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We study traffic in a roundabout model, where the dynamics along the interior lane of the roundabout are
described by the totally asymmetric simple exclusion process (TASEP). Vehicles can enter the interior lane or
exit from it via S intersecting streets with given rates, and locally modified dynamics at the junctions take into
account that collisions of entering vehicles with vehicles approaching the entrance point from the interior lane
should be avoided. A route matrix specifies the probabilities for vehicles to arrive from and to exit to certain
intersecting streets. By subdividing the interior lane into segments between consecutive intersecting streets
with effective entrance and exit rates, a classification of the stationary roundabout traffic in terms of TASEP
multiphases is given, where each segment can be in either the low-density, high-density, or maximum current
TASEP phase. A general methodology is developed, which allows one to calculate the multiphases and optimal
throughput conditions based on a mean-field treatment. Explicit analytical results from this treatment are derived
for equivalent interesting streets. The results are shown to be in good agreement with kinetic Monte Carlo
simulations.
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I. INTRODUCTION

Traffic problems have become an intense interdisciplinary
research field because of their widespread relevance in the
natural, social, and engineering sciences [1]. In the physics
community, knowledge from the areas of nonlinear dynamics,
stochastic processes, and statistical physics has been success-
fully exploited in the past to make important contributions
to the basic understanding of conditions for optimal transport
and phenomena like jamming, laning, and other collective flow
patterns.

Many studies have been carried out to model city traffic
and to develop concepts for optimization and controlling
[2–12]. Special attention has been paid to single intersections
as key elements in the city traffic [13–32]. While signalized
intersections are standard for congested traffic, unsignalized
intersections become often preferable for less dense traffic.
A simple regulation rule in the latter case is that a vehicle
farther apart from the intersection point at one lane must
give way to a vehicle closer to the intersection point at
another lane. Consequences of such rules have been studied
in Refs. [33–40]. Elements connecting a number of single
intersections are roundabouts, which are nowadays widely
used in many countries and are often considered as an
alternative for controlling by traffic lights. Their possible
benefits have been investigated in Refs. [41–53].

In this work we will study stochastic motion of particles
along a roundabout, which contains intersections from where
the particles are entering and to which they are exiting.
The problem is formulated in terms of vehicular traffic and
accordingly we will consider the particles to represent cars.
It is, however, not our aim here to set up a detailed modeling
of car traffic in a roundabout. Along the interior circulating
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lane of the roundabout, we model the particle motion by the
totally asymmetric exclusion process (TASEP) with stochastic
sequential update [54,55]. While this process can give some
basic insight into the dynamics, e.g., into the origin of
jams, its variant with parallel update would give a modeling
closer to reality [1]. Even this variant, although frequently
used, is, of course, a strongly simplified description of real
car dynamics. The reference to vehicular traffic should be
understood here as a paradigm for interfering traffic flows of
particles with specified destinations. In this respect our study
can provide insights and a methodological basis for treating
traffic also in other areas, as, for example, to describe the
spread of information packages along communication lines, or
the collective transport in networks of microfluidic channels.

An advantage of the TASEP with stochastic sequential
update is that analytical treatments are possible, in particular
for identifying phases of nonequilibrium steady states. Based
on this phase identification, conditions for optimal transport
can be derived. The standard TASEP with open boundary
condition, i.e., when connected to two reservoirs from and to
which particles are injected and ejected, exhibits three different
phases [54,55]. These are characterized by the bulk density
forming in the system’s interior far from the reservoirs and
are referred to as the low-density, the high-density, and the
maximum current phase.

In our roundabout problem we consider the cars to follow
a certain route. This mediates a coupling between the interior
parts of the roundabout lane, which depends on details of the
junctions connecting the roundabout lane with the intersecting
streets. We show that the coupling leads to a rich phase
structure in stationary roundabouts, where combinations of
different TASEP phases appear. A mean-field treatment is
presented that allows one to calculate the phase structure to a
good approximation in dependence of the control parameters
of the model. Knowing the phase structure, parameter sets can
be determined, which give the optimal throughput of cars in
the roundabout under different external conditions.
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FIG. 1. Illustration of a single lane roundabout with S = 4 intersecting streets (left graph) and its representation (right graph) by sites in the
model. The blue circles represent the sites along the interior lane of the roundabout, and the filled and open red squares represent the entrance
and exit sites is and is − 1, s = 1, . . . 4, of the interacting streets, respectively. Cars are attempting to enter the roundabout with the rate αs

from street s at site is . Cars with destination to the street s are exiting the roundabout with rate βs at site is − 1.

II. MODEL FOR A SINGLE-LANE ROUNDABOUT

We consider the roundabout to consist of one interior
circulating lane that is connected to a number of S streets,
as illustrated in Fig. 1. The circulating lane is divided into L

sites, where each site i = 1, . . . ,L can be occupied by at most
one car. The motion of the cars proceeds counterclockwise.
It is described by the TASEP with sequential update, i.e.,
by stochastic unidirectional displacements to vacant nearest
neighbor site with an attempt rate γ , where we set γ −1 = 1
as the time unit. To avoid onerous case distinctions, the site
indices i are allowed to have values outside the range 1, . . . ,L

in the following, corresponding to a periodic continuation of
the indexing. A value i outside the range then refers to (i
mod L) + 1.

At an intersection with a street s, cars are attempting to
enter the interior lane with rate αs and they can exit it with rate
βs , where

0 < αs,βs � γ ≡ 1. (1)

The entering to and exiting from street s takes place at
the entrance site is and the preceding exit site is − 1 of
the circulating lane in clockwise direction (see Fig. 1). The
corresponding intersections are arranged in ascending order,
i.e., is < is+1. Between two intersection sites, there is at least
one interior lane site without connection to a street, which
implies (is+1 − is) � 3. As for the site indices, we agree on a
periodic continuation of the street indexing, i.e., a street index
outside the range 1, . . . ,S refers to (s mod S) + 1.

Cars entering the interior lane have a certain exit destina-
tion. This is described by a route matrix Wrs , where Wrs gives
the probability that a car leaves the roundabout at street s under
the condition that it entered it from street r . Any car entering
the roundabout must leave it, i.e., the columns of the route
matrix are normalized to one,

S∑
s=1

Wrs = 1. (2)

Repeated circulations of cars along the roundabout are disre-
garded, which means that a car can pass at most L − 1 sites
along the roundabout. In this case it exits at the same street from
which it came. The route matrix introduces a coupling between
the TASEP in the interior lane sections between consecutive
intersecting streets. These interior lane sections will be referred
to as “substreets” in the following.

In general, the coupling between substreets will not solely
be determined by the route matrix, but also by the properties of
the junctions of the intersecting streets with the interior lane. In
case of vehicular traffic, a car should not enter the roundabout,
if another “conflicting car” approaches the respective entrance
site along the circulating lane. To incorporate this effect in
the model, we do not allow an entering of the roundabout
from street s, if the site is − 1 preceding the entrance site is
is occupied by a car that intends to continue to move along
the circulating lane. This is the least restrictive possibility for
including the conflicting car effect. Alternative ways would be
to allow cars to enter at site is only if site is − 1 is empty, or by
requiring a number of consecutive sites preceding the entrance
site to be empty.

A. Kinetic equations

To describe the microstates and dynamics of the model in
mathematical terms, we denote a car that enters the roundabout
at street r and exits it at street s as an (r,s) car, and introduce
the site occupation numbers,

nrs
i =

{
1, if site i is occupied by an (r,s) car,
0, otherwise. (3)

The notation nrs
i is used here as a convenient abbreviation

for n
(r,s)
i . Because at most one car can occupy a site, it

holds nrs
i nr ′s ′

j = nrs
i δij δrr ′δss ′ , and the exclusion of repeated

circulations implies that nrs
i = 0 for all sites lying between the

entrance site is of street s and the exit point ir − 1 of street r

in counterclockwise direction (see Fig. 1 [56]). The possible
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sets {nrs
i } of occupation numbers specify the microstates of the

roundabout model.
The dynamics of the model are governed by a master

equation, which gives the time evolution of the microstate
probabilities p({nrs

i },t). With the route matrix and the rates
for the enter and exit processes, as well as the displacement
processes along the circulating lane specified, the explicit form
of the master equation and rate equations of observables can
be obtained by employing the general methods described in
Ref. [57].

Here the time evolution and steady-state profiles of the
average occupation numbers, ρrs

i (t) = 〈nrs
i (t)〉, henceforth

referred to as “densities,” are of interest, where 〈. . .〉 means
an average over p({nrs

i },t). For interior lane sites i (i �= is − 1
and i �= is , s = 1, . . . S), the corresponding rate equations are

dρrs
i

dt
= j rs

i−1 − j rs
i , (4)

where

j rs
i = 〈

nrs
i−1(1 − ni)

〉
(5)

is the current of (r,s) cars from site (i − 1) to site i, and

ni =
S∑

r,s=1

nrs
i (6)

is the total occupation number at site i irrespective of the car
type. The current j rs

i−1 in Eq. (4) describes the gain of (r,s)
cars due to transitions from site i − 1 to site i, which are only
possible if site i − 1 is occupied by an (r,s) car and if site i is
empty [factors nrs

i−1 and (1 − ni) in 〈nrs
i−1(1 − ni)〉 of Eq. (5)].

The current j rs
i in Eq. (4) describes the corresponding loss

term due to transitions from site i to site i + 1.
For exit sites (i = is − 1, s = 1, . . . ,S) the rate equations

are

dρ
qr

is−1

dt
=

{
j

qs

is−2 − j
qs
out, r = s,

j
qr

is−2 − j
qr

is−1, r �= s.
(7)

For r �= s the dynamics are the same as for interior lane sites.
If r = s, however, we have to take into account that the (q,s)
cars exit to street s, which is described by the outflow current,

j
qs
out = βsρ

qs

is−1
. (8)

At entrance sites (i = is , s = 1, . . . ,S) we have

dρ
qr

is

dt
=

{
j sr

in − j sr
is

, q = s,

j
qr

is−1 − j
qr

is
, q �= s.

(9)

Here the interior lane dynamics hold for q �= s. For q = s we
must take into account the inflow of (s,r) cars from street s.
This is given by

j sr
in = αsWsr

〈(
1 − ncf

is−1

)
(1 − nis )

〉
, (10)

where

ncf
is−1 =

s+S−1∑
q=s+1

q∑
r=s+1

n
qr

is−1 (11)

is the occupation number of “conflicting cars” at site is − 1.

Equation (10) has the following interpretation: Cars are
trying to enter street s with a rate αs , and the probability
that a car is of (s,r) type is given by Wsr . An entering of
a car is only possible if site is is empty and if there is no
conflicting car at site is − 1 [factors (1 − nis ) and (1 − ncf

is−1) in
〈(1 − ncf

is−1)(1 − nis )〉]. The conflicting car occupation number
in Eq. (11) can be easily understood by considering the
first street s = 1, where ncf

i1−1 = ∑S
q=2

∑q

r=2 n
qr

i1−1: From the
cars entering the roundabout from street q = 2, only the
ones exiting to the same street r = 2 pass the first street;
cf. also Fig. 1. From the cars entering from street q = 3,
the ones exiting to streets r = 2 or r = 3 pass the first
street. Accordingly, from the cars entering from street q

(q = 2, . . . ,S), the ones exiting to streets r = 2, . . . ,q pass
street s = 1. With our modulo convention for the street indices,
this generalizes to Eq. (11) for the other streets s = 2, . . . ,S.

To arrive at a closed set of rate equations for the
ρrs

i , the correlations between occupation numbers (“density
correlations”) appearing in Eqs. (5) and (10) need to be
expressed in terms of the densities. The simplest way is to
use the mean-field approximation (MFA), where correlations
are neglected, which means that averages over products of
occupation numbers are factorized. With respect to our focus
on determining phases of car densities between intersecting
streets in the stationary state, this MFA is expected to give good
results, like it gives for the standard TASEP. More advanced
methods, as, e.g., the time-dependent density functional theory
for lattice fluids [58] and the Markov chain approach to kinetics
[59], become particularly relevant, if interactions beyond site
exclusion are considered.

B. Stationary states and throughput of cars

In the stationary state of the roundabout, the time derivatives
in Eqs. (4), (7), and (9) are zero, which implies a balanc-
ing of the respective currents. Each substreet between two
consecutive intersecting streets of the interior lane then is
characterized by a stationary car density profile, which reflects
one of the possible phases of the standard TASEP [54,55],
i.e., either the low-density (LD) phase, the high-density (HD)
phase, or the maximum current (MC) phase. To determine
the occurrence of these phases in dependence of the sets
{αs}, {βs}, and {Wrs} of model parameters, we will use the
MFA and first express the partial densities at the exit sites
as functions of the total densities at the entrance sites. Then
we employ an effective rate approach, which connects the
known phases of the standard TASEP with the phases of
the substreets. This concept of effective rates was earlier
introduced to treat isolated “defects” in the TASEP [60] and,
analogously as in this work, successfully applied to identify
stationary nonequilbrium phases in a TASEP chain containing
a splitting into two lanes in its interior [61].

One may ask whether a description based on the TASEP
density profiles is appropriate for application to vehicular
traffic, because in this case typical roundabouts are not large,
while the TASEP phases are characterized by a nearly flat
bulk density, which forms in the interior of the substreets
sufficiently distant from the junctions with the intersecting
streets. One can give a positive answer to this question with
some restrictions. In the LD and HD phases the density profiles

012304-3



M. EBRAHIM FOULAADVAND AND PHILIPP MAASS PHYSICAL REVIEW E 94, 012304 (2016)

decay exponentially towards the bulk regime, with additional
power law factors in subphases [55]. The respective correlation
length is on the order of the lattice constant except for a small
region around the transition lines of the LD and HD phases to
the MC phase. Hence for identifying the LD and HD phases in
the substreets, their size in general can be small. For the MC
phase, the density profile decays slowly as a power law towards
the bulk. However, for small system sizes, the profile has an
inflection point close to the point where the density passes the
value 1/2, which reflects the limiting bulk density in an infinite
system. Hence, also the MC phase can be well identified and
distinguished from the LD and HD phases even if the substreet
lengths are small. Practically, one can consider the densities in
the middle of the substreets as the order parameter of the phases
for small roundabouts, as we will show below in Sec. III D.

In the following Sec. III we first demonstrate the general
procedure outlined above for S = 2 streets and test the
results against kinetic Monte Carlo (KMC) simulations of
the roundabout dynamics. Then we show in Sec. IV how the
method generalizes to roundabouts with an arbitrary number
of intersecting streets. We give the essential details of this
generalization and show some results for S = 3 and S = 4.

As it turns out, only the exit and entrance sites are relevant in
the treatment. It is thus helpful to use an abbreviated and more
transparent notation for the densities at the exit and entrance
sites of street s:

ρqr
s ≡ ρ

qr

is−1 : partial densities at exit site,

ρcf
s ≡

s+S−1∑
q=s+1

q∑
r=s+1

ρ
qr

is−1 : conflicting car density at exit site,

ρout
s ≡

S∑
r=1

ρrs
is−1 : density of cars leaving at exit site,

ρex
s ≡ ρcf

s + ρout
s : density at exit site,

ρent
s ≡

S∑
q,r=1

ρ
qr

is
: density at entrance site.

Similarly, in addition to j sr
out and j sr

in defined in Eqs. (8) and
(10), we introduce the currents for the inflow and outflow of
cars at street s, and the currents for cars passing street s:

j out
s ≡ βsρ

out
s : outflow current of cars,

j in
s ≡

S∑
r=1

j sr
in : inflow current of cars,

current of passing (q,r) cars,
j qr
s ≡ j

qr

is
: q = s + 1, . . . ,s + S − 1,

r = s + 1, . . . ,q

j pass
s ≡

s+S−1∑
q=s+1

q∑
r=s+1

jqr
s : current of all passing cars.

Note that j in
s = αs〈(1 − ncf

is−1)(1−nis )〉0 and j
pass
s =

〈ncf
is−1(1 − nis )〉0, where the average 〈. . .〉0 refers to the

stationary state.
In the stationary state, the correlations defining the currents

at the entrance and exit sites, as well as the set {ρout
s }, can

be expressed exactly in terms of the {ρent
s } and the model

parameters without resorting to the MFA. This is shown in

Appendix. For calculating the phases via the concept of the
effective rates, however, we also need the {ρcf

s } as a function of
the {ρent

s }, which will become clear below. This requires some
type of mean-field treatment. This observation agrees with
the earlier finding [61] that the balancing of currents alone
is not sufficient for determining effective rates at junctions of
TASEP chains. Knowing j

pass
s , the {ρcf

s } can be calculated from
the approximation ρcf

s � j
pass
s /(1 − ρent

s ), which leads to an
alternative mean-field approach, where only 〈ncf

is−1(1 − nis )〉0

is factorized (see Appendix).
In the MFA all correlations are factorized. The expressions

for the currents can then be summarized as

j rs
out = βsρ

rs
s , (12a)

j out
s = βsρ

out
s , (12b)

j sr
in = αsWsr

(
1 − ρcf

s

)(
1 − ρent

s

)
, (12c)

j in
s = αs

(
1 − ρcf

s

)(
1 − ρent

s

)
, (12d)

jqr
s = ρqr

s

(
1 − ρent

s

)
, (12e)

j pass
s = ρcf

s

(
1 − ρent

s

)
, (12f)

where Eq. (12e) applies for q = s + 1 . . . ,s + S − 1 and r =
s + 1, . . . ,q.

The throughput of cars in a stationary state is given by the
total inflow Jin or outflow of Jout of cars:

J in =
S∑

s=1

j in
s =

S∑
s=1

j out
s = J out. (13)

Maximizing this throughput with respect to the model param-
eters, which control the traffic, e.g., the sets {αs} and {βs} of
injection and ejection rates, gives the conditions of optimal
transport.

III. ROUNDABOUT WITH TWO STREETS

A. Partial densities at exit sites as functions of total
densities at entrance sites

For two streets, there are six partial densities at the exit
sites: ρ11

1 , ρ21
1 , ρ22

1 , ρ22
2 , ρ12

2 , and ρ11
2 . To express them as a

function of the two densities ρent
1 and ρent

2 at the entrance sites,
we utilize the fact that in the stationary state the inflow current
j 11

in of (1,1) cars must equal the current j 11
2 of (1,1) cars passing

the second street and the outflow current j 11
out of (1,1) cars, i.e.,

j 11
in = j 11

2 = j 11
out. Moreover, it must hold j 12

in = j 12
out for the

(1,2) cars, and analogously j 22
in = j 22

1 = j 22
out and j 21

in = j 21
out

for cars entering from the second street.
Accordingly, with Eqs. (12a), (12c), and (12e) we obtain

from the balancing of the currents for the different types of
cars at the intersecting streets (ρcf

1 = ρ22
1 and ρcf

2 = ρ11
2 here

for S = 2):

α1W11
(
1 − ρ22

1

)(
1 − ρent

1

) = ρ11
2

(
1 − ρent

2

) = β1ρ
11
1 , (14a)

α1W12
(
1 − ρ22

1

)(
1 − ρent

1

) = β2ρ
12
2 , (14b)

α2W22
(
1 − ρ11

2

)(
1 − ρent

2

) = ρ22
1

(
1 − ρent

1

) = β2ρ
22
2 , (14c)

α2W21
(
1 − ρ11

2

)(
1 − ρent

2

) = β1ρ
21
1 . (14d)
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These are six linear equations, which can be solved to
express the six partial densities in terms of the densities at
the entrance sites and the model parameters. Note that, due to
symmetry, Eqs. (14c) and (14d) follow from Eqs. (14a) and
(14b) by a shifting of the street indices by one, which according
to the modulo convention here is equivalent to interchanging
the street indices 1 and 2. The solutions read

ρ11
1 = α1W11

[(
1 − ρent

1

) − α2W22
(
1 − ρent

2

)]
β1(1 − α1W11α2W22)

, (15a)

ρ21
1 = α2W21

[(
1 − ρent

2

) − α1W11
(
1 − ρent

1

)]
β1(1 − α1W11α2W22)

, (15b)

ρ22
1 = α2W22

[(
1 − ρent

2

) − α1W11
(
1 − ρent

1

)]
(
1 − ρent

1

)(
1 − α1W11α2W22

) , (15c)

for the first street, and for the second street are obtained by
index interchanging.

B. Splitting of roundabout into substreets

Analogous to earlier treatments of defects [60] or double-
chain sections [61] in the TASEP, we split the roundabout into
two TASEP substreets with effective inflow and outflow rates.
The substreet s refers to the interior lane part between the
intersecting streets s and s + 1. For S = 2 this means that the
first substreet is entered at site i1 with effective rate α̃1, and
exited at site i2 − 1 with rate β̃1, while the second substreet is
entered at site i2 with effective rate α̃2, and exited at site i1 − 1
with rate β̃2. Hence we obtain for the effective in- and outflow
currents of the substreets:

j̃ in
s = α̃s

(
1 − ρent

s

)
, (16a)

j̃ out
s = β̃sρ

ex
s+1. (16b)

The effective rates are fixed by requiring that these total in-
and outflow currents of cars at the respective entrance and exit
sites are the same as in the roundabout.

The total inflow (outflow) currents to (from) the entrance
(exit) sites in the roundabout are given by the sums of the
respective total currents of entering and exiting and passing
cars [see Eqs. (12b), (12d), and (12f)]:

j in
s + j pass

s = [
αs

(
1 − ρcf

s

) + ρcf
s

)](
1 − ρent

s

)
, (17a)

j out
s + j pass

s = βsρ
out
s + ρcf

s

(
1 − ρent

s

)
= βs

(
ρex

s − ρcf
s

) + ρcf
s

(
1 − ρent

s

)
. (17b)

In fact, because of car number conservation, it must hold
j in
s + j

pass
s = j out

s+1 + j
pass
s+1 , which can be readily proven from

the balancing of the partial currents discussed in Sec. III A.
Setting

j̃ in
s = j in

s + j pass
s = j out

s+1 + j
pass
s+1 = j̃ out

s , (18)

we can write the determining equations for the effective rates
in the form (s = 1,2),

α̃s = αs

(
1 − ρcf

s

) + ρcf
s , (19a)

β̃sρ
ex
s+1 = α̃s

(
1 − ρent

s

)
. (19b)

The second equation is also required by consistency,
because for a TASEP in the stationary state, the inflow and
outflow current must be the same. Equation (19) gives the
effective rates in terms of the densities {ρent

s } and the model
parameters.

We note in passing that, differently from what one may
think when looking at Eq. (10) [or Eq. (15)], the parameters
αs and Wsr are entering the effective rates not only in the
combination αsWsr . This reflects the fact that a coupling
between the substreets is mediated by the route matrix via
the conditions implied on the partial occupation numbers and
by the conflicting car constraint as discussed in Sec. II.

C. Phase diagram for roundabout

In each of the substreets, either the LD, MC, or HD phase
of the TASEP can form. Hence there are in total nine phases
possible (LD/LD, LD/MC, LD/HD, MC/LD, . . .). With respect
to the roundabout, these phases μ (μ = LD, MC or HD)
characterize the car densities in the interior (“bulk”) parts of
the substreets. In the language of phase transitions, the bulk
densities serve as order parameters.

Which phases appear for given model parameters depends
on the values of the effective rates. For an ordinary TASEP with
injection rate α̃ and ejection rate β̃, the following properties
are known [55]:

LD phase: occurs for 0 � α̃ < 1/2, α̃ < β̃, and the bulk
density is ρLD = α̃.

MC phase: occurs for α̃ > 1/2, β̃ > 1/2, and the bulk
density is ρMC = 1/2.

HD phase: occurs for 0 � β̃ < 1/2, α̃ > β̃, and the bulk
density is ρHD = 1 − β̃.

For α̃ = β̃ < 1/2, the LD and HD phase coexist.
We encode these conditions for the occurrence of the

different TASEP phases by defining the logical functions,

Condμ(α̃,β̃) =

⎧⎪⎨
⎪⎩

0 � α̃ < 1
2 ∧ β̃ > α̃ , μ = LD,

α̃ > 1
2 ∧ β̃ > 1

2 , μ = MC,

0 � β̃ < 1
2 ∧ α̃ > β̃, μ = HD,

(20)

where ∧ denotes the Boolean AND operator. The bulk
densities in the different TASEP phases are specified by

ρTASEP
μ (α̃,β̃) =

⎧⎪⎨
⎪⎩

α̃ , μ = LD,
1
2 , μ = MC,

1 − β̃ , μ = HD,

(21)

and the respective stationary currents by

J TASEP
μ (α̃,β̃) = ρTASEP

μ

(
1 − ρTASEP

μ

)
. (22)

In the phase μ of the TASEP, the inflow current α̃(1 − ρent)
to the entrance site is equal to J TASEP

μ (α̃,β̃), yielding ρent =
1 − J TASEP

μ (α̃,β̃)/α̃ for the density at the entrance site [55].
Accordingly, one can identify a multiphase μ1/μ2 for the

roundabout by the following procedure. In the phase μ1/μ2,
the densities at the entrance sites must be

ρent
s,μs

= 1 − J TASEP
μs

(α̃s ,β̃s)

α̃s

. (23)

Inserting these densities for ρent
s in Eqs. (19a) and (19b) (note

that ρcf
s and ρex

s+1 depend on ρent
s ), we obtain a set of (in

012304-5



M. EBRAHIM FOULAADVAND AND PHILIPP MAASS PHYSICAL REVIEW E 94, 012304 (2016)

general nonlinear) equations, from which the effective rates
α̃s , β̃s are calculated as functions of the model parameters.
The μ1/μ2 phase occurs, if α̃s and β̃s satisfy the conditions
for the corresponding phases. This means that the μ1/μ2 phase
forms if

Condμ1 (α̃1,β̃1) ∧ Condμ2 (α̃2,β̃2) = .True. (24)

The region (set) of corresponding control parameters satisfying
Eq. (24), is denoted as Rμ1/μ2 . The car densities in the interior
parts of the substreets in phase μ1/μ2 are

ρ lane
s,μs

= ρTASEP
μs

(α̃s ,β̃s). (25)

If α̃s = β̃s < 1/2, the car density in the substreets is not
unique, but two coexisting regions of the LD and HD
phase appear with densities ρ lane

s = α̃s and ρ lane
s = 1 − β̃s ,

respectively.
Applying this procedure for all possible phases, one can

map out the complete phase diagram in the parameter space.
This phase diagram is not exact, because of the approximations
associated with the mean-field treatment of correlations and
with the effective rate method in Sec. III B. In view of
previous results on TASEP models, we expect deviations to
the true phase diagram to be small. This expectation is indeed
corroborated by results from KMC simulations shown below.

Because α̃s and β̃s depend on the model parameters, ρ lane
s

varies with these parameters if substreet s is in the LD or
HD phase. In this respect the behavior here of the “interacting
TASEP” is similar to the TASEP behavior in the presence
of particle interactions beyond site exclusion [59,62], or in
connection with periodic driving [63].

The throughput from Eq. (13) in phase μ1/μ2 can most
conveniently be calculated from the solutions for ρout

s,μs
, which

are given by the respective partial densities (see Sec. II B) after
inserting Eq. (23) into Eq. (15):

J out
μ1/μ2

=
S∑

s=1

βsρ
out
s,μs

=
S∑

r,s=1

βsρ
rs
s,μs

. (26)

Maximal throughput J
out,max
μ1/μ2

in phase μ1/μ2 is obtained for
those control parameter values (e.g., {αs} and {βs} in region
Rμ1,μ2 ), where J out

μ1/μ2
becomes maximal, and the parameter

sets for optimal throughput follow by comparison of the
J

out,max
μ1/μ2

.

D. Results for equivalent intersecting streets

For equivalent intersecting streets with equal values of
corresponding parameters, we can write

w ≡ W11 = W22, W12 = W21 = 1 − w, (27a)

α ≡ α1 = α2, (27b)

β ≡ β1 = β2. (27c)

As a consequence, it must hold ρ11
2 = ρ22

1 , ρ12
2 = ρ21

1 , ρ22
2 =

ρ11
1 , and ρent

2 = ρent
1 ≡ ρent. Equation (15) becomes

ρ11
1 = αw

β(1 + αw)
(1 − ρent), (28a)

ρ21
1 = α(1 − w)

β(1 + αw)
(1 − ρent), (28b)

ρ22
1 = αw

1 + αw
. (28c)

Accordingly we obtain for ρcf ≡ ρcf
1 = ρcf

2 = ρ22
1 and

ρex ≡ ρex
1 = ρex

2 = ρ11
1 + ρ21

1 + ρ22
1 :

ρcf = αw

1 + αw
, (29)

ρex = α(1 − ρent + βw)

β(1 + αw)
. (30)

Inserting these expressions into Eqs. (19a) and (19b) and
solving for the effective rates yields

α̃ = α(1 + w)

1 + αw
, (31a)

β̃ = β(1 + w)(1 − ρent)

1 − ρent + βw
. (31b)

For the equivalent streets considered here, α̃ turns out to be
independent of ρent.

In this symmetric case, only the LD/LD, MC/MC, and
HD/HD phases can appear. To determine their occurrence,
we insert ρent = 1 − Jμ(α̃,β̃)/α̃ from Eq. (23) for μ = LD,
MC, and HD into Eq. (31b), solve for β̃ (necessary here only
for the HD/HD phase), and determine the model parameter
values α, β, and w, where Condμ(α̃,β̃) is satisfied.

For the LD/LD phase we obtain

β̃ = β(1 − α)(1 + w)

1 − α + βw + αβw2
, (32)

and the parameter region RLD/LD,

0 � α <
1

2 + w
∧ α(1 − α)

1 − α − α2w(1 + w)
< β � 1. (33)

For the MC/MC phase we find

β̃ = β(1 + w)(1 + αw)

1 + αw + 4αβw(1 + w)
, (34)

and the parameter region RMC/MC,

1

2 + w
< α �

⎧⎪⎨
⎪⎩

1, 0 � w � 1

2
,

1 + 2w

w(3 + 2w)
, w � 1

2
,

∧ (1 + αw)

2[1 + w − αw(1 + w)]
< β � 1. (35)

For the HD/HD phase, Eq. (31b) has three different
solutions, including the trivial one β̃ = 0. The physical branch
of the remaining two solutions (containing a root) can be
selected from the requirement that β̃ = β for w → 0 (no
coupling between the two streets). This gives

β̃ = 1

2(1 + αw)
(1 + β + (α + β)w + αβw(1 + w)

−
√

(1 + αw)[(1 + αw)(1 + β + βw)2 − 4β(1 + w)]).

(36)

The parameter region RHD/HD is the part of the α-β square
0 � α,β � 1 that is not covered by the LD/LD or MC/MC

012304-6



PHASE TRANSITIONS AND OPTIMAL TRANSPORT IN . . . PHYSICAL REVIEW E 94, 012304 (2016)

FIG. 2. Phase diagram for a roundabout with S = 2 equivalent streets having equal entrance and exit rates α and β, for w = 0.1 (left panel),
0.5 (middle panel), and 1 (right panel).

phases (and excluding the transition lines). On the transition
line between the LD/LD and HD/HD phases, i.e., for

β = α(1 − α)

1 − α − α2w(1 + w)
, 0 � α <

1

2 + w
, (37)

the LD and HD phases coexist in each of the two substreets.
We note that the coexistence in both substreets implies a rapid
change of the local density close to the junctions.

Figure 2 shows the phase diagram of the symmetric
roundabout for three values of w, which gives the strength
of the substreet coupling mediated by the route matrix. For
w = 0.1, the coupling is weak and the phase diagram looks
almost as the one for the standard TASEP, which is recovered
in the limit w → 0 (for each substreet). With increasing w,
the HD/HD phase grows, while the LD/LD and MC/MC
phases shrink. The second-order transition line between the
MC/MC and HD/HD phase becomes rounded and appears to
rotate counterclockwise. For w < 0.5 it terminates at the right
boundary of the α-β square, hits its upper right corner for w =
0.5, and terminates at the upper boundary for w > 0.5. This
means that the roundabout for w > 0.5 can be in the HD/HD
phase for all values of β if α is large. The first-order transition
line between the LD/LD and HD/HD phases becomes also
rounded with increasing w. Its terminus is the triple point in
the middle of the diagram, which moves slightly to the left
with increasing w. The second-order line between the LD/LD
and MC/MC phases, by contrast, remains straight independent
of w, and shifts towards the left with the triple point.

Overall, the main effect of increasing the coupling strength
w is an extension of the HD/HD phase, going along with a
strong shrinkage of the MC/MC phase and a squeezing of
the LD/LD phase to the upper left of the α-β square. The
extension of the HD/HD phase results from the fact that the
number of cars passing the intersections becomes higher with
larger w, and accordingly α̃ increases and β̃ decreases. As
a consequence, the state of the roundabout is driven to the
HD/HD phase with increasing w.

As mentioned above, the phase diagrams in Fig. 2 are not
exact because of the neglect of correlations in the mean-
field treatment and the use of the effective rate method.
To test the quality of these approximations, we performed
KMC simulations for roundabouts of different lengths L and

with entrance sites of the intersecting streets at i1 = 1 and
i2 = L/2 + 1. These simulations were carried out with the
reaction-time algorithm [64,65]. Figure 3 shows representative
density profiles in the LD/LD, MC/MC, and HD/HD phase
for L = 200, and for w = 0.5, where the mean-field phase
diagram is shown in the middle panel of Fig. 2. Because of
the equivalence of the two intersecting streets, the stationary
density profiles exhibit the symmetry ρi = ρi+L/2. At the
junction with the intersecting streets, the profiles show a rapid
jumplike change from a small value at the exit sites to a higher
value at the entrance sites, see the behavior at the sites i = 100
and i = 101. A corresponding behavior occurs at the sites
i = L and i = 1.

Different from the behavior in the LD phases of the
(standard) ASEP, the profile in the LD/LD is not flat at the
“left ends” of the two substreets (i.e., for ρ1+j = ρL/2+1+j with
j = 0,1, . . . small). It rather decreases monotonically towards
the flat bulk regime. Analogously, the profile in the HD/HD
is not flat at the “right ends” of the two substreets (i.e., for

i
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LD/LD
MC/MC
mean-field
HD/HD

ρ
i

FIG. 3. Simulated density profiles in a roundabout with S = 2
equivalent streets for w = 0.5 in the LD/LD (α = 0.2, β = 0.8),
MC/MC (α = 0.6, β = 0.7), and HD/HD phase (α = 0.7, β = 0.2).
Bulk densities predicted by the mean-field theory are indicated by the
black horizontal lines.
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α
0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mean-field

KMC, L=200

ρ
bulk

FIG. 4. Bulk density as a function of α in a roundabout with
S = 2 equivalent streets for fixed β = 0.2 and w = 0.5. Results from
the KMC simulations (symbols) for a roundabout of length L = 200
are compared with the prediction of the mean-field treatment (solid
line).

ρL−j = ρL/2−j with j = 0,1, . . . small). The deviations from
a flat form are caused by the fact that the dynamics at the
junctions is modified compared to the one in the bulk (interior
of the substreets) [59,63]. Overall we found the bulk densities
predicted by the mean-field treatment to be in fair agreement
with the simulated values. For the profiles shown in Fig. 3, the
predicted bulk density (small horizontal lines) agrees well with
the simulated value for the HD/HD phase (and for the MC/MC
phase, where it is equal to one-half), while it is slightly smaller
than the simulated one in the LD/LD phase.

Figure 4 shows the simulated bulk density (symbols) as a
function of α in comparison with the mean-field prediction for
β = 0.2 and w = 0.5 fixed. According to Eq. (33), the LD/LD
phase appears for small α up to a value α×, which is given by
α×(1 − α×)/[1 − α× − α2

×w(1 + w)] = β, and for w = 0.5

L
20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LD/LD

MC/MC

HD/HD

ρ
L/4

FIG. 5. Midpoint density at site i = L

4 versus roundabout length
L. Streets have equal entrance and exit rates α and β. Entrance and
exits rates α and β, and the route matrix parameter w are the same as
in Fig. 3.

and β = 0.2 yields α× � 0.193. For α > α×, the HD/HD is
predicted to appear [see Fig. 2 (middle panel)]. Indeed, close
to α×, we see a corresponding jump in the simulated data for
the bulk density in Fig. 4.

Simulations of smaller roundabouts show comparable
density profiles down to values of about L � 20, which
demonstrates that the theory can be useful also for typical
roundabouts in vehicular traffic. In Fig. 5 we show the density
in the middle of the substreets, i.e. at sites i = L/4 (or
i = 3L/4), as a function of L. As can be seen from the figure,
these midpoint densities are almost independent of L in the
LD/LD and HD/HD phases for L � 20, and in the MC/MC
phase there is only a weak increase with decreasing L. Let us
note that the time for reaching a stationary state becomes small
also for small L.

E. Results for nonequivalent intersecting streets

For nonequivalent intersecting streets, the substreets of the
interior lane can be in different TASEP phases, and in total
nine phases μ1/μ2 can appear in the roundabout. In this more
general case, it becomes difficult to solve Eqs. (19a) and (19b)
for the effective rates and the conditions (24) for identifying
the correct phases analytically and we found it easier to resort
to numerical solutions.

As an example, let us consider varying injection rates α1

and α2 for fixed W11 = W22 = 0.5 and β1 = β2 = 0.6. The
resulting phase diagram in the α1-α2 square 0 � α1,α2 � 1,
displayed in Fig. 6, shows the occurrence of seven different
phases. Along the diagonal α1 = α2, we recover the LD/LD,
MC/MC, and HD/HD phases from Fig. 2 for w = 0.5 (middle
panel), corresponding to the horizontal line in this graph for
β = 0.6. With respect to the diagonal, the diagram in Fig. 6
is symmetric in the sense that the phases μ1 and μ2 of the

FIG. 6. Phase diagram for S = 2 streets in dependence of the
entrance rates α1 and α2. The exit rates are fixed to β1 = β2 = 0.6
and the independent route matrix elements to W11 = W22 = 0.5.
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two substreets interchange if α1 and α2 are interchanged. This
is because the route matrix elements and the exit rates are
equal for the two intersecting streets. Considering the upper
left half α2 � α1 of the diagram, the appearance of the mixed
phases with μ1 �= μ2 can be understood from the fact that with
larger α2, the effective injection rate to the second substreet
increases and, accordingly the phase μ2 of this substreet is
driven towards the MC and HD phase. Hence the LD/LD phase
changes into the LD/MC phase and the MC/MC phase into the
MC/HD phase when following lines at fixed α1 upwards from
the diagonal.

IV. ROUNDABOUTS WITH S > 2 STREETS

The treatment in the preceding section can be generalized
to an arbitrary number S of intersecting streets. The first step is
to determine the partial densities at the exit sites as functions of
the total densities at the entrance sites. There are S2(S + 1)/2
nonzero partial densities ρ

qr
s in general. This can be seen by

considering the first street s = 1, where ρ
qr

1 = 0 for q < r .
Accordingly, the number of nonzero ρ

qr

1 , q � r , is S(S + 1)/2.
Because this number s the same for each intersecting street, in
total S2(S + 1)/2 partial densities need to be calculated.

Following the procedure outlined in Sec. III A, the balanc-
ing of the currents of cars entering at the first street and exiting
to streets 1,S,S − 1, . . . ,2 yields

j 11
in = j 11

2 = . . . = j 11
S−1 = j 11

S = j 11
out, [S eqs.] (38a)

j 1S
in = j 1S

2 = . . . = j 1S
S−1 = j 1S

out, [(S − 1) eqs.] (38b)

...

j 13
in = j 13

2 = j 13
out, [2 eqs.] (38c)

j 12
in = j 12

out. [1 eq.] (38d)

These are
∑S

j=1 j = S(S + 1)/2 equations. For the other
streets s = 2, . . . ,S, the corresponding equations for the cur-
rent balancing follow by street index shifting. After inserting
the MFA expressions for the currents from Eq. (12), we thus
have a set of S2(S + 1)/2 linear equations for the partial
densities at the exit sites, which can be solved to express them
in terms of the total densities ρent

s , s = 1, . . . ,S, at the entrance
sites. As mentioned in Sec. II B, Eq. (38) can be used also to
calculate all correlations 〈nqr

is−1ni〉0 and all ρout
s as functions of

the {ρent
s } and model parameters without using the MFA (see

Appendix).
The remaining steps are fully analogous to the procedure

described in Secs. III B and III C. To test whether, for a
given set of model parameters, the multiphase μ1/μ2/ . . . /μS

appears in the roundabout, corresponding to the TASEP phases
μs , s = 1, . . . ,S, in the substreets, the effective rates α̃s , β̃s are
calculated from Eq. (19). To this end the ρent

s,μs
from Eq. (23) are

inserted into the respective expressions for the partial densities,
which appear in Eq. (19). If the so-calculated effective rates
satisfy

S∧
s=1

Condμs
(α̃s ,β̃s) = .True. , (39)

the phase μ1/μ2/ . . . /μS can form. The optimal throughput
follows from maximizing the current in Eq. (26).

It should be noted here that it cannot be ruled out a
priori that Eq. (39) [or Eq. (24)] are fulfilled by two (or
more) different multiphases for a region of model parameters,
which does not constitute a submanifold (i.e., transition line,
or, more generally speaking, phase transition submanifold in
model parameter space). In the numerical solutions, as well
as in our analytical treatments, however, we always found
that for a given set of values {αs}, {βs}, {Wrs} outside the
transition submanifolds, exactly one multiphase μ1/ . . . /μS

was satisfying the condition (39). This suggests that the
additional consideration of noise in the model will not be of
crucial importance in the sense that the noise becomes decisive
for selecting a stable stationary state from multiple solutions.

With the general scheme given above, phase diagrams and
control parameter sets for optimal throughput can be calculated
numerically, for nonequivalent intersecting streets, as was
demonstrated for the case S = 2 in Sec. III E. For S streets, in
total 3S different multiphases are possible. In the special case of
equivalent intersecting streets, only three of these multiphases
can appear, where all substreets are either in the LD, MC,
or HD TASEP phase. In the following section we show that
in this case the problem for S > 2 intersecting streets can be
reduced to the one treated analytically in Sec. III D for S = 2
after replacing the coupling strength w with a generalized
expression.

A. Reduction to case S = 2 for S > 2 equivalent
intersecting streets

Let us define α ≡ α1 = . . . αS , β ≡ β1 = . . . βS , and the
route matrix elements as

W11 = W22 = W33 = . . . = WSS ≡ w1, (40a)

W1S = W21 = W32 = . . . = WS,S−1 ≡ w2, (40b)

W1,S−1 = W2S = W31 = . . . = WS,S−2 ≡ w3, (40c)
...

W13 = . . . = WS−2,S = WS−1,1 = WS,2 ≡ wS−1, (40d)

W12 = W23 = . . . = WS−1,S = WS,1 ≡ w̄, (40e)

where

w̄ ≡ 1 −
S−1∑
j=1

wj (41)

follows from the normalization condition (2) [66]. Note that
we introduced the route matrix elements w = (w1, . . . ,wS−1)
in a way that for w → 0, the interior lane of the roundabout
splits into independent substreets. After inserting Eq. (12)
into Eq. (38), and when taking into account that the ρent

s ,
ρ

q+j,r+j

s+j , s,j = 1, . . . ,S, must all be the same for equivalent

intersecting streets, we can set ρent ≡ ρent
s , ρqr ≡ ρ

q+j,r+j

s+j ,
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and write Eq. (38) in the following form:

αw1(1 − ρcf) = ρSS = ρS−1,S−1 = . . . = ρ22

= β
ρ11

1 − ρent
, (42a)

αw2(1 − ρcf) = ρS,S−1 = ρS−1,S−2 = . . . = ρ32

= β
ρ21

1 − ρent
, (42b)

αw3(1 − ρcf) = ρS,S−2 = ρS−1,S−3 = . . . = ρ42

= β
ρ31

1 − ρent
, (42c)

...

αwS−1(1 − ρcf) = ρS,2 = β
ρS−1,1

1 − ρent
, (42d)

αw̄(1 − ρcf) = β
ρS,1

1 − ρent
. (42e)

Here ρcf = ∑S
q=2

∑q

r=2 ρqr = ρ22 + ρ32 + ρ33 + . . . +
ρS,2 + . . . + ρSS (see Sec. II B). We see that the ρqr with
r �= 1 in Eqs. (42a)–(42d) sum up to ρcf . Combining
the corresponding summation with the leftmost terms
αwj (1 − ρcf) in Eqs. (42a)–(42d), a closed equation for ρcf is
obtained, whose solution gives Eq. (29) with the generalized
coupling strength,

w ≡
S−1∑
j=1

(S − j )wj . (43)

For S = 2, this coupling strength reduces to w = W11 = W22.
The weighting of the wj with (S − j ) in Eq. (43) can be
intuitively understood from the fact that the wj , as defined in
Eq. (42), involve the passing of (S − j ) consecutive intersect-
ing streets by cars, i.e., a coupling of (S − j ) substreets.

Summing up the rightmost terms βρj,1/(1 − ρent), j =
1, . . . ,S, in Eqs. (42a)–(42e) and combining this summation
with the leftmost terms αwj (1 − ρcf) in Eqs. (42a)–(42d), as
well as αw̄(1 − ρcf) in Eq. (42e), we furthermore find

ρout =
S∑

j=1

ρj1 = α(1 − ρent)

β(1 + αw)
. (44)

For ρex = ρcf + ρout (cf. Sec. II B) we hence recover Eq. (30)
with w from Eq. (43). This completes the derivation which
shows that the S > 2 case reduces to the S = 2 case.

For S = 2 the coupling strength w is bounded by one,
0 � w � 1. Because of the weighting of the wj in Eq. (43),
this is no longer true for S > 2 and the range of possible
values changes to 0 � w � (S − 1). This does not affect the
general solutions for the phases given in Eqs. (33) and (34).
However, the shrinkage of the LD/. . ./LD and MC/. . ./MC
phases with increasing w, as discussed for the graphs shown
in Fig. 2, persists for w exceeding one. Their extension as a
function of w can be quantified by the crossing of the respective
phase transition curves with the β = 1 line. The intersection of
the transition curve between the LD/. . ./LD and MC/. . ./MC

phases and the β = 1 line is given by αLD/MC = 1/(2 + w) [see
Eq. (33)], yielding an α interval [0,αLD/MC] for the appearance of
the LD/. . ./LD phase. The intersection of the transition curve
between the MC/. . ./MC and HD/. . ./HD phases and the β = 1
line is given by αMC/HD = (1 + 2w)/[w(3 + 2w)] [see Eq. (35)],
yielding an α interval [αLD/MC,αMC/HD] for the appearance of the
MC/. . ./MC phase. Accordingly, the respective α interval for
the LD/. . ./LD phase shrinks as ∼w−1 for large w, and the α

interval for the MC/. . ./MC phase more rapidly with ∼w−2.
This implies also that the occurrence of the MC/. . ./MC phase
becomes less likely with increasing number of intersecting
streets.

V. SUMMARY AND PERSPECTIVES

We have studied a model for traffic in a roundabout, where
the dynamics along the roundabout’s interior lane are described
by the TASEP. The overall stationary transport behavior in the
roundabout could by classified by the TASEP phases of car
densities appearing in substreets, which constitute the parts
of the interior lane between consecutive intersecting streets.
The car flows in the substreets become coupled via a modified
dynamics at the junctions with the intersecting streets, and
via a route matrix, which accounts for the given entrance
and exit points of cars to the roundabout. In the stationary
state of a roundabout with S intersecting streets, 3S different
multiphases can appear, which correspond to the possible
TASEP phases in the S substreets.

Based on a mean-field treatment and an effective rate
concept for substreet decoupling, we developed a general
scheme for calculating the multiphases for an arbitrary number
S of intersecting streets with arbitrary entrance and exit rates as
well as route matrix elements. With these phases determined,
it becomes possible to calculate parameter sets for optimal
throughput of cars in the roundabout. In general, the solutions
of the equations for the effective rates and the determination
of the phases have to be found numerically. For equivalent
intersecting streets with equal parameters, analytical solutions
could be obtained, and the general behavior for S intersecting
streets can be derived from the solution for two equivalent
intersecting streets. In this special case, only three multiphases
are possible by symmetry, where all substreets are in the same
TASEP phase.

Previous results for the TASEP suggest that our mean-field
treatment can be expected to give a good approximation to
the exact solution with respect to the phase structure. This
expectation was indeed confirmed by KMC simulations for a
roundabout with three intersecting streets. An alternative MFA
variant is discussed in Appendix.

From a general point of view, the methodology of our
treatment of the roundabout model should be useful also for
other systems, where collective transport in elementary parts
of a system can be modeled by the TASEP or variants of it, and
where these elementary parts become coupled by intersections
or crossings. This opens up the possibility to describe and
understand stationary states of collective nonlinear dynamics
in traffic networks.

With respect to vehicular traffic, it would be interesting
to see, whether the multiphases in the roundabout and their
shifting with varying control parameters occur also in more
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realistic models, for example, when modeling the car dynamics
along the interior lane by the TASEP with simultaneous update,
or when resorting to nonlinear continuum descriptions. We
believe that the essential features described in this work remain
valid on a qualitative level, but this conjecture needs to be
checked in the future. For practical applications, further studies
based on more detailed models may allow one also to derive
guidelines for controlling, which in the simplified approach
of this work are reflected in the rates for entering (exiting)
the interior lane from (to) the intersecting streets. Effectively,
these rates correspond to a reduced flow of cars at the junctions,
which could be steered, e.g., by traffic lights.
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APPENDIX: ALTERNATIVE MEAN-FIELD TREATMENT

To avoid the factorization of correlations in the first step
of the general treatment, one can express the stationary inflow
currents as

j sr
in = αsWsr

〈(
1 − ncf

is−1

)(
1 − nis

)〉
0

= αsWsr

(
1 − ρent

s − j pass
s

)
, (A1)

where j
pass
s = ∑s+S−1

q=s+1

∑q

r=s+1 j
qr
s (cf. Sec. II B) and

jqr
s = 〈

n
qr

is−1

(
1 − nis

)〉
0, (A2)

are the partial currents of passing cars at the intersections,
which equal correlations of the occupancies at the exit and
entrance sites.

As discussed above, the current balancing in (38), including
its extension to the other streets s = 2, . . . ,S obtained by street
index shifting, gives a set of S2(S + 1) equations. This can be
regarded as a linear system for solving the S2(S − 1)/2 partial
currents j

qr
s (q = (s + 1), . . . ,s + S − 1, r = s + 1, . . . ,q,

s = 1, . . . ,S) and the S2 partial densities ρ
qs
s (q,s = 1, . . . ,S)

of leaving cars at the exit sites [entering the j
qs
out = βsρ

qs
s in

Eq. (38)] in terms of the densities ρent
s (s = 1, . . . ,S) at the

entrance sites (and the model parameters).
Let us now consider the j

qr
s and ρ

qs
s as the solutions of this

system. Then one can proceed as discussed in Sec. III B and
identify the TASEP current for the effective inflow currents
j̃ in
s = α̃s(1 − ρent

s ) from Eq. (16a) with the real total inflow
currents,

j in
s =

S∑
r=1

j sr
in = αs

(
1 − ρent

s − j pass
s

)

= αs

⎛
⎝1 − ρent

s −
s+S−1∑
q=s+1

q∑
r=s+1

jqr
s

⎞
⎠. (A3)

This gives

α̃s

(
1 − ρent

s

) = αs

⎛
⎝1 − ρent

s −
s+S−1∑
q=s+1

q∑
r=s+1

jqr
s

⎞
⎠ (A4)

as determining equations for the effective rates α̃s , which
replace Eq. (19a).

Because of car number conservation (see the discussion in
Sec. III B), the determining equations (19b) for the effective
rates β̃s remain unchanged:

β̃sρ
ex
s+1 = β̃s

(
ρcf

s+1 + ρout
s+1

)

= β̃s

⎛
⎝ρcf

s+1 +
S∑

q=1

ρ
q,s+1
s+1

⎞
⎠ = α̃s

(
1 − ρent

s

)
. (A5)

Up to this point, correlation functions have not been factorized,
but Eq. (A5) contains the densities ρcf

s of passing cars at
the exit sites, which are not known from the solution of the
current balancing equations (38). One can extract ρcf

s from a
factorization of the correlations in j

pass
s = 〈ncf

is−1nis 〉0, yielding

ρcf
s+1 � j

pass
s+1

1 − ρent
s+1

(A6)

as an alternative MFA. After inserting this into Eq. (A5), the
phase diagrams and optimal throughput can be determined as
described in the main text.
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