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Identifying optimal targets of network attack by belief propagation
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For a network formed by nodes and undirected links between pairs of nodes, the network optimal attack problem
aims at deleting a minimum number of target nodes to break the network down into many small components. This
problem is intrinsically related to the feedback vertex set problem that was successfully tackled by spin-glass
theory and an associated belief propagation-guided decimation (BPD) algorithm [Zhou, Eur. Phys. J. B 86, 455
(2013)]. In the present work we apply the BPD algorithm (which has approximately linear time complexity)
to the network optimal attack problem and demonstrate that it has much better performance than a recently
proposed collective information algorithm [Morone and Makse, Nature 524, 65 (2015)] for different types of
random networks and real-world network instances. The BPD-guided attack scheme often induces an abrupt
collapse of the whole network, which may make it very difficult to defend.
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I. INTRODUCTION

Consider a network or graph G formed by N nodes
and M undirected links between these nodes; how can we
delete a minimum number of nodes (the optimal targets of
attack) to break the network down into many disconnected
small components? This optimization problem is one of the
fundamental structural problems in network science [1,2], and
it has very wide practical applications, especially in protection
of network structure [3–5] and in surveillance and control of
various network dynamical processes such as the transmission
of infective disease [6–8]. Besides their structural importance,
the optimal target nodes of network attack also play significant
roles in network information diffusion. Many of these nodes
are influential spreaders of information and are the key objects
in viral marketing and network advertisement [9–11].

The breakdown of a network’s giant connected component
is the collective effect caused by a set S of nodes. There are
extremely many candidate solutions for the network attack
problem, and minimizing the size of such a set S is an
intrinsically difficult combinatorial optimization issue. This
problem belongs to the nondeterministic polynomial hard
(NP-hard) class of computational complexity; no one expects it
to be exactly solvable by any polynomial algorithm. So far, the
network optimal attack problem has mainly been approached
by heuristic methods which select target nodes based on local
metrics such as the node degree (number of attached links)
[3–5] and the node eigenvector centrality [12,13].

For sparse random networks it is well known that the typical
length of loops diverges with the number N of nodes in a
linear way, and short loops of length L � ln(N ) are very rare
[14–16]. In such networks the small connected components
are mostly trees (no loop inside), while each giant component
includes a finite fraction of all the nodes and an exponential
number of long loops. If these long loops are all cut, then
the giant component will again break into a set of small tree
components. For random network ensembles, therefore, the
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optimal attack problem is essentially equivalent to another
celebrated global optimization, namely the minimum feedback
vertex set problem [17]. A feedback vertex set (FVS) for a
network G is a set of nodes which, if deleted, would break
all the loops in the network and leave behind a forest (that
is, a collection of tree components). In other words, a FVS
is a node set that intersects with every loop of the network,
and a minimum FVS is just a node set of smallest size among
all the feedback vertex sets. Because small components of
spare random networks are mostly trees, a minimum FVS is
essentially a minimum set of target nodes for the network
attack problem.

Although the minimum FVS problem is also NP-hard, a
very convenient mapping of this optimization problem to a
locally constrained spin-glass model was achieved in 2013
[18]. By applying the replica-symmetric mean-field theory of
statistical mechanics to this spin-glass model, the minimum
FVS sizes and hence also the minimum numbers of targeted
attack nodes are quantitatively estimated for random Erdös-
Renyı́ (ER) and random regular (RR) network ensembles [18],
which are in excellent agreement with rigorously derived lower
bounds [19] and simulated-annealing results [20,21]. Inspired
by the spin-glass mean-field theory, an efficient minimum-FVS
construction algorithm, belief propagation-guided decimation
(BPD), was also introduced in Ref. [18], which is capable of
constructing close-to-minimum feedback vertex sets for single
random network instances and also for correlated networks. To
solve the optimal attack problem for a network containing
a lot of short loops, the BPD algorithm can be adjusted
slightly by allowing the existence of loops within each small
connected component. Such a BPD algorithm can produce
a nearly minimum set of target nodes to break the giant
components.

In 2015, Morone and Makse considered the network
optimal attack problem as an optimal influence problem and
introduced an interesting heuristic collective information (CI)
algorithm [22]. These authors called the optimal targets of
network attack as the optimal influencers of the network to
emphasize their importance to information spreading. In the
CI algorithm, each node i is assigned an impact value which

2470-0045/2016/94(1)/012305(8) 012305-1 ©2016 American Physical Society

http://dx.doi.org/10.1140/epjb/e2013-40690-1
http://dx.doi.org/10.1140/epjb/e2013-40690-1
http://dx.doi.org/10.1140/epjb/e2013-40690-1
http://dx.doi.org/10.1140/epjb/e2013-40690-1
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1103/PhysRevE.94.012305


SALOMON MUGISHA AND HAI-JUN ZHOU PHYSICAL REVIEW E 94, 012305 (2016)

counts the number of out-going links at the surface of a “ball”
of radius � centered around i, and then the highest-impact
nodes are sequentially deleted from the network (and the
impact values of the remaining nodes are updated) until
the largest component of the remaining network becomes
sufficiently small. This CI algorithm was tested on random
networks and a set of real-world networks and it was claimed
that it beats existing heuristic algorithms [22]. Morone and
Makse also compared the results obtained by CI and BPD on
a single random scale-free network and they found “evidence
of the best performance of CI” [22].

The CI algorithm is local in nature; it considers only the
local structure within distance � to each focal node to build
the node importance metric. The claim that such a local-
metric algorithm is capable of beating the BPD algorithm, a
distributed message-passing algorithm taking into account the
global loop structure of the network, is indeed quite surprising.
Given the importance of the optimal attack problem in network
science, and considering that only a single network instance
was checked in Ref. [22], we believe it will be beneficial to
the research community for us to give a detailed description
of the BPD algorithm for the optimal attack problem and to
perform a systematic comparative study on the CI and the
BPD algorithm. In the present paper, after reviewing the most
essential building blocks of the CI and the BPD algorithm, we
describe simulation results obtained on three random network
ensembles (random ER and RR networks, whose structures
are homogeneous, and random scale-free networks, whose
structures are heterogeneous) and a set of real-world network
instances (whose structures are heterogeneous and highly
correlated, and there are an abundant number of short loops
inside).

Our extensive simulation results convincingly demonstrate
that the BPD algorithm offers qualitatively superior solutions
to the network optimal attack problem for random and real-
world networks. Our data reveal that, both for random and
for real-world networks, the solutions constructed by the CI
algorithm are far from being optimal. For example, to break an
Internet network instance (IntNet2 of Table I, with N ≈ 1.7 ×
106 nodes) following the recipe offered by CI one would have
to attack ≈1.4 × 105 nodes simultaneously, but actually the job
can be finished by attacking only ≈7.3 × 104 nodes if instead
the recommendations of the BPD algorithm are adopted. For
sparse networks the running time of the BPD algorithm scales
almost linearly with the number N of nodes in the network, so
it is ideally suitable for treating network instances of extreme
sizes.

Let us close this introductory section by pointing out a
potential challenge that network defense practitioners might
have to consider in the near future. Imagine that certain group
of antisocial agents (e.g., terrorists) plans to carry out an
intentional distributed network attack by destroying a small
set of target nodes specified by the BPD algorithm or other
loop-focused global algorithms. Under such a BPD-guided
distributed attack, our example results of Fig. 1 (solid line)
and Fig. 2 suggest that the network remains to be globally
intact and connected before it undergoes a sudden and abrupt
collapse. For the defense side, such a “no serious warning”
situation might make it very difficult to distinguish between
intentional attacks and random localized failures and to carry
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FIG. 1. The relative size g(t) of the largest connected component
as a function of algorithmic time t for an ER network with N = 105

nodes and mean node degree c = 3. At each time interval δt = 1/N

of the targeted attack process, a node chosen by the CI algorithm or
by the BPD algorithm is deleted along with all the attached links. The
three sets of simulation data obtained by the CI algorithm correspond
to ball radius � = 2 (dotted line), � = 3 (dashed line), and � = 4 (long-
dashed line), respectively. The BPD results (solid line) are obtained
at fixed reweighting parameter x = 12.

out timely reactions. We leave this issue of theoretical and
practical importance to further serious investigations.

II. A BRIEF REVIEW ON CI AND BPD

As we already introduced, the goal of the network optimal
attack problem is to construct a minimum node set S for
an input network G so the subnetwork induced by all the
nodes not in S has no connected component of relative
size exceeding certain small threshold θ (e.g., θ = 0.01 or
even smaller). The CI algorithm of Ref. [22] and the BPD
algorithm of Ref. [18] are two heuristic solvers for this NP-hard
optimization problem. For pedagogical reasons we summarize
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FIG. 2. The relative size g(t) of the largest connected component
at algorithmic time t of the BPD-guided attack process, for six
real-world networks of different sizes N (see Table I): Citation
(pluses), P2P (crosses), Friend (squares), Authors (circles), WebPage
(triangles), Grid (diamonds). At each time interval δt = 1/N of the
targeted attack process, a node chosen by the BPD algorithm (with
x = 12) is deleted along with all the attached links.
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in this section the main algorithmic steps of these two solvers.
We do not delve into the underlying statistical physical ideas
and concepts but encourage the reader to consult the original
references.

Starting from the input network G with N nodes and M

links, both the CI and the BPD algorithm kick nodes out of
the network in a sequential manner. Let us denote by G(t) the
remaining network at time t of the deletion process and denote
by di(t) the degree (number of neighboring nodes) of a node
i in G(t). At the initial time t = 0 all the nodes are present so
G(0) is identical to G, and di(0) = di with di being the degree
of node i in G.

A. The collective influence algorithm

At each time point t the collective influence strength,
CI�(i; t), of a node i ∈ G(t) is computed as

CI�(i; t) = [di(t) − 1]
∑

j∈∂Ball(i,�; t)

[dj (t) − 1], (1)

where ∂Ball(i,�; t) denotes the set formed by all the nodes of
G(t) that are at distance � to node i [22]. The integer � is an
adjustable parameter of the CI algorithm. The CI strength gives
a heuristic measure of a node’s information spreading power. It
is a product of two terms. The first term, [di(t) − 1], is node i’s
direct capacity of information transmission; the second term
sums over the information transmission capacity [dj (t) − 1]
of all the nodes j at a distance �. It can be understood as node
i’s capacity of information broadcasting.

After the CI strengths of all the nodes in network G(t) are
updated using Eq. (1), a node which has the highest CI strength
is deleted along with all its attached links; then the time
increases to t ← t + 1

N
, and the CI strength of the remaining

nodes are again updated. This iteration process continues until
the largest connected component of the remaining network
becomes very small.

As an example we plot in Fig. 1 the relative size g(t) of
the largest connected component of an ER network with mean
node degree c = 3. Initially, the network has a giant component
of relative size g(0) ≈ 0.9412; this giant component then
shrinks with time t gradually and finally disappears when about
0.16N nodes are removed.

The results of the CI algorithm are not sensitive to the
particular choice of the ball radius � (see Fig. 1 and discussions
in Ref. [22]). For simplicity we fix � = 4 in the remaining part
of this paper, except for the two smallest networks of Table I
(for which � = 2 is used). To decrease the algorithm’s time
complexity, in each decimation step a tiny fraction f of the
nodes (instead of a single node) is deleted from the network
and then the CI strengths of the remaining nodes are updated.
The precise value of f does not affect the quality of the final
solution as long as f is sufficiently small (e.g., f = 0.001)
[22]. The authors of Ref. [22] have made the source code of
the CI algorithm publicly available through their webpage. We
use their code in the present comparative study.

B. Belief propagation-guided decimation

The BPD algorithm is rooted in the spin-glass model for the
feedback vertex set problem [18]. At each time point t of the

iteration process, the algorithm estimates the probability q0
i (t)

that every node i of the remaining network G(t) is suitable to
be deleted. The explicit formula for this probability is

q0
i = 1

1 + ex
[
1 + ∑

k∈∂i(t)
(1−q0

k→i )
q0

k→i+qk
k→i

]∏
j∈∂i(t)

[
q0

j→i + q
j

j→i

] ,

(2)

where x is an adjustable reweighting parameter and ∂i(t)
denotes node i’s set of neighboring nodes at time t . The quan-
tity q0

j→i(t) in Eq. (2) is the probability that the neighboring
node j is suitable to be deleted if node i is absent from the
network G(t), while q

j

j→i(t) is the probability that this node
j is suitable to be the root node of a tree component in the
absence of node i [18]. These two auxiliary probability values
are estimated self-consistently through the following set of
belief propagation (BP) equations:

q0
i→j = 1

zi→j (t)
, (3a)

qi
i→j = ex

∏
k∈∂i(t)\j

[
q0

k→i + qk
k→i

]

zi→j (t)
, (3b)

where ∂i(t)\j is the node subset obtained by removing node
j from set ∂i(t) and zi→j (t) is a normalization constant
determined by

zi→j (t) = 1 + ex
∏

k∈∂i(t)\j

[
q0

k→i + qk
k→i

]

×
⎡
⎣1 +

∑
l∈∂i(t)\j

(
1 − q0

l→i

)

q0
l→i + ql

l→i

⎤
⎦ . (4)

At each time step t , we first iterate the BP equation (3) on
the network G(t) a number of rounds and then use Eq. (2)
to estimate the probability of choosing each node i ∈ G(t)
for deletion. The node with the highest probability of being
suitable for deletion is deleted from network G(t) along with
all its attached links. The algorithmic time then increases
to t ← t + 1

N
and the next BPD iteration begins. This node

deletion process stops after all the loops in the network have
been destroyed [18]. Then we check the size of each tree
component in the remaining network. If a tree component
is too large (which occurs only rarely), then we delete an
appropriately chosen node from this tree to achieve a maximal
decrease in the tree size (see Appendix for details). We repeat
this node deletion process until all the tree components are
sufficiently small.

As an illustration of the BPD iteration process, we record in
Fig. 1 (solid line) the relative size g(t) of the largest connected
component of an ER random network at each algorithmic time
t . At t ≈ 0.137 the BPD-guided attack stops, resulting in a final
target node set of size ≈0.137N . Qualitatively similar plots are
obtained for real-world network instances (see Fig. 2).

Similarly to the CI algorithm, when the BPD algorithm
is used as a heuristic solver, we delete in each decimation
step a tiny fraction f of the nodes in network G(t) and
then update the probability q0

i for each remaining node i.
The BPD algorithm is very fast. It finishes in few minutes
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FIG. 3. Performance of the BPD algorithm on ER networks of
mean degree c = 3 and different sizes N . The fraction f of deleted
nodes in each BPD step is f = 0.01 (pluses) or f = 0.001 (crosses).
(a) The relationship between the total BPD running time TBPD and
N . The simulation results (pluses) are obtained on a relatively old
desktop computer (Intel-6300, 1.86 GHz, 2 GB memory). The dashed
line is the fitting curve TBPD = aN ln(N ) with fitting parameter
a = 2.93 × 10−5 s. (b) The relationship between the relative size
ρ of the attack node set and N . The dashed horizontal line denotes
the predicted minimum value of ρ = 0.13493 (for N = ∞) by the
replica-symmetric mean-field theory [18].

when applied on the large example network of Fig. 1 and
most of the network instances of Table I. In terms of scaling,
if the link number M of the network is of the same order
as the node number N (i.e., the network is sparse), then
the running time of the BPD algorithm is proportional to
N ln N [see Fig. 3(a) for a concrete demonstration]. This
algorithm therefore is applicable to extremely huge network
instances. For example, when applied on an ER network
with N = 2 × 108 nodes and mean degree c = 3, the BPD
algorithm returns a target node set of relative size ρ = 0.13574
in 23.50 h (f = 0.01) and another solution of relative size
ρ = 0.13610 in 14.68 h (f = 0.03). These relative sizes are
just 0.6% beyond the predicted minimum relative size of
ρ = 0.13493 by the replica-symmetric mean-field theory [18].
In contrast, the relative sizes of the solutions obtained by
the CI algorithm are 23.7% (for � = 2), 21.5% (� = 3), and
20.8% (� = 4) beyond the prediction of the replica-symmetric
mean-field theory.

The original BPD code for the minimum feedback
vertex set problem and its slightly adjusted version for

the network optimal attack problem are both available at
power.itp.ac.cn/∼zhouhj/codes.html. The BPD re-
sults of the next section are obtained at fixed value of deletion
fraction f = 0.01. As the example results of Fig. 3(b) further
demonstrate, the precise value of f does not affect the relative
size ρ of the BPD solutions.

C. Gradual decrease versus abrupt drop

Figure 1 clearly shows that, compared to the CI algorithm,
the BPD algorithm constructes a much smaller target node set
for the same ER network instance. This superiority holds true
for all the networks we examined (see next section). We also
notice from Fig. 1 that, during the CI-guided attack process,
the size of the giant connected component decreases gradually
and smoothly. On the other hand, if the attacked nodes are
chosen according to the BPD algorithm, the giant component
initially shrinks slowly and almost linearly and the decrease in
size is roughly equal to the increase in the number of deleted
nodes; but as the giant component’s relative size reduces to
≈0.76 after a fraction ≈ 0.133 of the nodes are deleted, the
network is in a very fragile state and the giant component
suddenly disappears with the deletion of an additional tiny
fraction of nodes.

Such an abrupt collapse phenomenon, which resembles
the phenomenon of explosive percolation [23–25], is also
observed in the BPD-guided attack processes on other random
network ensembles and real-world networks (Fig. 2). It may
be a generic feature of the BPD-guided network attack. Indeed
the BPD algorithm is not designed to break a network down
into small pieces but is designed to cut loops in the most
efficient way. This loop-cutting algorithmic design principle
may explain why the collapse of a giant connected component
occurs at the latest stage of the attack process and is abrupt.
We expect that during the BPD-guided attack process, the most
significant changes in the network is that the number of loops
in the giant components decreases quickly. A highly connected
node that bridges two or more parts of the network will only
have a low probability of being deleted if it does not contribute
much to the loops of the network [18].

III. COMPARATIVE RESULTS

We now apply the CI and the BPD algorithm on a large
number of network instances. We adopt the same criterion
used in Ref. [22], namely that after the deletion of a set S of
nodes the largest connected component should have relative
size �θ = 0.01. The size of this set S (relative to the total
number N of vertices) is denoted as ρ, see Figs. 3(b), 4, and 5.

Following Ref. [22], when applying the CI algorithm to
a network G, we first delete a draft set of nodes from the
network until the largest component of the remaining network
contains no more than θN nodes. We then refine this set by
sequentially moving some nodes back to the network. Each of
these displaced nodes has the property that its addition to the
network will not cause an increase in the size of the largest
network component and will only cause the least increase
in the size of a small component. The final set S of deleted
nodes after this refinement process is regarded as a solution
to the optimal network attack problem. This same refinement
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FIG. 4. Fraction ρ of removed nodes for Erdös-Rényi random
networks of mean degree c (a) and regular random networks of
degree K (b). Each CI (diamond) or BPD (circle) data point is
the averaged result over 48 network instances (size N = 105); the
standard deviation is of order 10−4 and is therefore not shown. The
cross symbols are the predictions of the replica-symmetric (RS)
mean-field theory on the minimum relative size of the target node
sets [18]. The plus symbols of (b) are the mathematical lower bound
(LB) on the minimum relative size of the target node sets [19]. The
reweighting parameter of the BPD algorithm is fixed to x = 12 for
ER networks and x = 7 for RR networks; the ball radius parameter
of the CI algorithm is fixed to � = 4.

process is also adopted by the BPD algorithm. We first apply
BPD to construct a FVS for the input network, and then a few
additional nodes are deleted to break very large trees. Finally,
some of the nodes in the deleted node set S are added back to
the network as long as they cause the least perturbation to the
largest connected component and its increased relative size is
still below θ . This refinement process recovers some of the
deleted short loops.

A. ER and RR network ensembles

We first consider Erdös-Renyı́ random networks and regular
random networks. An ER network of N vertices and M =
(c/2)N links is generated by first selecting M different node
pairs uniformly at random from the whole set of N (N − 1)/2
candidate pairs and then adding a link between the chosen
two nodes. Each node in the network has c attached links on
average. A RR network is more regular in the sense that each
node has exactly the same number K of nearest neighbors; it is

0.1

0.2

0.3

0.4

4 6 8 10 12

ρ

c

(a) (SF γ=3.0) 

CI
BPD

0.1

0.2

0.3

0.4

0.5

4 6 8 10 12

ρ

c

(b) (SF γ=3.5) 

CI
BPD

FIG. 5. Fraction ρ of removed nodes for scale-free random
networks of mean degree c and degree decay exponent γ = 3.0 (a)
and γ = 3.5 (b). Each CI (diamond) or BPD (circle) data point is the
averaged result over 48 network instances (size N = 105) generated
through the static method [26]; the standard deviation (not shown) of
each data point is of order 10−4. The reweighting parameter of the
BPD algorithm is fixed to x = 12; the ball radius parameter of the CI
algorithm is fixed to � = 4.

generated by first attaching to each node K half-links and then
randomly connecting two half-links into a full link (excluding
self-links and multiple-links).

The target node set S for breaking down a random network
contains an extensive number ρN of nodes. We find that the
BPD algorithm obtains qualitatively better solutions than the
CI algorithm, in the sense that ρBPD is much smaller than ρCI

(Fig. 4). For example, the CI-guided attack scheme would need
to delete a fraction ρCI ≈ 0.52 of all the nodes to break down
an ER network of mean degree c = 10, while the BPD-guided
scheme only needs to delete a smaller fraction ρBPD ≈ 0.48.
The difference in performance between CI and BPD is even
more pronounced on RR networks [Fig. 4(b)].

Indeed, there is not much room to further improve over
the BPD algorithm. As we show in Fig. 4 the value of ρBPD

almost overlaps with the predicted minimum value by the
replica-symmetric mean field (which is nonrigorously believed
to be a lower bound to the true minimum value). For the RR
network ensemble, the value of ρBPD is also very close to the
rigorously known lower bound for the minimum value [19],
while the empirical value ρCI obtained by the CI algorithm is
far beyond this mathematical bound [Fig. 4(b)].
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B. Scale-free random network ensembles

We then examine random scale-free (SF) networks. The
static method [26] is followed to generate a single SF network
instance. Each node i ∈ {1,2, . . . ,N} is assigned a fitness value
fi = i−ξ /

∑N
j=1 j−ξ with 0 � ξ < 1 being a fixed parameter.

A total number of M = (c/2)N links are then sequentially
added to the network: first a pair of nodes (i,j ) is chosen
from the network with probability fifj and then a link is
added between i and j if it does not result in a self-link
or a multiple-link. The resulting network has a power-law
degree distribution, so the probability of a randomly chosen
node to have d 	 1 attached links is proportional to d−γ with
the decay exponent being γ = 1 + 1/ξ [26]. There are many
highly connected (hub) nodes in a SF network, the degrees of
which greatly exceed the mean node degree c.

The BPD-guided attack scheme is again qualitatively more
efficient than the CI-guided attack scheme (Fig. 5). For
example, the BPD algorithm only needs to delete a fraction
ρBPD ≈ 0.338 of all the nodes to break down a SF network with
mean degree c = 10 and decay exponent λ = 3.0, while the CI
algorithm would need to delete a larger fraction ρCI ≈ 0.366
of the nodes. We have also considered random SF networks
with decay exponents γ = 2.67 and γ = 2.5. The obtained
results are qualitatively the same as those shown in Fig. 5. At
the same mean node degree c, the gap between ρCI and ρBPD

seems to enlarge slowly with the power-law exponent γ .
Since there exist many hub nodes, one would expect that

the optimal attack problem is easier to solve on SF random
networks than on homogeneous network. Seeing that the BPD
algorithm performs perfectly for ER and RR random networks,
we anticipate that the solutions obtained on SF networks are
also very close to be minimum targeted attack sets. Further
computer simulations [20,21] and replica-symmetric mean-
field computations [18] need to be carried out to confirm this
conjecture.

C. Real-world network

Finally we compare CI and BPD on real-world network
instances, which are usually not completely random nor
completely regular but have rich local and global structures
(such as communities and hierarchical levels). Table I lists the
12 network instances considered in this work. There are five
infrastructure networks: the European express road network
(RoadEU [27]), the road network of Texas (RoadTX [28]),
the power grid of western US states (Grid [29]), and two
Internet networks at the autonomous systems level (IntNet1
and IntNet2 [30]). Three of the remaining networks are
information communication networks: the Google webpage
network (WebPage [28]), the European email network (Email
[31]), and a research citation network (Citation [30]). This
set also includes one biological network (the protein-protein
interaction network [32]) and three social contact networks: the
collaboration network of condensed-matter authors (Author
[31]), a peer-to-peer interaction network (P2P [33]), and
an online friendship network (Friend [34]). There are an
abundant number of triangles (i.e., loops of length three)
in these real-world network instances, making the clustering
coefficients of these networks to be considerably large [35,36].

TABLE I. Comparative results of the CI and the BPD algorithm
on a set of real-world network instances. N and M are the number
of nodes and links of each network, respectively. The targeted attack
set (TAS) sizes obtained by CI and BPD are listed in the fourth and
fifth columns, and the feedback vertex set (FVS) sizes obtained by
these algorithms are listed in the sixth and seventh columns. The BPD
algorithm is run with fixed reweighting parameter x = 12, and the
ball radius parameter of CI is fixed to � = 4 except for the RoadEU
and the PPI network, for which � = 2.

TAS FVS

Network N M CI BPD CI BPD

RoadEU 1177 1417 209 152 107 91
PPI 2361 6646 424 350 391 362
Grid 4941 6594 476 320 663 512
IntNet1 6474 12 572 198 161 248 215
Authors 23 133 93 439 3588 2583 9429 8317
Citation 34 546 420 877 14 518 13 454 16 470 15 390
P2P 62 586 147 892 10 726 9292 9710 9285
Friend 196 591 950 327 32 340 26 696 48 425 38 831
Email 265 214 364 481 21 465 1064 20 801 1186
WebPage 875 713 4 322 051 106 750 50 878 257 047 208 641
RoadTX 1 379 917 1 921 660 133 763 20 676 319 128 239 885
IntNet2 1 696 415 11 095 298 144 160 73 229 318 447 228 720

For each of these network instances the BPD algorithm
constructs a much smaller targeted attack node set than the
CI algorithm does. In some of the network instances the
differences are indeed very remarkable (e.g., the Grid network,
the Email network, and the RoadTX network in Table I). When
we compare the sizes of the feedback vertex sets we again
observe considerable improvements of the BPD algorithm as
compared to the CI algorithm.

Similarly to what happens on random networks (Fig. 1),
when the BPD-guided attack scheme is applied to these real-
world networks, the giant network components do not change
gradually but experience abrupt collapse transitions (see Fig. 2
for some examples).

IV. CONCLUSION AND DISCUSSIONS

In this work we demonstrated that the network optimal
attack problem, a central and difficult optimization problem
in network science, can be solved very efficiently by a BPD
message-passing algorithm that was originally proposed to
tackle the network feedback vertex set problem [18]. In terms
of time complexity, the BPD algorithm is almost a linear algo-
rithm [see Fig. 3(a)], so it is applicable even to extremely huge
real-world networks. Our numerical results also demonstrated
that the local collective information algorithm of Ref. [22]
cannot offer nearly optimal solutions to the network optimal
attack problem (which was renamed as the network optimal
influence problem in Ref. [22]). As an empirical algorithm
designed to cut loops most efficiently, the BPD will be very
useful in network resilience studies and in help identifying the
most influential nodes.

Another major observation was that the BPD-guided attach
causes an abrupt breakdown of the network. This latter
dynamical property, combined with requiring only a minimum
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number of target nodes, may make the BPD-guided attack
scheme a dangerous strategy if it is adopted for destructive
purposes. The society might need to seriously evaluate such a
potential threat and, if necessary, to implement suitable pre-
vention protocols. An anoymous reviewer suggested to us that
it might be sufficient to compare the largest eigenvalue of the
network’s nonbacktracking matrix (also called the Hashimoto
matrix) [37,38] to distinguish between an intentional attack
and a randomized node deletion process. We hope to explore
this interesting idea in a separate paper.

For simplicity we assumed in this paper that the cost wi of
deleting a node i is the same for different nodes, i.e., wi = 1 for
i = 1,2, . . . ,N . Let us emphasize that if this cost is not uniform
but is node specific, the BPD algorithm is also appicable [18].
The only essential modification is that the reweighting factor
ex in Eqs. (2)–(4) should be replaced by exwi .

Note added: Several closely related papers appeared on the
arXiv e-print server after the first version of this manuscript
was posted on arXiv and submitted for review. The paper
of Braunstein and coauthors [39] considered the network
optimal attack problem also as a minimum feedback vertex
set problem, while the paper of Clusella and coauthors [40]
applied the idea of explosive percolation to the optimal attack
problem. The paper of Morone and coauthors [41] presented
a new version of the CI algorithm which, at the cost of much
increased computing time, may achieve better solutions than
the original CI algorithm.
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APPENDIX: OPTIMALLY ATTACKING
A TREE

Given a tree T formed by n nodes and (n − 1) links, how do
we choose an optimal node so, after deleting this node, the size
of the largest component of the resulting forest achieves the
minimum value among all the n possible choices of the deleted
node? We have implemented a simple iterative process to solve
this choice problem most efficiently. Here we briefly describe
this process.

First, we consider all the leaves (i.e., nodes of degree one) of
tree T . For each leaf node (say, i) we know that its deletion will
lead to a subtree of size (n − 1), and we let this leaf node to send
a message mi→j = 1 to its unique neighbor j in tree T . After
all these leaf nodes are considered, we delete them from tree
T to obtain a reduced tree T ′, and then we consider all the leaf
nodes of T ′. For each leaf node j ∈ T ′, we let it send a message
mj→k ≡ 1 + ∑

i∈∂j\k mi→j to its unique neighbor k in tree T ′,
where ∂j denotes the set formed by all the neighboring nodes
of j in the original tree T . If node j is deleted from tree T ,
then the component sizes of the resulting forest will form the
following merged set: {ml→j |l ∈ ∂j\k} ∪ {(n − mj→k)}, and
we can easily identify the largest member of this integer set.
After all the leaves of T ′ have been examined, we again delete
them to get a further reduced tree T ′′ and we repeat to consider
all the leaf nodes of T ′′ in the same way. After a few iterations,
all the nodes in the original tree T will be exhausted, and we
will be able to identify the optimal node i for breaking this
tree T .
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Zedborová, and P. Zhang, Spectral redemption in clustering
sparse networks, Proc. Natl. Acad. Sci. USA 110, 20935 (2013).

[38] K. Hashimoto, Zeta functions of finite graphs and representa-
tions of p-adic groups, Adv. Stud. Pure Math. 15, 211 (1989).

[39] A. Braunstein, L. Dall’Asta, G. Semerjian, and L. Zdeborová,
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