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Synchronization in the random-field Kuramoto model on complex networks
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We study the impact of random pinning fields on the emergence of synchrony in the Kuramoto model
on complete graphs and uncorrelated random complex networks. We consider random fields with uniformly
distributed directions and homogeneous and heterogeneous (Gaussian) field magnitude distribution. In our
analysis, we apply the Ott-Antonsen method and the annealed-network approximation to find the critical behavior
of the order parameter. In the case of homogeneous fields, we find a tricritical point above which a second-order
phase transition gives place to a first-order phase transition when the network is either fully connected or scale-free
with the degree exponent γ > 5. Interestingly, for scale-free networks with 2 < γ � 5, the phase transition is
of second-order at any field magnitude, except for degree distributions with γ = 3 when the transition is of
infinite order at Kc = 0 independent of the random fields. Contrary to the Ising model, even strong Gaussian
random fields do not suppress the second-order phase transition in both complete graphs and scale-free networks,
although the fields increase the critical coupling for γ > 3. Our simulations support these analytical results.
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I. INTRODUCTION

The Kuramoto model has been the paradigmatic model to
study synchronization phenomena in a multitude of fields,
from physics to sociology [1–4]. The model describes the
dynamics of interacting phase oscillators. Depending on how
strong the coupling is, the oscillators may be in a disordered
state or in an ordered state, i.e., oscillating synchronously with
a certain frequency, despite the heterogeneity in their natural
frequencies. Kuramoto showed that, for all-to-all interaction,
synchronization emerges as a result of a second-order phase
transition [5,6]. Since then, most works on the Kuramoto
model have described continuous phase transitions that occur
for different generalizations of the model. First-order phase
transitions (also called explosive synchronization in this
context) were found as well for other generalizations of
the model, namely with time delays [7], frequency-degree
correlations [8,9], and frequency-weighted coupling [10] (see
reviews [3,4] for other examples).

Our previous findings on the critical behavior of the
order parameter, relaxation rate, and susceptibility of the
Kuramoto model on uncorrelated random complex networks
demonstrated that this model has the same critical exponents
as the Ising model, and therefore it should belong to the same
class of universality [11]. This was shown for the Kuramoto
model in the presence of a uniform external field. More
generally, one should also analyze the impact of random
fields (random pinning) on the critical behavior as in the
random field Ising model on complex networks [12–15].
The consideration of random fields may also be crucial to
understand how disorder affects the emergence of synchrony
in real systems such as cortical oscillations or the circadian
clock in the brain [16,17]. The random-field Kuramoto model
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with all-to-all coupling was first studied in the case when
random fields have the same magnitude and their directions are
uniformly distributed [18]. In this case, a sufficiently strong
random pinning results in a first-order phase transition. On
the other hand, if the magnitudes are random but the fields
have the same direction, then strong pinning can suppress the
synchronization [19].

In this paper, we present an analytical and numerical
treatment of the Kuramoto model with heterogeneous random
fields in random complex networks. We demonstrate that the
network topology and the random-field heterogeneity have a
strong impact both on the critical coupling and on the kind of
synchronization phase transition, which can be of both first-
and second-order or infinite-order.

The paper is organized as follows. In Sec. II we present the
random-field Kuramoto model on complex networks using the
annealed network approximation. We use the Ott-Antonsen
method to reduce the problem to a single differential equation
for the order parameter. In Sec. III we solve the model for
a complete graph and scale-free networks in the presence of
homogeneous and heterogeneous (Gaussian) random fields.
Our results are summarized and discussed in Sec. IV.

II. RANDOM-FIELD KURAMOTO MODEL

A. Annealed network approximation

The original Kuramoto model describes the evolution of N

phase oscillators according to the following equations:

dθi

dt
= ωi + K

N

N∑
j=1

sin(θj − θi), (1)

where θi is the phase of oscillator i, ωi is its natural frequency,
and K is the coupling constant. The oscillators’ natural
frequencies are heterogeneous and follow a probability density
function g(ω). Despite this heterogeneity, the oscillators
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become synchronized for sufficiently large K > Kc. The order
parameter is defined as the fraction of synchronized oscillators,

z = reiψ ≡ 1

N

N∑
j=1

eiθj , (2)

where the magnitude r characterizes the phase coherence, and
ψ is the collective phase. r varies between 0 and 1, which
corresponds to total disorder and complete synchronization,
respectively.

A natural generalization of the model is to consider
interacting oscillators on a complex network described by an
adjacency matrix aji (aji = 1 if j is connected to i, and aji = 0
otherwise),

dθi

dt
= ωi + K

N∑
j=1

aji sin(θj − θi). (3)

To analyze this equation, one can use the so-called “annealed
network” approximation [9,13,20], which replaces a random
complex network by a weighted complete graph in which edge
weights are the probabilities of connections between nodes in
the original graph,

〈aji〉 = qjqi

N〈q〉 , (4)

where qi is the degree of node i and 〈q〉 is the mean degree.
Thus the contribution of each oscillator is weighted by its
degree,

dθi

dt
= ωi + Kqi

N〈q〉
N∑

j=1

qj sin(θj − θi), (5)

and the order parameter is redefined as

z = reiψ ≡ 1

N〈q〉
N∑

j=1

qj e
iθj . (6)

Using Eq. (6), one can write Eq. (5) as follows:

dθi

dt
= ωi + Kqir sin(θi − ψ). (7)

B. Random fields

Using the similarity between the XY model and the
Kuramoto model, one can introduce local fields �hi acting
on the phase oscillators. Each field �hi = (hx(i),hy(i)) =
hi(cos φi, sin φi) is characterized by a magnitude hi =
[h2

x(i) + h2
y(i)]1/2 and an angle φi . The interaction energy

between a field �hi and an oscillator i is E = −�hi · �ni ,
where �ni(θ ) = (cos θi, sin θi) is the unit vector characterizing
oscillator i. Consequently, the force of the local field upon the
oscillator is −∂E/∂θi = hi sin(φi − θi). The Kuramoto model
on complex networks in the presence of local fields is then
described by the following equations [11,21]:

dθi

dt
= ωi + Kqir sin(θi − ψ) + hi sin(φi − θi). (8)

The additional term produces the pinning effect, meaning that
it tries to force each oscillator to be stuck at a random angle.

Therefore, it favors a static disordered state. Note that we
consider the case when the random fields rotate with frequency
equal to the group velocity �. So, in the rotating frame,
the random fields are static. As we already mentioned in
the Introduction, this pinning term was studied within the
Kuramoto model on a complete graph in some particular
cases [18,19]. Here, we consider the case when the phases
of the local fields are uniformly distributed in [0,2π ). The
probability density distribution of local random fields �hi is
G(hx(i),hy(i)) = f (φi)G(hi), where f (φi) = 1/(2π ) is the
uniform distribution of the local fields’ phases and G(hi) is
the probability density distribution of the fields’ magnitude.
The normalization condition is∫∫

G(hx,hy)dhxdhy =
∫ 2π

0
f (φ)dφ

∫ ∞

0
G(h)h dh = 1.

(9)

Regarding the field magnitude, we study two cases. First, all
local fields have the same magnitude, i.e., hi = h. In this case,
we have

G(hi) = 1

h
δ(hi − h). (10)

Second, the entries hx(i) and hy(i) are Gaussian-distributed,
thus

G(hi) = 1

σ 2
exp

[
− h2

x(i) + h2
y(i)

2σ 2

]
. (11)

C. Ott-Antonsen method

We use the Ott-Antonsen method [22,23] to find a set
of differential equations for the time evolution of the order
parameter z in Eq. (6). We follow the same approach as
in [11]. In the limit N → ∞, we define the oscillator density
F (θ,ω,q,h,φ,t) that satisfies the normalization conditions,

∫ 2π

0

∫ ∞

0

∫ ∞

1

∫ 2π

0
F (θ,ω,q,h,φ,t)h dθ dq dh dφ = g(ω),

(12)∫ 2π

0

∫ ∞

0

∫ ∞

−∞

∫ 2π

0
F (θ,ω,q,h,φ,t)h dθ dω dh dφ = P (q),

(13)∫ 2π

0

∫ ∞

−∞

∫ ∞

1

∫ 2π

0
F (θ,ω,q,h,φ,t)dθ dq dω dφ = hG(h),

(14)

and∫ ∞

−∞

∫ ∞

0

∫ ∞

1

∫ 2π

0
F (θ,ω,q,h,φ,t)h dθ dq dh dω = f (φ).

(15)

Note that here we replaced the sum over the degrees q by the
integration.

The oscillator density obeys the conservation law,

∂F

∂t
+ ∂[νF ]

∂θ
= 0, (16)
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where ν is the velocity that drives the dynamics of the
oscillators,

ν = ω + Kqr sin(θ − ψ) + h sin(φ − θ )

= ω + Kq

2i
(ze−iθ − z∗eiθ ) + h

2i
(ei(φ−θ) − e−i(φ−θ)). (17)

Following the Ott-Antonsen method [22,23], we look for a
solution in the form

F = g(ω)P (q)G(h)f (φ)

2π
(1 + F+ + F−), (18)

where

F+ =
∞∑

n=1

αn(ω,q,h,φ,t)einθ (19)

and F− = F ∗
+. Substituting Eq. (18) into Eq. (16), we obtain

α̇ + iωα + Kq

2
(zα2 − z∗) + h

2
(α2eiφ − e−iφ) = 0, (20)

where z can be written as

z(t) =
∫ 2π

0
f (φ)dφ

∫ ∞

0
G(h)h dh

∫ ∞

1

qP (q)

〈q〉 dq

×
∫ ∞

−∞
g(w)α∗(ω,q,h,φ,t)dω. (21)

As in Ref. [11], we look for the stationary solution (α̇ = 0) at
which the phase coherence r is constant. We set ψ = 0 so that
z = r . With these conditions, we find the steady-state solution

α0 =
⎧⎨
⎩

A
√

C−ωB−i(ωA+B
√

C)
A2+B2 if |ω| �

√
A2 + B2,

B
√−C−ωB+i(A

√−C−ωA)
A2+B2 if |ω| >

√
A2 + B2,

(22)

where A=Kqr+h cos φ, B = h sin φ, and C =A2+B2−ω2.
Finally, we take the real part of Eq. (21). In the case of a
Lorentz distribution of natural frequencies, g(ω) = �/π (ω2 +
�2), with � = 1 as a frequency unit, and a uniform distribution
of local fields phases, f (φ) = 1/2π , we obtain a nonlinear
equation determining r as a function of K , degree, and random-
field distributions, P (q) and G(h),

r = 1

2π

∫ 2π

0
dφ

∫ ∞

0
G(h)h dh

∫ ∞

1

qP (q)

〈q〉
× Kqr + h cos φ√

(Kqr + h cos φ)2 + h2 sin2 φ + 1 + 1
dq. (23)

III. CRITICAL BEHAVIOR OF THE ORDER PARAMETER

In this section, we find the critical behavior of the order
parameter for the Kuramoto model on a complete graph and
scale-free networks in the presence of either homogeneous
random fields, Eq. (10), or Gaussian random fields, Eq. (11).
In the case of a complete graph, the degree distribution is
P (q) = δ(q − N + 1) in Eq. (23) since all nodes have the
same degree q = N − 1, whereas for a scale-free graph we use
P (q) = Cq−γ , where C is the normalization constant. Note
that the annealed network approximation, Eq. (4), requires a
finite first-moment, thus limiting our analysis to γ > 2. We
take the Taylor expansion of the right-hand side (RHS) of
Eq. (23) with respect to the order parameter r . By denoting the

RHS as F (r) and taking into account that even terms are zero,
we obtain

r = F ′(0)r + F ′′′(0)
r3

3!
+ O(r5). (24)

In the leading order in r , the condition F ′(0) = 1 defines
the critical coupling Kc. For a complete graph and scale-free
networks with γ > 5, using the next order in r , we find

r =
√

6[1 − F ′(0)]

F ′′′(0)
, (25)

corresponding to the mean-field exponent β = 1/2.
In the case of scale-free networks, F ′(0) ∝ ∫ ∞

1 P (q)q2dq

= 〈q2〉, and F ′′′(0) ∝ 〈q4〉. Consequently, F ′′′(0) diverges at
γ � 5 and this case demands a more careful analysis of
Eq. (23), which we present below.

A. Complete graph

For a complete graph in the presence of homogeneous fields
with a constant magnitude |�hi | = h, we find explicitly the
field dependence of the critical coupling Kc and the order
parameter r ,

Kc = 2
√

h2 + 1, (26)

r = K2
c

2

√
2

K3(2 − h2)
(K − Kc)1/2. (27)

At h = 0, we recover the classical expressions for Kc and
r [5]. According to Eq. (26), the larger the magnitude h of the
random fields, the larger the coupling K must be in order to
synchronize the oscillators.

However, if h >
√

2, then the right-hand side in Eq. (27)
becomes imaginary. This means that the approximation r � 1
is no longer correct. Indeed, a numerical solution of Eq. (23)
shows that at h >

√
2 the synchronization transition becomes

discontinuous. In Fig. 1 we show this solution and compare
it with simulations of the model for N = 104. One can see
that in the K-h plane there is a tricritical point (Kc,hc) =
(2

√
3,

√
2) where a second-order phase transition meets a first-

order phase transition. Furthermore, the region of hysteresis
becomes larger as the random-field magnitude h is increased.

If instead of homogeneous random fields we consider
random fields with Gaussian magnitudes, we find

Kc = 1∫ ∞
0 hG(h)(2

√
h2 + 1)−1dh

, (28)

r =
√

1

KcK3
∫ ∞

0 hG(h)v(h)dh
(K − Kc)1/2, (29)

where

v(h) = 2 − h2

16(h2 + 1)5/2
, (30)

and G(h) corresponds to Eq. (11) [if we use Eq. (10), we get
Eqs. (26) and (27), respectively]. In this case, Eq. (29) shows
that the system undergoes a second-order phase transition with
β = 1/2 regardless of the variance σ 2 of the Gaussian random
fields. In general, we find this phase transition and the same
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FIG. 1. K-h phase diagram of the Kuramoto model on a complete
graph in the presence of homogeneous random fields of magnitude h.
The solid line corresponds to the numerical solution of Eq. (23)
and the points to our simulations. There are three regions: (I)
asynchronous state, (II) region of hysteresis, and (III) partially
synchronous state. T = (Kc,hc) = (2

√
3,

√
2) is a tricritical point

below which there is a second-order phase transition, whereas
above it there is a first-order phase transition. The networks were
generated using the static model (N = 104 and 〈q〉 = 10) [24,25].
The differential equations for each oscillator were solved using a
fourth-order Runge-Kutta method with time step �t = 0.01.

critical exponent for any distribution G(h) that satisfies the
condition ∫ ∞

0
hG(h)v(h)dh > 0. (31)

Otherwise, the random-field Kuramoto model undergoes a
first-order phase transition.

B. Scale-free networks

1. Homogeneous random fields, degree exponent γ > 5

Solving Eq. (24) for scale-free networks with P (q) =
Cq−γ at γ > 5, we find the same critical behavior as in the case
of the complete graph. In the case of homogeneous random
fields, we find the critical coupling,

Kc = 2
√

h2 + 1
〈q〉
〈q2〉 = 2

√
h2 + 1

(γ − 3)

(γ − 2)
(32)

and

r = K2
c

2

√
2〈q2〉

K3(2 − h2)〈q4〉 (K − Kc)1/2. (33)

Actually, Eq. (32) is valid for any γ > 2.

2. Homogeneous random fields, 3 < γ � 5

Since 〈q4〉 diverges when γ � 5, one cannot readily use
Eq. (24) to find the critical behavior. To get rid of the
divergencies, we integrate Eq. (23) by parts twice before

making the Taylor expansion. We find

r = C

〈q〉
[

Kr

2
√

h2 + 1(γ − 3)
+ v(h)(Kr)3

6(γ − 5)

+ (Kr)γ−2

(2 − γ )(3 − γ )

∫ ∞

0
Y ′′(x)x−γ+3dx

]
, (34)

where we introduced a function,

Y (x) = 1

2π

∫ 2π

0

x + h cos φ√
(x + h cos φ)2 + h2 sin2 φ + 1 + 1

dφ.

(35)

Note that the third singular term in Eq. (34) is negligibly small
when γ > 5, but non-negligible when γ � 5. One can also
see that the case γ = 3 needs further considerations. When
3 < γ < 5, the first and third terms in Eq. (34) are leading,
yielding

r =
[

〈q〉(2 − γ )K2−γ

〈q2〉Kc

∫ ∞
0 Y ′′(x)x−γ+3dx

] 1
γ−3

(K − Kc)1/(γ−3).

(36)

This solution is real for any h, meaning that the transition to
the synchronous state is always continuous independent of the
magnitude of the local random fields, in striking contrast to
scale-free networks with γ > 5. Also, the exponent is non-
mean-field, β = 1/(γ − 3). The critical coupling is given by
Eq. (32).

3. Homogeneous random fields, 2 < γ � 3

When 2 < γ < 3, the second moment 〈q2〉 diverges. In this
case, Eq. (32) gives the critical coupling Kc = 0. Furthermore,
the third term in Eq. (34) is the leading term, and so the order
parameter r is

r =
[

〈q〉(2 − γ )(3 − γ )

C
∫ ∞

0 Y ′′(x)x−γ+3dx

] 1
γ−3

K (2−γ )/(γ−3). (37)

Thus, r > 0 for any K > 0. The order parameter r follows a
non-mean-field scaling law with β = (2 − γ )/(γ − 3).

Note that both Eqs. (36) and (37) indicate that β → ∞
for γ → 3, suggesting an infinite-order phase transition at
Kc = 0. Indeed, solving Eq. (23) using the same method, at
γ = 3 we find

r = 2

K〈q〉 exp

(
− 4

√
h2 + 1

〈q〉K
)

(38)

at K > 0.

4. Gaussian random fields, γ > 2

Now we consider Gaussian fields. Analyzing Eq. (24), we
find Kc as a function the first and second moments of the
degree distribution,

Kc = 〈q〉
〈q2〉

1∫ ∞
0 dh hG(h)(2

√
h2 + 1)−1

, (39)

where G(h) is given by Eq. (11). Thus Kc = 0 at 2 < γ � 3
as in the case of a homogeneous random field.
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TABLE I. Critical behavior of the order parameter of the
Kuramoto model on a complete graph and complex networks with
degree distribution P (q) ∝ q−γ in the presence of homogeneous and
Gaussian random fields. In the case of a complete graph and scale-free
network with γ > 5 (*), the presented critical behavior occurs in
the case of Gaussian fields and homogeneous fields at h <

√
2. At

h >
√

2, the transition is discontinuous. The function f (σ ) is defined
by Eq. (39), f (σ ) = Kc(σ )〈q2〉/〈q〉.

Field

Network Homogeneous Gaussian

Complete r ∝ √
K − Kc (*)

Graph Kc = 2
√

h2 + 1 Kc = f (σ )

Scale-free r ∝ √
K − Kc (*)

γ > 5 Kc = 2
√

h2 + 1 〈q〉
〈q2〉 Kc = f (σ ) 〈q〉

〈q2〉
3 < γ � 5 r ∝ (K − Kc)1/(γ−3)

Kc = 2
√

h2 + 1 〈q〉
〈q2〉 Kc = f (σ ) 〈q〉

〈q2〉
γ = 3 r ∝ 1

K
e−1/K

Kc = 0

2 < γ < 3 r ∝ (K − Kc)(2−γ )/(γ−3)

Kc = 0

In contrast to the case of a homogeneous random field,
there is no first-order phase transition regardless of σ and
γ . The critical behavior of the order parameter at γ > 2 is
qualitatively the same as in the case of the continuous phase
transition studied above for homogeneous random fields (see
Table I, which summarizes our analytical results).

5. Numerical simulations

We also performed simulations of the random-field Ku-
ramoto model in the case of homogeneous random fields.
Figure 2 shows the critical behavior of the order parameter
in scale-free networks in three cases: (a) 2 < γ < 3, (b)
γ = 3, and (c) 3 < γ < 5. Table II compares Kc and the
critical exponent β between simulations and our analytical
results. Each linear regression was obtained for such Kc

that maximize the linear correlation coefficient. One can see
that our analytical results are in good agreement with the
simulations. The difference between the numerical results and
the theory, when K is close to Kc, is caused by finite-size
fluctuations that smear the phase transition.

TABLE II. Comparison of the critical coupling Kc and the order-
parameter exponent β between the simulations (S) in Fig. 2 and the
analytical (A) results in Table I for random field magnitude h = 2.

γ β (A) β (S) Kc (A) Kc (S)

2.4 (2−γ )
(γ−3) ≈ 0.667 0.66 ± 0.01 0 0.052

2.5 (2−γ )
(γ−3) = 1 1.00 ± 0.03 0 0.048

3.5 1
(γ−3) = 2 2.00 ± 0.02 2

√
1 + h2 〈q〉

〈q2〉 ≈ 0.266 0.211

4.0 1
(γ−3) = 1 1.03 ± 0.02 2

√
1 + h2 〈q〉

〈q2〉 ≈ 0.319 0.322

4.5 1
(γ−3) ≈ 0.667 0.68 ± 0.02 2

√
1 + h2 〈q〉

〈q2〉 ≈ 0.349 0.369

-5.0

-4.0

-3.0

-2.0

-1.0

-5.0 -4.0 -3.0 -2.0 -1.0

ln
r

ln(K − Kc)

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

r

K

(b)

-4.0

-3.0

-2.0

-1.0

0.0

-5.0 -4.0 -3.0 -2.0 -1.0

ln
r

ln(K − Kc)

(c)

γ = 2.4
γ = 2.5

γ = 3.0

γ = 3.5
γ = 4.0
γ = 4.5

FIG. 2. Critical behavior of the order parameter in scale-free
networks in the presence of homogeneous random fields (h = 2).
The symbols correspond to simulations of the model (averaged over
30 network realizations), whereas the lines in panels (a) and (c)
are the linear fits. The line in panel (b) is f (K) ∝ 1

K
exp(−1/K).

The networks were generated using the static model (N = 2 × 104

and 〈q〉 = 10) [24,25]. The differential equations for each oscillator
were solved using a fourth-order Runge-Kutta method with time
step �t = 0.01.

IV. CONCLUSION

In this paper, we studied the impact of random pinning
fields on the synchronization of phase oscillators in the
Kuramoto model on a complete graph and uncorrelated
complex networks with different degree distributions (scale-
free networks). We considered random pinning fields whose
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directions are uniformly distributed and the field magnitudes
are either homogeneous (i.e., they are equal for all oscillators)
or heterogeneous (Gaussian). First, we found that in the
case of homogeneous random fields, in the fully connected
network and scale-free networks with the degree exponent
γ > 5, there is a critical random-field magnitude above which
the second-order phase transition gives place to a first-order
phase transition. However, in contrast to networks with rapidly
decaying degree distributions, in scale-free networks with
3 < γ � 5, the phase transition remains of second-order at
any random-field magnitude, although the critical coupling
strongly depends on it. Furthermore, we showed that if
2 < γ � 3, then the synchronization transition also remains
continuous and occurs at zero coupling Kc = 0 independently
of the field distribution. In the case γ = 3, the synchronization
transition is of infinite order.

Second, we demonstrated that in the Kuramoto model with
heterogeneous random fields, even strong Gaussian random
fields do not suppress the synchronization, although the critical
coupling depends strongly on the field variance. The continu-
ous phase transition into the synchronized state is characterized
by the same critical exponents as the synchronization transition
in the absence of the fields. The critical behavior of the order
parameter and the critical coupling are summarized in Table I.
We also carried out simulations of the Kuramoto model on
complete graphs and scale-free networks in the presence of

homogeneous random fields. These simulations confirmed our
analytical results.

Interestingly, the critical behavior of the order parameter,
relaxation rate, and susceptibility of the Kuramoto model on
uncorrelated random complex networks [11] is characterized
by the same critical exponents as the Ising model. However,
the two models no longer have the same critical behavior in
the presence of random fields in both complete graph and
scale-free networks. Whereas Gaussian random fields in the
Ising model suppress a phase transition when the random-field
variance σ is above a critical value σc [12–15], in the Kuramoto
model a sufficiently strong coupling can always prevail over
the random fields, resulting in synchronization of oscillators
for any σ at γ > 2. In the case of scale-free networks, Gaussian
fields elicit different behaviors in the two models: while there
is a first-order phase transition in the Ising model, the transition
is of second-order in the Kuramoto model.
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