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We obtain graphicality conditions for general types of scale-free networks. The same conditions obtained for
uncorrelated networks are obtained in the general case. Then an upper bound relating y, the exponent of the degree
distribution, with the cutoff exponent «, as k < 1/y is established. This bound is valid for all networks with
a well-defined power-law degree distribution in the range y < 2. Some recent numerical research on visibility
networks arising from persistent fractional Brownian motion (fBm) processes are reviewed since they do not
fulfill these conditions. As a consequence, a new relationship between the exponent y of the degree distribution
and the Hurst exponent H of the fBm process, y < 1/H, is postulated.
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I. INTRODUCTION

The great success of complex networks in explaining
properties in many diverse phenomena is because networks
provide these phenomena with a rich structure able to admit
a quantitative analysis. In this way, relation phenomena
occurring in such distinct fields as technology, sociology,
and biology [1] acquire a tangible structure amenable to
analysis. Even other kinds of systems, such as time series
that possess their own well-defined and long-established
direct methods of analysis, are mapped to complex networks
(visibility networks), with the aim of explaining phenomena
not accessible to direct analysis [2,3]. Hence, the analysis and
description of network structures is a subject of major interest.
And the kind of network attracting most interest, since it is
ubiquitously found in complex phenomena, is the so-called
scale-free network. Given a network with N nodes and some
connections between them, defining k;, the degree of each node
i, as the number of edges supported by it, a scale-free network
is defined as a graph whose degree distribution follows a power
law py ~ k7.

The exponent y is, therefore, the main characterization of
a scale-free network, but other asymptotic properties related
with the large-scale structure of networks are also important
[4]. In particular, the asymptotic behavior of the maximum
degree ky with the system size N follows also a power
law, ky ~ N*, and the exponent x gives complementary
information of the network structure. Due to the strong model
dependence of « [5], an analysis using both exponents y and
k would be a good starting point in the characterization of a
network structure. Studying how these exponents behave in
particular models, or when some kind of structure exists, is
a methodology followed in many papers [5-16]. In general,
one obtains structural bounds in the form of inequalities
involving the exponents y and «. These bounds are dependent
on the type of network. Here we are going to consider
exclusively networks with neither multiple connections nor
self connections.

The main result of this paper is to complete the present
incomplete picture of the role played by bounds in scale-free
complex networks. It is worth remarking that, for a general type
of these networks, only the so-called natural bound, ¥ < ﬁ,
exists [6,7], and it applies in the range y > 2. It is an effective
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bound in many kinds of networks, for instance, those growing
with recursive methods [7,8], which are, of course, correlated,
and in general for networks in the range y > 3. This bound is
not due to structural constraints but it is an inherent property
of any finite degree sequence with a power-law distribution.
Bounds due to structural constraints have been calculated,
mainly for uncorrelated networks, using different methods:
through properties of the degree-degree correlation [9-11],
using statistical methods on network ensembles [12,13],
or imposing graphicality conditions [14,15]. The structural
bound for uncorrelated networks in the range y > 2 is, from
Refs. [9,12], k < 1/2, whereasitis k < 1/y intherange 1 <
y < 2[11,15]. Since natural and structural bounds arise from
independent conditions, the exponent « of the effective bound
should be taken as min{1/2,1/(y — 1)} in the range y > 2.
Note that for y > 3 the effective bound is just the natural
bound. To complete this picture in the range y > 2 and taking
as reference the bounds of uncorrelated networks, some papers
deal with the effect of correlation on these bounds. Using
phenomenological arguments [9] or, more quantitatively, with
explicit models [10,16], it can be seen that a positive degree
correlation (assortativity) produces a lower bound, whereas
a negative degree correlation (disassortativity) increases the
structural bound. Therefore, whereas in the range y > 2 there
is a complete picture of bounds, our knowledge in the range
1 <y <2 is rather limited, only bounds for uncorrelated
networks are known.

In Sec. IT of this paper we extend graphicality conditions to a
general case of scale free networks, establishing that k < 1/y
is a general upper bound for networks with a well-behaved
power law in their degree distribution in the range 1 < y < 2.
As a consequence of this result, and in order to show the
importance of having this class of general results, we show
in Sec. III how a recent estimation of exponents in power-law
distributions of visibility networks should be changed, since
these conditions are not fulfilled.

II. GRAPHICALITY CONDITIONS

Consider a given graph with N nodes whose degrees
in a decreasing order are r; > rp... > ry. As in Ref. [15]
our starting point is the graphicality conditions from the

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.94.012314

MIGUEL A. RODRIGUEZ

Erdos-Gallai (EG) theorem, which states that this sequence is
graphical if it has an even sum and satisfies the EG inequalities:

n

N
Zrl- <n(n—1)+ Z min[n,r;],

i=1 i=n+1

for any integer n in the range 1 < n < N — 1. With random
networks these inequalities can be analytically explored [15].
Here, dealing with the general case, we proceed in a different
way. In order to connect with the standard representation of
scale-free networks, we first consider the degree sequence in
an increasing order k; < k, < --- < ky, and write the EG
conditions for relative degrees ¢; = k;/ky as

N n—1
i <hky'nene =D+ g n<m, (D)
i=n i=1

m,—1

N
doai <ky'neN —m)+ Y g on=m. ()

i=n i=1

where m,, is defined for each n as the intersection of the degree
with the threshold n, = N —n + 1:

Qm,, 2 nc/kN,
qmn_l < nc/kN.

Defining densities as p(u) = % ZzN=1 8(u — gq;) and par-
tial moments n(s) = [, p(u)du, M(s) = fsl up)du, m(s) =
fos up(u)du, we can write the graphicality condition Egs. (1)
and (2) in terms of these moments as

NM(s) < ky'ne(s)ne(s) — 1)+ Nm(s) if s <t,,  (3)

NM(s) < ky'ne(s)ne(t) + 1)+ Nm(ty) if s > 15, (4)

with n.(s) = N[l —n(s)]. When s € (¢,-1,9,) and t; €
(gm,—1,9m,),» Egs. (3) and (4) reproduce the graphicality
condition Egs. (1) and (2). The same occurs when working with
coarse-grained densities. For the sake of brevity let us consider
only the first case. Consider any partition of the interval [q;, gy ]
in L subintervals {[g; 1,41}, each one with /; nodes. Defining
a coarse-grained density as pa (1) = % Z,Ai1 l;6(u — q;), with
q; = ILZ/ gi,j and A =max{g,,; —¢,;} we can easily see
that using this coarse density instead of p graphicality in-
equalities are reproduced: thatis, whens € (g;_;,4;), Eq. (1) is
reproduced for an index n corresponding to the first point of the
ithinterval, ¢, = ¢; 1. So, in each partition only the first points
of every interval {g; 1} are reproduced. To ensure graphicality
an ensemble of partitions, covering the whole set of nodes
with the first node of each interval, should be used. Finally,
from Eqgs. (3) and (4) it is easy to see if these inequalities hold
or not in the asymptotic limit N — oo. Taking the behavior
of the density in a general form as p(v) ~ NV po(v), po(v)
being a nonnormalized distribution with a power-law shape,
po(v) ~ v7Y, we have n(s) ~ NV, M(s) ~ N, and m(s) ~
NV for y <2 and m(s) ~ N"qlz_y for y > 2. Substituting
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these approximations in both inequalities with ¢; ~ 1/ky and
ky ~ N*, we obtain the following inequalities:

1< AN+ B if y <2, 3)

1 <CN'V© £ DNU=D if y > 2, (6)

where in the limit N — oo, A, B, C, D are positive finite
values dependent on the form of the distribution and s. The
first conclusion is very clear: for y > 2 the EG conditions
always hold independently of the values of v. For y < 2 and
v+ k < 1 the EG conditions are also achieved. For y < 2
and v + « > 1 the EG conditions are not fulfilled, since in
the asymptotic limit and for a small enough s, the following
inequalities:

1 s 2 s
/ upo(v)dv < [/ po(v)dv} +f vpo(v)dv
K 0 0

forv+« =1and

1 s
/ upo(V)dv < / vpo(v)d
s 0

for v + k > 1, cannot be fulfilled. The same reasoning is valid
for the coarse-grained distribution p, . Since in a well-behaved
power-law distribution these inequalities are not dependent on
details of coarsening, EG conditions apply for any point of the
original distribution.

Note that these graphicality conditions apply to a general
case in which the relative degree distribution p(v) (also coarse
grained distributions) scales as p(v) ~ N'v~". Focusing
on the most common case where the degree distribution
p(u) = % Z,N=1 8(u — k;) and the maximum degree ky show
a well-defined power law p(u) ~ u~7, ky ~ N“, we obtain
v = k(y — 1) and hence graphicality conditions state that for
y >2and y < 2 with « < 1/y, {k;} sequences are always
graphical, whereas they are not in any other case.

III. TIME SERIES AND VISIBILITY NETWORKS

Visibility graphs are produced from time series by consider-
ing that two data points that are mutually visible are connected.
In more concrete terms, given a time series {yr,, Vi, - - -, Viy |
any pair of data points, y,,y;; (& < t;), are mutually visible
and therefore connected in the corresponding graph, if and
only if for any intermediate #, t; < f; < t;,

e — 1
Yy <Yy + (J’t/- - yt')t .

j—

Note that by definition the visibility graph is undirected
and always connected, since each node is linked at least with
its neighbors. Then a visibility network always maintains
some correlation, even when the corresponding time series
is random. In fact, the Pearson correlation coefficient for
visibility networks of fractional Brownian motion (fBm) and
fractional Brownian noise (fBn) processes is nearly constant
with a value close to 0.2, so they are weakly assortative
networks. Another important property is the invariance of
visibility graphs under affine transformation of the series data,
so local transformations in time series are irrelevant in their
corresponding visibility graph. That is, visibility graphs are
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FIG. 1. Exponents « and y of visibility networks arising from
persistent fBm processes with 1 > H > 0.5. Points are numerical
results with errors; black dashed straight lines are extrapolated
theoretical results, k = H, y = 3 — 2H; and the red dashed curve is
the value postulated in this paper to fulfill graphicality conditions, y =
1/H. k values are obtained from a fitting of a log-log representation
of (ky) against N, using 100 samples and N = 2!3,2!4 215 216,
y values are obtained as shown in Fig. 2.

only sensitive to nonaffine properties of time series. Despite
this divergence, another expected property is to have a close
connection between properties of time series and those of
their respective visibility graphs. This connection is not so
strong as to connect random time series with random visibility
networks [3], but one expects that self-affine series give rise
to something equivalent in networks. A key result confirming
these expectations was the relationship y =3 —2H [3,17]
between the Hurst exponent H of self-affine series produced
by fBm processes and the exponent y of the degree distribution
of the associated visibility graph (which is a power law).

This relationship can be seen even closer if, instead of y,
one estimates the exponent «, obtaining k = H (Fig. 1). From
this result we can draw two interesting conclusions. First, it
confirms the high dependence of the cutoff exponent on the
network model [5]. Second, it gives a physical interpretation
to the connection between time series and visibility networks.
Note that the number of points that are visible from the point
with maximum visibility, ky, scales as N*, so the exponent
k can be interpreted as the fractal dimension of this visible
zone. Self-affinity of time series with exponent H implies
a maximum visibility zone with fractal dimension H. This
result has already been used in the heuristic derivation of the
linear relation y = 3 — 2H for the estimation of the number
of visible nodes from a hub of the network [17].

In our numerical analysis fBm processes are generated with
the Lebinson’s algorithm implemented in Mathwork Matlab.
The point H = 1 is unstable and therefore values such as H =
0.9, close to this point, should be carefully treated. Note that in
Fig. 1 errors are only due to fitting processes. The discrepancy
with the estimated exponent for H = 0.9 is due to its proximity
to the unstable point. But something is not correct since
with these values of exponents, y =3 —2H and k = H, and
in the persistent case (0.5 < H < 1), graphicality conditions
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FIG. 2. Averaged coarse-grained density of degrees {k;} for a
visibility network produced from fBm processes with H = 0.8. N =
22 (red crosses), 2'* (blue circles), and 2'® (black squares). Averaging
over 100 samples and with a partition of homogeneous intervals with
A = [max(ky) — min(k;)]/100. Inset: collapsed averaged coarse
density of relative degrees {g;} with A = [max(gy) — min(g;)]/100.
From these figures we obtain 8 = 0, y; = 1.27 [from pa(u)], y» =
1.25, v =0.3, y3 =v + 1 = 1.3 [from pa(v)]. Therefore, we have
three estimations of y from which we obtain an accurate value of
Yaum With errors.

k < 1/y, that in principle apply in this case, are not fulfilled.
A more detailed inspection of numerical results suggests the
convenience of distinguishing between true numerical results,
producing Ypym and kpym €xponents, and theoretical exponents,
vt and iy, that are an extrapolation of the numerical ones.
Differences between numerical and theoretical values are
attributed to statistical errors, that could be minimized using
better sampling, and to finite-size effects. Certainly, finite-size
effects may be the cause of this discrepancy in the case of
antipersistent fBm processes (0 < H < 1/2) but this is not
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FIG. 3. « versus y plot. Red dot-dashed lines are barriers. The
upper is the natural « < 1 and the lower, ¥ < 1/y, is due to
graphicality constraints. Points including y, =3 — 2H are above
the graphicality barrier. Taking a new y;, < 1/H the theoretical
curve {yy. km} becomes just below the graphicality barrier. The
extrapolation yum — V4, seems to be the correct one.
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FIG. 4. As in Fig. 2, but now with H = 0.3. In contrast to this
figure a true power law is not observed here for these sizes. The
possible straight line in the main figure is shorter than one decade.
Only one point is collapsed in the inset and the slope of the enveloping
line (2.4) is in agreement with the linear relation y =3 — 2H.

so in the persistent case. In Fig. 2 we observe that finite size
effects do not change the numerical value of y,un, and therefore
its extrapolation to the theoretical value should be questioned.
The lower frame of Fig. 1 defines clearly the numerical value
Yaum ~ 1/H. Concluding, Fig. 3 shows a clear picture of
the problem and its solution. When the value yy, =3 — 2H
is used, either with «y, or kym, graphicality conditions are
exceeded, whereas with y,;, < 1/H they are fulfilled. Note
that the equality y; = I/H is not in agreement with the
graphical bound, so with y; < 1/H we want to indicate a
value of y; very close to but lower than 1/H. In this way
the numerical result y,,,, & 1/H and the graphical condition
v < 1/k = 1/H are compatible.

In the case of antipersistent processes graphicality condi-
tions do not impose any bound, so the only constraint is the
natural bound y < HTH that is far from the expected linear
result y =3 — 2H. Although this case is not relevant to our
study of graphicality it is worth noting that, in contrast to
the persistent case, here finite-size effects are so strong that
it is even difficult to identify a true power law in the degree
distribution (Fig. 4). What one sees in this range is that the
exponent of the enveloping line in the collapsed distributions
(inset of Fig. 4) follows the linear relation y =3 —2H.
A more detailed analysis, which will appear in a further
publication, is beyond the scope of this paper.
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Two facts are remarkable when analyzing these results.
First, that the values of xpy,m and ynum are just on the edge
of the graphicality barrier, that is also a structural bound for
uncorrelated networks. One would expect that, as happens
in y > 2, and due to the assortative character of visibility
networks, these values would be well below this bound. As it
is not the case, the role of correlations in this range becomes an
open question. Second, concerning the robustness of exponents
y and «, it has been intuitively assumed that the power-law
exponent y is more robust against changes in the models than
the cutoff exponent «. In fact, it is said that « is an exponent
strongly dependent on the model [5]. Our results show just the
opposite. Graphicality constraints change the value yu — v,
keeping the exponent k unaltered.

IV. CONCLUSIONS

An upper bound due to graphicality constraints is es-
tablished for general scale-free networks in the region 1 <
y < 2. This bound is identical to the bound encountered
for uncorrelated networks. This leaves open the interesting
question of whether correlations are structurally irrelevant in
this range, or simply their effects on the cutoff process become
collapsed by graphical conditions.

From a more practical point of view we show how the
knowledge of structural bounds is useful to define exponents
and properties in some limit situations as, for instance, when
some extrapolation of the numerical work is necessary to
arrive at a consistent theory. As a good example confirming
these ideas we review an important recent result where time
series and visibility networks are mutually related through
their characteristic exponents. Time series are generated from
fBm processes with Hurst exponent H. Their corresponding
visibility networks are scale free with an exponent of the
degree distribution given by y =3 — 2H. This revision is
justified since the exponents y and « of the visibility network,
in the case of persistent fBm (0 < H < 1/2), do not fulfill
the graphicallity conditions established before. After a more
detailed revision of the numerical work a new relationship y <
1/H instead of y = 3 — 2H is postulated. Now graphicality
conditions are fulfilled.
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