax) :
N2

0 → R+. As the time t progresses continuously, the vertex
states are evolving according to the mechanism

(n1,k1,nmax,1,kmax,1) + (n2,k2,nmax,2,kmax,2)

→ (n1 + 1,k1,nmax,1,kmax,1) + (n2,k2 + 1,nmax,2,kmax,2),

(16)

where the rate is τ (nmax,1 − n1)(kmax,2 − k2). Here τ is a rate
constant that with no loss of generality may be considered to be

TABLE I. Existence criteria for various types of giant components in directed and undirected graphs as a function of degree-distribution
moments.

Type Criteria Reference

undirected graphs, percolation on Bethe
lattices: giant component

μ2 − 2μ1 > 0 Molloy and Reed [18] Fisher and Essam [3]

directed graphs: giant in-component,
giant out-component

μ11 − μ > 0 Newman, Strogatz, and Watts [19]

directed graph: giant weak component 2μμ11 − μμ02 − μμ20 + μ02μ20 − μ2
11 > 0 This work
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(0,0,2,1) (0,0,3,0) (0,0,0,2)

(0,2,0,2)(0,1,2,1)

(2,0,3,0)

edge

   vacant 
in-spot

vacant 
   out-spot

FIG. 3. Each vertex of the evolving directed graph is viewed as
carrying two types of edges (in/out) and two types of vacant spots
(also in/out). The initial number of vacant spots sets up a limit on
the maximum number of incident edges for each vertex. The random
process converts a pair of an in-spot and an out-spot belonging to
different vertices into a directed edge.

unity. The difference between the edge bound and the actual
number of edges, nmax,1 − n1 (or kmax,2 − k2), refers to the
finite capacity of a vertex to receive a new edge. In this process,
not every pair of vertices have an equal probability to become
connected, but the vertices that have a greater capacity are
preferred. As an alternative notation for a vertex state, one may
thus speak of vertices with n − nmax vacant spots for in-edges,
and kmax − k vacant spots for out-edges, as illustrated in Fig. 3.

We will now study how the evolution process (16) affects
the degree distribution.

A. Distribution for degrees and degree bounds

As a matter of convention, the degree distribution for
a directed graph is a two-dimensional function counting
in-degree n and out-degree k. In the current case, we employ
a degree distribution with two extra dimensions to account for
bounds on in-degree (nmax) and out-degree (kmax). At any point
in time t � 0, the probability measure u(n,k,nmax,kmax,t) ∈
N2

0 × N2 ⊃ � → R+ denotes the probability of randomly

selecting a vertex with in-degree n, out-degree k, and in- or
out-degree bounds nmax,kmax > 0. Thus the values of state
vector (n,k,nmax,kmax) ∈ � always satisfy 0 � n � nmax and
0 � k � kmax. As the process evolves, the degrees n,k of each
node depart from 0 and increase, while the degree bounds
nmax,kmax remain fixed. For this reason, the moments of the
probability measure u over nmax,kmax are time-independent,

νij =
∑
�

ni
maxy

j
max u(n,k,nmax,kmax,t), (17)

while the moments over n,k are functions of time,

μij (t) =
∑
�

niyj u(n,k,nmax,kmax,t). (18)

The first moments have a clear interpretation: ν10, ν01 denote
the total numbers of vacant spots for in- and out-edges present
initially, and μ10, μ01 denote the total numbers of in- or out-
edges present in the graph at the current instance of time. The
total probability is conserved and equal to the total probability
of the initial distribution,∑

�

u(n,k,nmax,kmax,t) =
∑

nmax,kmax

P (nmax,kmax) = 1, t � 0.

(19)
In the directed graph, the total numbers of in-edges and out-
edges coincide, which, in terms of our notation, results in an
additional constraint on the degree distribution,

μ(t) = μ10(t) = μ01(t), t > 0.

Note that a similar equality for the degree bounds, generally
speaking, does not hold (ν10 �= ν01) since one is free to choose
initial conditions arbitrarily. Yet, in the partial case when ν10 =
ν01, the initial distribution P (n,k) also defines a valid graph
topology that is an irregular Bethe lattice. In this case, the
process is equivalent to a mean-field percolation process on
this lattice. In percolation theory, as a matter of convention,
instead of time as a measure of progress one employs the edge
occupancy probability, p = μ(t)

ν10(t) = μ(t)
ν01(t) .

The total number of vacant in-spots in the whole system is
given by ν10 − μ(t), and ν01 − μ(t) refers to out-spots. When
a vertex (n,k,nmax,kmax) receives a new out-edge, the choice
is made between nmax − n vacant out-spots on the vertex and
ν01 − μ(t) vacant in-spots in the whole system, thus the rate
(nmax − n)[ν01 − μ(t)]. Similar considerations are made for
the placement of an in-edge, and the dynamics for the degree
distribution results in the following master equation:

∂

∂t
u(n,k,t) = (nmax − n + 1)[ν01 − μ(t)]u(n − 1,k,t) + (kmax − k + 1)[ν10 − μ(t)]u(n,k − 1,t)

− ((nmax − n)[ν01 − μ(t)] + (kmax − k)[ν10 − μ(t)])u(n,k,t);

u(n,k,nmax,kmax,0) = δ(n)δ(k)P (nmax,kmax). (20)

Here, discrete δ functions in the initial conditions, δ(n)δ(k),
refer to the fact that vertices have no edges initially. Further in
the text, where it leads to no confusion, we will drop nmax,kmax

dimensions, referring to u(n,m,t) for the sake of brevity. As a
routine to solving (20), we take the following steps: first, the
differential-difference equation (20) will be transformed to a

nonlinear partial differential equation (PDE) by the generating
function transform; then, we derive and solve an ordinary
differential equation (ODE) for μ(t) that also eliminates the
nonlinearity; finally, the linear PDE is solved and the solution
is transformed back to the domain of discrete functions. Below,
these steps are elucidated in more detail.
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We act on the left- and right-hand sides of the balance equa-
tion (20) with the bivariate generation function transform (3) in

dimensions n,k. Thus in the generating-function domain, (20)
becomes

∂

∂t
U (z,w,t) = (nmax(z − 1)ν01 + kmax(w − 1)ν10 + (nmax + kmax − kmaxz − kmaxw)μ(t))U (z,w,t)

− z(z − 1)[ν01 − μ(t)]
∂

∂z
U (z,w,t) − (w − 1)w[ν10 − μ(t)]

∂

∂w
U (z,w,t),

U (n,k,nmax,kmax,t)|t=0 = P (nmax,kmax), (n,k,nmax,kmax) ∈ �. (21)

This PDE is not linear, as the unknown function, U (z,w,t),
is also used in the definition of μ(t). We can change (21)
to a simpler form by first resolving an expression for
μ(t). Transform (3) maps weighted distributions to partial
derivatives of the corresponding generating functions [e.g.,
nu(n,k,t) → z ∂

∂z
U (z,w,t)], and the sum over the whole

domain to the value of the generation function at point 1
[e.g.,

∑
n,k u(n,k,t) → U (z,w,t)|z=1]. Thus applying operator

z ∂
∂z

|z=1 to both sides of (21) yields an ODE for the first
moment:

μ′(t) = [ν01 − μ(t)][ν10 − μ(t)],

μ(0) = 0. (22)

The solution of the differential equation (22) reads

μ(t) = ν01 − ν01(ν01 − ν10)

ν01 − ν10 et(ν10−ν01)
. (23)

Having an expression for μ(t) that contains only t and
constants allows us to separate the variables in (21). Assuming

U (z,w,nmax,kmax,t) = f (z,nmax,kmax,t)g(w,nmax,kmax,t)

and dropping nmax,kmax dimensions in the shorthand notation,
we obtain

A1(z)f (z,t) + B1(z) ∂
∂z

f (z,t) − ∂
∂t

f (z,t)

f (z,t)
= α(t),

(24)
A2(w)g(w,t) + B2(w) ∂

∂w
g(w,t) − ∂

∂t
g(w,t)

g(w,t)
= −α(t),

where α(t) does not depend on z,w, and the rest of the
coefficients are as follows:

A1(z) = [ν01 − μ(t)]nmax(z − 1),

A2(w) = [ν01 − μ(t)]kmax(w − 1),

B1(z) = [ν01 − μ(t)]z(z − 1),

B2(w) = [ν01 − μ(t)]w(w − 1).

Additionally, a solution of PDE (24) must satisfy the total
probability conservation (19). To ensure that, we apply the
operators

∑
nmax,kmax

|z=1,
∑

nmax,kmax
|w=1 to both parts of (24):

− ∂

∂t

∑
nmax,kmax

f (1,t) = α(t)
∑

nmax,kmax

f (1,t),

∂

∂t

∑
nmax,kmax

g(1,t) = α(t)
∑

nmax,kmax

g(1,t).

From here, it becomes obvious that the only α(t) that admits
the total probability conservation for nonzero f (z,t),g(w,t)
is α(t) ≡ 0. Therefore, the PDEs introduced in (24) simplify
to

∂

∂t
f (z,t) = A1(z)f (z,t) + B1(z)

∂

∂z
f (z,t),

f (z,t)|t=0 = P1(nmax); (25)

∂

∂t
g(w,t) = A2(w)g(w,t) + B2(w)

∂

∂w
g(w,t),

g(w,t)|t=0 = P2(kmax) (26)

and lead to the following solutions:

f (z,t) =
(

1 + (z − 1)

ν10
μ(t)

)nmax

P1(nmax),

g(w,t) =
(

1 + (w − 1)

ν01
μ(t)

)kmax

P2(kmax),

(27)

where P (nmax,kmax) = P1(nmax)P2(kmax). Having expressions
for f (z,t),g(w,t) permits a straightforward asymptotic anal-
ysis for u(n,k,t) when t approaches infinity. Depending
on the relation between parameters ν01,ν10, three modes
emerge.

(i) Equal maximum numbers of in- and out-edges, ν01 =
ν10. In this case,

lim
ν01→ν10

μ(t) = ν2
10t

(1 + ν10t)2

and

lim
t→∞ U (z,w,t) = znmaxwkmaxP (nmax,kmax).

This expression generates a discrete δ function translated to
position (nmax,kmax),

u(n,k,nmax,kmax,t) = δ(n − nmax)δ(k − kmax)P (nmax,kmax).

(28)

(ii) The maximum number of in-edges exceeds the number
of out-edges, ν10 > ν01. In this case, the distribution cannot
evolve into a single δ function at infinite time, since there will
always be vertices with unused spots for an in-edge. In fact, the
evolution of the system will stop when ν01 = ν10. As t → ∞,
the generation function approaches

lim
t→∞ U (z,w,t) =

(
1 + ν01

ν10
(z − 1)

)nmax

wkmaxP (nmax,kmax),

012315-6



EMERGENCE OF THE GIANT WEAK COMPONENT IN . . . PHYSICAL REVIEW E 94, 012315 (2016)

which generates

lim
t→∞ u(n,k,nmax,kmax,t)

=
(

nmax

n

)(
μ(t)

ν10

)n(
1 − μ(t)

ν10

)nmax−n

× δ(k − kmax)P (nmax,kmax). (29)

(iii) The maximum number of out-edges exceeds the
number of in-edges, ν01 > ν10. Analogously to the previous
case, one obtains the limiting value for the degree distribution,

lim
t→∞ u(n,k,nmax,kmax,t)

=
(

kmax

k

)(
μ(t)

ν01

)k(
1 − μ(t)

ν01

)kmax−k

× δ(n − nmax)P (nmax,kmax). (30)

Finally, in the general case of finite time, the expression for
the degree distribution is generated by (27),

u(n,k,nmax,kmax,t)

=
(

nmax

n

)(
kmax

k

)(
μ(t)

ν10

)n(
1 − μ(t)

ν10

)nmax−n

×
(

μ(t)

ν01

)k(
1 − μ(t)

ν01

)kmax−k

P (nmax,kmax). (31)

Although the four-dimensional distribution
u(n,k,nmax,kmax) has a relatively simple expression
when viewed for a specific class of vertices, nmax,kmax,

the most useful output of this model is the two-variate
degree distribution d(n,k,t) = ∑

nmax,kmax
u(n,k,nmax,kmax,t).

Distribution d(n,k,t) may exhibit a “nontrivial” interplay
of peaks for certain initial distributions. Figure 4 illustrates
the evolution of the degree distribution for a sample system.
The initial distribution of spots, P (nmax,kmax), is nonzero
only in three points, P (10,10),P (5,10),P (10,4). Naturally,
the evolution of d(n,k) starts with all the probability density
located at point (0,0) at t = 0. In the intermediate time stages,
the distribution becomes broad, so that P (n,k) > 0, n,k � 10.

Asymptotically, d(n,k,t) converges to a steady state at t → ∞.
Since there are more possibilities for in-edges than out-edges,
ν10 > ν01, the steady-state degree distribution is of the
type (29).

B. Phase transition

Now, when we have an explicit expression for the degree
distribution, it is possible to apply the existence criterion (13)
to this expression, and in this way we find the critical
parameters. Let cn(t) and ck(t) denote the fraction of in-spots
and out-spots that were converted into in-edges,

cn(t) = μ(t)

ν10
,

ck(t) = μ(t)

ν01
.

(32)

Both cn(t) and ck(t) are non-negative; their upper bounds,
however, depend on the initial conditions. Namely,

sup
t>0

cn(t) =
{

1, ν01 � ν10,
ν01
ν10

, ν01 < ν10;

sup
t>0

ck(t) =
{ ν10

ν01
, ν01 � ν10,

1, ν01 < ν10.
(33)

To retrieve explicit expressions for moments that appear
in (13), we act on the solution (31) with differential operators
( ∂2

∂z2 − ∂
∂z

), ( ∂2

∂w2 − ∂
∂w

), and ( ∂2

∂z∂w
) to correspondingly obtain

μ02(t) = ck(t)ν01 − ck(t)2ν01 + ck(t)2ν02,

μ20(t) = cn(t)ν10 − cn(t)2ν10 + cn(t)2ν20,

μ11(t) = cn(t)ck(t)ν11. (34)

Plugging (34) into (13) and realizing that ck(t) = ν10
ν01

cn(t)
yields a criterion for the existence of the giant weak component
as a quadratic function of cn(t) with the coefficients involving
exclusively initial moments,

a cn(t)2 + b cn(t) + c > 0, (35)
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FIG. 4. Evolution of the bivariate degree distribution u(n,k,t) for the random-graph model with bounded degrees. In this example, the
initial distribution of bounds P (nmax,kmax) vanishes everywhere except for the points P (10,10) = 1

3 , P (5,10) = 1
3 , P (10,4) = 1

3 . Since the
total number of in-spots exceeds the total number of out-spots, only k-marginal of the distribution approaches a linear combination of δ

functions in the time limit, t → ∞. The time snapshots are obtained for the following values of time: (a) t = 0.01, (b) t = 0.1, (c) t = 1, and
(d) t → ∞.

012315-7



IVAN KRYVEN PHYSICAL REVIEW E 94, 012315 (2016)

where

a = ν01ν10 − ν02ν10 − ν2
11 − ν01ν20 + ν02ν20,

b = 2ν01ν11, c = −ν2
01.

Both roots of (35) are real, and the smallest root is
always negative. Therefore, the inequality is satisfied
when

cn(t) > cn,critical = ν01

ν11 + √
(ν02 − ν01)(ν20 − ν10)

(36)

or alternatively

ck(t) > ck,critical = ν10

ν11 + √
(ν02 − ν01)(ν20 − ν10)

. (37)

Equations (36) and (37) express the main result of this section
namely the phase-transition point in terms of a monotone
function of time, cn(t). One may easily transit to the actual
time, t, by evaluating

t =
log

( (1−cn)ν01
ν01−cnν10

)
ν10 − ν01

or t =
log

(
ν10−ckν01
(1−ck )ν10

)
ν10 − ν01

.

In the context of edge percolation on Bethe lattices (which
this problem degenerates to when ν01 = ν10), both critical
values (36) and (37) coincide, and the critical probability is
given by pc = cn,critical = ck,critical.

Finally, let us turn to the next question: does a specific
initial distribution, P (nmax,kmax), yields the phase transition
in finite time. To answer this question, it is enough to check
if the giant component exists when cn or ck approach their
upper bounds (33). Evaluating the moment expressions (34)
at the upper bounds for cn,ck [Eq. (33)] and substituting the
expressions into the phase-transition criterion (13) yields the
desired condition: the initial distribution P (nmax,kmax) admits
the phase transition in finite time iff at least one of the following
conditions is true:

A1 := (ν02 − ν01)(ν20 − ν10) − (ν11 − ν01)2 > 0,

and ν01 � ν10

or

A2 := (ν02 − ν01)(ν20 − ν10) − (ν11 − ν10)2 > 0,

and ν01 � ν10.

(38)

Furthermore, the asymptotic phase transition occurs at t →
∞ iff the inequalities in (38) are replaced by equalities (i.e.,
A1 = 0, A2 = 0).

When ν01 = ν10 (i.e., equal numbers of in-spots and
out-spots are present initially), both inequalities from (38)
degenerate to

2ν10ν11 − ν02ν10 + ν02ν20 − ν10ν20 − ν2
11 > 0.

One may see that this condition is identical to (13), and
this similarity is not a coincidence. When equal numbers of
vacant spots for in- and out-edges are used, all spots will
be converted into edges at infinite time. Furthermore, the
degree distribution u(n,k,t) degenerates to a δ function, as
was given in (28), and consequently its moments approach the
moments of the distribution of degree bounds, P (nmax,kmax),
i.e., μ(t) → ν10, μ20(t) → ν20, μ11(t) → ν11, etc. Generally

speaking, there are many possible configurations of the
initial distribution P (nmax,kmax). However, when the initial
distribution is nonzero only in three points, P (nmax,i ,kmax,i) =
ci, i = 1,2,3, it is convenient to visualize the result of (36) for
all f1 + f2 + f3 = 1 with a plot in the barycentric coordinates
(Fig. 5). Since ci � 0, the plot is contained within a triangle;
the ith vertex of the triangle is associated with ci = 1 (so that
the other two values are zero), and the points inside refer to all
ci being nonzero. The color (shaded) area in the panels of Fig. 5
denotes the phase-transition point in terms of cn, the black area
denotes configurations that lead to no phase transition, and the
red (dashed) line contains configurations that admit the phase
transition asymptotically.

We will now focus on some qualitative properties of the
cases presented in Fig. 5 for illustrative purposes. One may
observe that when the degree bounds restrict a vertex to
being a sink (only in-edges) or a source (only out-edges),
the configurations that admit a phase transition occupy only
the area close to the center of the triangle [cases (a)–(c) and
(g)–(i)] but not close to the triangle’s vertices. This means that
only a combination of sinks and sources yields a system with a
phase transition. Asymptotically, when sinks and sources with
a maximum of two edges are combined with sinks of infinitely
high degree, the phase space splits into two regions, as shown
in Fig. 5(c): no phase transition (black area) and immediate
phase transition (hatched area). Vertices that have at least two
edges of one kind and one of the other kind (i.e., two out-
and one in-edge, or two in- and one out-edge) can form the
giant weak component alone. In this case, as opposed to the
nondirectional case, a large proportion of sinks (or sources)
may postpone the phase transition; see panels (d), (e), (f), and
(h). Finally, if a vertex is allowed to have one edge at most, this
vertex will significantly postpone the emergence of the giant
component or prevent it completely [compare panels (e) and
(g)].

C. Relation to Flory-Stockmayer gelation theory

The results on the phase transition, as presented in
the previous section, constitute a generalization for Flory-
Stockmayer gelation theory (FSGT). FSGT was developed by
Flory [29] and Stockmayer [30] by means of probabilistic and
kinetic arguments, respectively. Later, the kinetic view on the
theory was advanced by Ziff [31]. FSGT predicts when step
polymerization of multifunctional monomers yields an infinite
structure—the gel. One of the limitations of the theory is that
only three species of monomers are present in the mixture: two
species of linear and one species of branched units. Here by
taking the random-graph point of view, we demonstrate how
the present results generalize the applicability of FSGT to an
arbitrary number of monomer species with no constrains on
their functionalities.

Flory and Stockmayer considered a polymerization model
in which a chemical bond may appear between a pair of
reactive groups of two types, A and B. The pair consisting
of one A group and one B group may receive a chemical
bond with equal probability, but reactions between A and A

or B and B are forbidden. The reactive groups are carried on
monomers. There are three types of monomers in the system:
linear monomers with two A groups, linear monomers with
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FIG. 5. Barycentric plots for the weak-component phase-transition time in terms of cn, as obtained for the random-graph model with
bounded degrees. Panels (a)–(i) present various initial distributions that are nonzero at three points, nmax,i ,kmax,i , i = 1,2,3. Cases (a) and (b)
are covered by Flory-Stockmayer theory. The black area contains configurations that do not admit phase transition, the color (shaded) area
contains configurations with finite phase transition, and the red dashed line contains configurations that admit the phase transition asymptotically
at infinite time.

two B groups, and branched monomers with n groups of
type A. In its essence, this model is a directed random-graph
model of the type (16), where a vertex resembles a monomer,
an A—group – the in-spot, B group— the out-spot, and
a chemical bond resembles a directed edge, B → A. The
initial conditions are restricted to P (nmax,kmax) = 0 except for
P (1,0) = f1 (linear unit, A monomer), P (0,1) = f2 (linear
unit, B monomer), and P (n,0) = f3 (branched unit); f1 +
f2 + f3 = 1. Subsequently, the expressions for the moments

of P (nmax,kmax) are

ν10 = 2f1 + nf3, ν01 = 2f2,

ν20 = 4f1 + f 2f3, ν02 = 4f2, ν11 = 0. (39)

Plugging the moments (39) into the criterion (38) immediately
gives us the condition for finite-time emergence of the giant
weak component, i.e., gel. The polymerization system contains
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gel if at least one of the following statements is true:

(a) f2[2f1 − 2f2 + (n2 − n)f3] > 0

and 2f2 � 2f1 + nf3;

or

(b) 2f2[2f1 + (n2 − n)f3] − (2f1 + nf3)2 > 0

and 2f2 � 2f1 + nf3.

(40)

Alternatively, the phase-transition condition may be rewrit-
ten as a lower bound on cn,

cn > cn,critical =
√

f2

f1 + (n2−n)
2 f3

. (41)

Now, employing the original notation used by Flory [29],

αc = 1

n − 1
, ρ = nf3

(2f1 + nf3)
,

(42)

r = 2f1 + nf3

2f2
, pA = cn, pB = ck,

and realizing that pB = rpA, we rewrite the condition (41) as

pA >

√
αc

r(αc + ρ − αcρ)
or pB >

√
rαc

αc + ρ − αcρ
. (43)

Here, pA (or pB) measures the progress of the process, it is
the probability that A-type functionality (B-type) has been
converted into a chemical bond. From the perspective of
percolation models, pA,pB play a similar role to the site
occupancy probability, p, as, for instance, in the Bethe lattice
percolation model, Ref. [3]. As an alternative to (43), one
may also consider a single inequality for α = p2

Ar(αc + ρ −
αcρ) = p2

B

r
(αc + ρ − αcρ). Gelation occurs if

α > αc. (44)

Inequality (44) constitutes the central result of Flory-
Stockmayer theory.

IV. CONCLUSIONS

The fundamental assumption upon which we rely in this
paper is that in all respects other than their degree distribution,
the graphs are treated as entirely random. This assumption

allows us to construct a powerful toolbox that connects a local
property of the random graph, namely the degree distribution,
to the global properties. In this respect, the inequality (13)
crystallizes as the most generic result: it allows one to verify
the existence of the giant weak component by knowing only
moments of the degree distribution. No limitations are imposed
on the degree distribution itself. That means that one has
multiple options when applying the criterion to a particular
problem. One option is to find the distribution empirically from
measured data, which is a much easier task than measuring the
weak-component size directly, for instance in the case of social
networks or the World Wide Web structure. Another option is
to predict the degree distribution by a computer simulation,
which is the method of choice in statistical mechanics among
other fields. Finally, one may apply the criterion (13) to a
theoretical model that yields an analytic expression for the
degree distribution or its moments. In the latter case, the phase-
transition criterion may be reformulated in terms of the model
parameters. As an example of this path, we referred to the
random-graph process with bounded degrees in the second part
of the paper. This model plays an important role in soft-matter
physics, where it is used as a prototype for step polymerization
and gel formation. Instead of a computer simulation, the
expression for the degree distribution is obtained analytically.
The analytic expression is then used to find the phase-transition
point for the weak component in terms of the only model
parameter—the distribution of degree bounds. In this way,
it is possible to avoid resolving the whole component size
distribution when focusing on the phase transition alone.

In the context of step polymerization, the emergence
of the giant weak component signifies gel formation. In
polymer synthesis, the identification of the gel point is usually
associated with Flory-Stockmayer gelation theory. We showed
that Flory-Stockmayer theory can be viewed as a special
case of the random-graph model with bounded degrees.
Furthermore, as they are more general, the analytic results
on the random-graph model with bounded degrees naturally
extend Flory-Stockmayer theory to a broader scope of cases.
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[10] E. Buffet and J. V. Pulé, J. Stat. Phys. 64, 87 (1991).
[11] M. Gordon, Proc. R. Soc. London, Ser. A 268, 240 (1962).
[12] I. Kryven and P. D. Iedema, Macromol. Theor. Simul. 23, 7

(2014).
[13] I. Kryven and P. D. Iedema, Chem. Eng. Sci. 126, 296

(2014).
[14] I. Kryven and P. D. Iedema, Polymer 54, 3472 (2013).
[15] L. T. Hillegers and J. J. M. Slot, Macromol. Theor. Simul.

25, 348 (2016).

012315-10

http://dx.doi.org/10.1063/1.1703745
http://dx.doi.org/10.1063/1.1703745
http://dx.doi.org/10.1063/1.1703745
http://dx.doi.org/10.1063/1.1703745
http://dx.doi.org/10.1103/PhysRevE.71.026129
http://dx.doi.org/10.1103/PhysRevE.71.026129
http://dx.doi.org/10.1103/PhysRevE.71.026129
http://dx.doi.org/10.1103/PhysRevE.71.026129
http://dx.doi.org/10.1088/1742-5468/2011/11/P11008
http://dx.doi.org/10.1088/1742-5468/2011/11/P11008
http://dx.doi.org/10.1088/1742-5468/2011/11/P11008
http://dx.doi.org/10.1103/PhysRevE.83.061102
http://dx.doi.org/10.1103/PhysRevE.83.061102
http://dx.doi.org/10.1103/PhysRevE.83.061102
http://dx.doi.org/10.1103/PhysRevE.83.061102
http://dx.doi.org/10.1088/1751-8113/48/20/205002
http://dx.doi.org/10.1088/1751-8113/48/20/205002
http://dx.doi.org/10.1088/1751-8113/48/20/205002
http://dx.doi.org/10.1088/1751-8113/48/20/205002
http://dx.doi.org/10.1103/PhysRevE.92.022135
http://dx.doi.org/10.1103/PhysRevE.92.022135
http://dx.doi.org/10.1103/PhysRevE.92.022135
http://dx.doi.org/10.1103/PhysRevE.92.022135
http://dx.doi.org/10.1103/PhysRevE.91.022119
http://dx.doi.org/10.1103/PhysRevE.91.022119
http://dx.doi.org/10.1103/PhysRevE.91.022119
http://dx.doi.org/10.1103/PhysRevE.91.022119
http://dx.doi.org/10.1007/BF01057869
http://dx.doi.org/10.1007/BF01057869
http://dx.doi.org/10.1007/BF01057869
http://dx.doi.org/10.1007/BF01057869
http://dx.doi.org/10.1098/rspa.1962.0136
http://dx.doi.org/10.1098/rspa.1962.0136
http://dx.doi.org/10.1098/rspa.1962.0136
http://dx.doi.org/10.1098/rspa.1962.0136
http://dx.doi.org/10.1002/mats.201300121
http://dx.doi.org/10.1002/mats.201300121
http://dx.doi.org/10.1002/mats.201300121
http://dx.doi.org/10.1002/mats.201300121
http://dx.doi.org/10.1016/j.ces.2014.11.064
http://dx.doi.org/10.1016/j.ces.2014.11.064
http://dx.doi.org/10.1016/j.ces.2014.11.064
http://dx.doi.org/10.1016/j.ces.2014.11.064
http://dx.doi.org/10.1016/j.polymer.2013.05.009
http://dx.doi.org/10.1016/j.polymer.2013.05.009
http://dx.doi.org/10.1016/j.polymer.2013.05.009
http://dx.doi.org/10.1016/j.polymer.2013.05.009
http://dx.doi.org/10.1002/mats.201500093
http://dx.doi.org/10.1002/mats.201500093
http://dx.doi.org/10.1002/mats.201500093
http://dx.doi.org/10.1002/mats.201500093


EMERGENCE OF THE GIANT WEAK COMPONENT IN . . . PHYSICAL REVIEW E 94, 012315 (2016)

[16] L. T. Hillegers and J. J. M. Slot, Macromol. Theor. Simul. 24,
248 (2015).
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