
PHYSICAL REVIEW E 94, 012225 (2016)

Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model
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We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as
three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas
during Bardeen-Cooper-Schrieffer–Bose-Einstein condensates crossover. Without introducing any integrability
constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the
one-dimensional dark soliton pair solution, which is obtained through a modified F -expansion method combined
with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark
soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees
very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)],
demonstrating the applicability of the theoretical treatment presented in this work.
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I. INTRODUCTION

Solitons, arising from self-stabilization against dispersive
effect, have emerged as fascinating shape-perserving phe-
nomena in various nonlinear media, extending from solid-
state physics to hydrodynamics and from nonlinear optics
to cold atom physics. Dark solitons are typical fundamental
excitations for systems modeled by the nonlinear Schrödinger
equation (NLSE) [1]. Generally they appear as dips in the
density wave background accompanied by a phase jump [2]
and have been observed experimentally in diverse contexts,
including liquids [3], optical media [4–6], and recently in
Bose-Einstein condensates (BECs) [7–13]. The possibility to
create more than one dark soliton has stimulated considerable
interest for the particular dynamical behavior arising from the
short-range repulsive interaction between solitons [14–16].
There is specific reported experimental work [17] on the
creation and oscillatory evolution investigation for the very
typical case of a dark soliton pair.

Here in this paper, we will investigate theoretically dark
soliton pair dynamics for the three-dimensional ultracold
Fermi gas in external harmonic trapping potential. As for cold
Fermi gas, with the implementation of the Feshbach resonance
experimental technique, the interparticle scattering length’s
sign (“+” for repulsive interaction and “-” for attractive
interaction) and strength can be tuned continuously from −∞
to ∞ so the long-pursued Bardeen-Cooper-Schrieffer (BCS)
state to the BEC crossover is realized [18,19], we adopt for
our study the 3D GGPE model, where the nonlinear term
takes the form of polytropic approximation ∼|ψ |2γ ψ (ψ is the
wave function) [20–29]. The parameterized polytropic index
γ falls into the range [2/3,1], reflecting the tunability of the
nonlinear interaction with γ = 1 corresponding to the BEC

limit and γ = 2/3 corresponding to the BCS and unitary limit.
It is well known that the one-dimensional Gross-Pitaevskii
equation (GPE) possesses a dark (bright) soliton solution and
there are many prior works on the one-dimensional setting case
with specific γ = 1 [30–35], relatively few works focus on the
generalized model (3D GGPE) with parameterized nonlinear
interaction and harmonic trapping terms. Here in this paper, we
utilize the modified F -expansion method [36,37], identifying
the dark soliton pair solution for the 1D GGPE first, and then
adopt the self-similar approach to obtain the dark soliton pair
solution for the three-dimensional case. We find from our
approach that the dark soliton pair obtained evolves with a
very similar pattern and oscillatory period compared with what
was reported in prior experimental work [17] regarding dark
soliton pair dynamics, demonstrating the applicability of our
theoretical approach.

This paper is arranged as follows. The next section presents
the analytical dark-soliton pair solution findings for one-
dimensional GGPE, followed by Sec. III, where the 3D dark
soliton pair solution is obtained with comparison to actual
experimental findings and we discuss results. The last section
gives conclusive remarks.

II. DARK SOLITON PAIR SOLUTION FOR
ONE-DIMENSIONAL GENERALIZED

GROSS-PITAEVSKII EQUATION (GGPE)

A. Problem formulation

The one-dimensional case for the GGPE is relatively easier
to handle compared with its higher-dimensional cases. Certain
experimental scenarios, the system in an elongated harmonic
trap, for example, can be modeled by 1D GGPE. The 1D gener-
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alized GPE with harmonic potential takes the following form:

i�
∂ψ(x,t)

∂t
= − �

2

2m

∂2

∂x2
ψ(x,t) + 1

2
k(t)m�ω2x2ψ(x,t)

+ g(t)|ψ(x,t)|2γ ψ(x,t), (1)

where γ is a polytropic real index in the nonlinear term,
determined by experiment as discussed in Refs. [20–29].
The variation of γ corresponds to different BCS-BEC
crossover regimes. Equation (1)’s precise description for
the BCS-BEC crossover regime (2/3 < γ < 1) relies on the
precise determination of γ , corresponding to the scattering
length af signaling the crossover regime, these are elaborated
in Refs. [38,39]. The effectiveness of Eq. (1) in the BCS-BEC
crossover regime based on the polytropic index γ calibration
is validated in some prior work [20,40]. The first term on the
right-hand side of (1) models the dispersion effect, the second
term on the right-hand side comes from external harmonic
trapping, and the third term arises from interaction with the
Landau coefficient g(t) < 0, corresponding to attractive inter-
action, and g(t) > 0, corresponding to repulsive interaction.
Equation (1) is derived from its 3D analog in certain specific
settings like the elongated external harmonic trapping potential
[V (r) = 1

2m(ω2
ρρ

2 + ω2
xx

2) with ωρ � ωx] as discussed in
some prior work [41,42]; ω2

x is replaced by k(t) in our problem.
To find the analytical solution of 1D GGPE (1) without

introducing an additional integrability constraint, that is,
making sure that there is no constraint formula connecting
k(t) and g(t) and that they are allowed to vary freely without
any interdependence, we introduce a parametric function σ (t)
with the following coupled modulus-phase transformation:

x ′ =
√

2mω

�
σ (t ′)x, (2a)

t ′ = ωt, (2b)

ψ(x,t) = σ 1/2(t ′) exp

[
i

(
mω

�

σt ′ (t ′)
σ (t ′)

x2

)]
ϕ(x ′,t ′), (3)

Substituting (25) and (2) into Eq. (1) and switching notation
from (x ′,t ′) to (x,t) we get the transformed 1D GGPE with
transformed coefficients as

iϕt + σ 2(t)ϕxx +
{

k(t)

4σ 2(t)
−

[
σt (t)

σ (t)

]2

− 1

4

[
σt (t)

σ (t)

]
t

}
x2ϕ

+ g(t)

�ω
σγ (t)|ϕ|2γ φ = 0. (4)

Assume that the wave function takes the following form:

ϕ(x,t) = v1/2γ (x,t)eiθ(x,t). (5)

Substituting (5) into Eq. (4), we reach the equations for v(x,t)
and θ (x,t) as follows:

v2θt + σ 2(t)
(
a0vvxx + b0v

2
x + v2θ2

x

)
+α(t)x2v2 + β(t)v3 = 0, (6a)

vt + σ 2(t)(2vxθx + γ vθxx) = 0, (6b)

where α(t) = k(t)/4σ 2(t) − [σt (t)/σ (t)]2 − [σt (t)/4σ (t)]t ,
β(t) = g(t)σγ (t)/�ω, a0 = −1/γ , and b0 = −(1 − γ )/γ

are constants. Equations (6) takes the the format from
which the F -expansion method can be utilized in concrete
problem-solving steps. These are elaborated in the following
sections.

B. F-expansion method

The F -expansion method [36,37] can be utilized to solve
nonlinear partial differential equations of the form

G(u,ut ,ux,uxx, . . .) = 0, (7)

where the terms of G are unknown function u(x,t) and
its partial derivatives of various order. The F -expansion is
implemented by expressing the unknown function u(x) as
a polynomial of F (ξ ), with F (ξ ) defined as function of
ξ = p(t)x + q(t) through

d2

dξ 2
F (ξ ) = c0

(
2F 3(ξ ) + 3

2
λF 2(ξ ) + μF (ξ ) + 1

2
η

)
(8)

or

dF (ξ )

dξ
= ±

√
c0(F 4(ξ ) + λF 3(ξ ) + μF 2(ξ ) + ηF (ξ ) + ς ),

(9)

where λ, μ, and η are certain constants. We express the
unknown function u(x,t) in polynomial form as

u(x,t) =
m∑

i=0

hi(t)F
i(ξ ), hm(t) �= 0. (10)

We express G as a polynomial of F (ξ ) plus another polynomial
of F (ξ ) times dF (ξ )/dξ after substituting (10) into the original
nonlinear partial differential equation (7) via making use of
(8), and m is determined by balancing between the nonlinear
term and highest differential term. Equation (7) is solved
by setting the coefficient formula of all terms [F i(ξ ) and
F j (ξ )dF (ξ )/dξ ] of G to zero. This will end with a set of
ODEs for hi(t), which will put the unknown function u(x,t)
(10) in an explicit form if the ODEs can be solved consistently.

C. Analytical dark soliton pair solution of 1D GGPE
based on the F-expansion method

Prior work on the 1D GGPE identifies the single soliton
solution [43] here in order to obtain multiple soliton solution
we will adopt different strategy. To search for the possible dark
soliton pair solution, we set c0 = 0 in the definition (9) of F (ξ ),
so the balancing formula for m in (10) is 3m = 2(m + 1) [order
of highest differential term and nonlinear term of (6a), when
differential operation increases the order of the polynomial by
1], which gives m = 2, or 3m = 2(m + 2) (when differential
operation increases the order of the polynomial by 2), which
gives m = 4. Since we are searching for a soliton pair solution,
we choose m = 4 and assume

v(x,t) = h(t)F (ξ ) + f (t), (11)

θ (x,t) = �(t)x2 + �(t)x + �(t), (12)
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with

F (ξ ) = ag4(ξ ) − bg2(ξ ), (13a)

g(ξ )dg(ξ )

dξ
= αgg

4(ξ ) − βgg
2(ξ ) + γg, (13b)

[
dF (ξ )

dξ

]2

= α3F
3 + α2F

2 + α1F + α0, (13c)

where αi are dependent on a,b,αg,βg,γg , which are deter-
mined by the consistency requirement for Eqs. (13). Substitut-
ing (13a) and (13b) into Eq. (13c), we get

b/a = 1, (14a)

βg/αg = 1, (14b)

γg/αg = 1/8. (14c)

It is not hard to obtain, from Eq. (13b),

g(ξ ) =
√

0.5 + 0.6112 tanh(ξ ),ξ > ξ0,g(ξ0) = 0, (15a)

g(ξ ) = −
√

0.5 + 0.6112 tanh(−ξ + 2ξ0), ξ � ξ0. (15b)

We can see from Eq. (11) and Eq. (13a) that v(x,t) (or |ψ(x,t)|)
has one maximum at ξ = ξ0 and two minimum at ξ = 0 and
ξ = 2ξ0 [roots of dF (g)

dg
= 0] which correspond to a double

soliton (dark) type solution. The precise formula for v(x,t)
requires information on various parametric functions on t

[including h(t),f (t),p(t),q(t)] which are determined by the
following set of ODEs [by substituting the ansatzes (11) and
(12) into Eq. (6), making use of formulas (8) and (9)]:

x2F 2(ξ ) : h2(t)[�′(t) + 4σ 2(t)�2(t) + α(t)] = 0,

(16a)

x2F (ξ ) : 2h(t)f (t)[�′(t) + 4σ 2(t)�2(t) + α(t)] = 0,

(16b)

x2 : f 2(t)[�′(t) + 4σ 2(t)�2(t) + α(t)] = 0,

(16c)

xF 2(ξ ) : h2(t)[�′(t) + 4σ 2(t)�(t)�(t)] = 0, (17a)

xF (ξ ) : 2h(t)f (t)[�′(t) + 4σ 2(t)�(t)�(t)] = 0, (17b)

x : f 2(t)[�′(t) + 4σ 2(t)�(t)�(t)] = 0, (17c)

and

F 3(ξ ) : 1.5α3a0σ
2(t)h2(t)p2(t) + b0α3σ

2(t)h2(t)p2(t) + gσγ (t)h3(t) = 0, (18a)

F 2(ξ ) : h2(t)[�′(t) + �2(t)σ 2(t)] + a0[α2h(t) + 1.5α3f (t)]σ 2(t)h(t)p2(t)

b0α2σ
2(t)h2(t)p2(t) + 3gσγ f (t)h2(t) = 0, (18b)

F 1(ξ ) : 2f (t)h(t)[�′(t) + �2(t)σ 2(t)] + a0[0.5α1h(t) + α2f (t)]σ 2(t)h(t)p2(t)

+b0α1σ
2(t)h2(t)p2(t) + 3gσγ (t)f 2(t)h(t) = 0, (18c)

F 0(ξ ) : f 2(t)[�′(t) + �2(t)σ 2(t)] + 0.5a0α1σ
2(t)f (t)h(t)p2(t)

b0α0σ
2(t)h2(t)p2(t) + gσγ (t)f 3(t) = 0, (18d)

while for Eq. (6b) we have

xF ′(ξ ) : h(t)[p′(t) + 4σ 2(t)�(t)p(t)] = 0, (19a)

F ′(ξ ) : h(t)[q ′(t) + 2σ 2(t)p(t)�(t)] = 0, (19b)

and

F (ξ ) : h′(t) + 2γ σ 2(t)�(t)h(t) = 0, (20a)

F 0(ξ ) : f ′(t) + 2γ σ 2(t)�(t)f (t) = 0. (20b)

From Eqs. (18), Eqs. (19), and Eqs. (20), we can see that

σγ (t)h(t) = C1, σ γ (t)f (t) = C2, (21a)

σ (t)p(t) = C3, σ (t)�(t) = C4, (21b)

where C1, C2, C3, and C4 are constants determined by initial condition. For g < 0, combining (11), (13a), (15), and (21), we have

|ψ(x,t)|2γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0({1 + 1.225 tanh[C3x + σ (t)q(t)]}2

−{1.225 tanh[C3x + σ (t)q(t)] + 1} + C2/C1), ξ > ξ0,

A0({1 + 1.225 tanh[−C3x − σ (t)q(t) + σ (t)ξ0]}2

−{1.225 tanh[−C3x − σ (t)q(t) + σ (t)ξ0] + 1} + C2/C1), ξ < ξ0,

(22a)

(22b)
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FIG. 1. Plot of modulus of wave function |ψ(ξ )| (with
A0 = 1.0,C2/C1 = 0.3).

where A0 is normalization constant. Figure 1 shows the plot
of modulus of wave function |ψ(ξ )| which possesses the dark
soliton pair characteristic. Now we can identify the clear qual-
itative property of our problem without writing out explicitly
the ordinary differential equations for σ (t),�(t),�(t),q(t).
We can see from Eqs. (22) that the factor in front of the
space variable x in modulus |ψ(x,t)| is constant (independent
of t), which means that the spatial distance between the two
dark solitons is not varying with time t in our theoretical
treatment of the pure one-dimensional setting. This is in
contrast to the dynamical feature of the single dark soliton
case as elaborated on in Ref. [44]. It is found both theoretically
and experimentally that a 1D single dark soliton is unstable in
the framework of a regular Gross-Pitaevskii equation model.
The exception is when nonlocal interaction is incorporated
which will accommodate stable single dark soliton solution,
as stated in Ref. [44]. We will see in the following section that
the three-dimensional case regarding the dynamical feature
of a dark soliton pair differ from that of the one-dimensional
case.

III. OSCILLATING DARK SOLITON PAIR IN A
THREE-DIMENSIONAL SETTING

A. Self-similar solution for three-dimensional generalized
Gross-Pitaevskii equation

Based on the analytical solution derived for one-
dimensional GGPE in the previous section, we search for the
same type of solution for three-dimensional GGPE, which
takes the following general form:

iψt + ρ0(t)�ψ + g0(t)|ψ |2γ ψ +
∑

j

k0j (t)x2
j ψ = i�0(t)ψ.

(23)
Equation (23) is the 3D generalization of Eq. (1) in
dimensionless format. The parametric functions of time
ρ0(t),g0(t),k0j (t),�0(t) are supplied, reflecting the adjustable
external experimental setting. For example, the g0(t) model’s
time-dependent nonlinear interaction strength which could
be tuned by Feshbach resonance, k0j (t)(j = x,y,z), accom-
modate the tunable external harmonic trapping strength in
three spatial directions. We derive the analytical solution of
(23) based on the self-similar approach that is developed
in Refs. [45,46]. But in order to obtain a practical solution

without introducing any additional integrability constraint,
we also introduce a parametric function χ (t) and a coupled
modulus-phase transformation as follows:

r ′ = χ (t ′)r, (24a)

t ′ =
∫

ρ0(t)χ2(t)dt. (24b)

The wave function is transformed as

ψ(r,t) = χ3/2(t ′) exp

⎡
⎣χt ′(t ′)

χ3(t ′)

∑
j

x ′2
j

⎤
⎦ϕ(r ′,t ′). (25)

Changing notations from (r ′,t ′) to (r,t), Eq. (23) is trans-
formed into the following form:

iϕt + �ϕ + g(t)|ϕ|2γ ϕ +
∑

j

kj (t)x2
j ϕ = i�(t)ϕ, (26)

where g(t) = g0(t)χ3γ−2(t)/ρ0(t), �(t) = �0(t)/[ρ0(t)χ2],
and ki(t) = {4k0j (t) + χ2

t (t)/χ2(t) − [χt (t)/χ (t)]t}/
[4ρ0(t)χ4(t)]. The self-similar projective equation for
the three-dimensional GGPE (23) is

iuτ + εuςς + δ|u|2γ u = 0, (27)

which is the specialized case of Eq. (1), with k(t) = 0 and
δ < 0, and Eq. (27) possesses a dark soliton pair solution as
shown in the previous section.

Now we introduce the similarity ansatz for ϕ which is
tailored to our needs as

ϕ(r,t) = A(t)u[ς (r,t),τ (t)] exp[ia(r,t)], (28)

where we choose u(ς,τ ) as the dark-soliton pair solution
format of Eq. (27), which is the typical feature of the similarity
approach adopted here, but the most important advantage is
its combination with parametric function χ (t), which will
eliminate all integrability constraints that are hard to avoid.
These are to be shown in the following steps. In ansatz (28),
A(t), ς (r,t), τ (t), and a(r,t) are to-be-determined functions
differentiable with respect to the time and spatial coordinates.
Substituting the solution ansatz (28) into Eq. (26) and putting
the resultant equation in the same form as Eq. (27), we obtain
the following relationship equations:

2gA2γ − δτt = 0, (29a)∑
j

ςjj = 0, (29b)

∑
j

ς2
j − ετt = 0, (29c)

ςt + 2
∑

j

ςjaj = 0, (29d)

2At − 2�A + 2A
∑

j

ajj = 0, (29e)

at + a2
x + a2

y + a2
z −

∑
j

kj x
2
j = 0, (29f)
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which are solvable with the following solutions:

A(t) =
√

3δ

εg
G, (30a)

ς (r,t) = −6D1

∫
G2dt + G

∑
j

xj + D2, (30b)

τ (t) = 3

ε

∫
G2dt + D3, (30c)

a(r,t) = gt + 2�g

4g

∑
j

x2
j + D1G

∑
j

xj

− 3D2
1

∫
G2dt + D4, (30d)

where j = x,y,z, G = exp[− ∫
(gt/g + 2�)dt], and D1,2,3,4

are integral constants. The resultant consistence equation reads

4�2 + 4
gt

g
� + 2�t + gtt

g
− 4

3

∑
j

kj (t) = 0. (31)

Since the functions �(t), g(t), and kj (t) depend on χ (t),
Eq. (31) is just an equation for χ (t), leaving ρ0(t), g0(t), k0i(t),
and �0(t) as free varying functions. The solution (28) together
with the Eq. (31) give the exact dark soliton pair solution for
3D GGPE (23).

B. Oscillatory behavior of the dark soliton pair

Considering the practical experimental setting without
dissipation such that ρ0 = 2, k0i(t) = k0i , g0(t) = g0, �(t) =
�0(t) = 0, g(t) = χ3γ−2(t)g0, we can see from Eqs. (30),

G(t) = χ2−3γ (t), (32a)

A(t) = A0χ
2−3γ (t), (32b)

ς (t) = χ2−3γ (t)(x + y + z) + Q(t),
(32c)

Q(t) = −6D1

∫
G2(t)dt + D2,

where A0 is the normalization constant. So

|ϕ(r,t)| = |A0χ
2−3γ (t)u[χ2−3γ (t)(x + y + z) + Q(t),τ (t)]|.

(33)

Here u(ς,τ ) is just in the function form of the dark soliton
pair solution (22) for the 1D GGPE as mentioned before. We
can see that because of the time-dependent factor χ2−3γ (t) in
front of the spatial variables (x,y,z), the distance between the
two dark solitons is varying arising from the modulation of
function χ (t). We will investigate the explicit format of χ (t)
for two cases:

(I) For the isotropic harmonic trapping potential k0x =
k0y = k0z = k0, we obtain the equation for χ (t) from Eq. (31)
or Eq. (29f),

h1χ (t)χtt (t) + h2χ
2
t (t) − 2k0χ

2(t) = 0, (34)

where

h1 = −(6γ − 5)/2

h2 = 3(γ − 1)(6γ − 5).

Since we are interested in the periodic solution of χ (t), we can
assume that the solution is of the following form:

χ (t) = [sin(ωt)]ν. (35)

Substituting Eq. (35) into Eq. (34), we get

[h1ν(ν − 1)ω2 + h2ν
2ω2] cos2(ωt)

− [h1νω2 − 2k0] sin2(ωt) = 0 (36)

from which we can easily get

ν = h1

h1 + h2
= 1

7 − 6γ

ω =
√

4(7 − 6γ )k0

6γ − 5
. (37)

We can see that at the BEC limit (γ = 1), with k0 = ω2
0/4,

ω = ω0, χ (t) oscillates with period T = T0 (T0 = 2π/ω0).
The two dark solitons perform relative motion between them.
Their spacing distance varies with period T0 between 0 and a
maximum value determined by the initial condition.

(II) For the quasi-one-dimensional setting with elongated
harmonic trapping potential k0x = k0y � k0z, we can see from
Eqs. (29) that, in ς (x,y,z,t), the coefficients of x,y are much
larger than that of z so the motion of the dark solitons are
confined to move in the z direction. The equation for χ (t) only
needs to count the contribution of the z component trapping
parameters. So in Eq. (34), we only need to replace k0 with kz

and obtain the same expression for χ (t) as (35) but with ω = ωz

for the BEC limit case (γ = 1). The two dark solitons execute
periodic motion with period Tz. Figure 2 shows the evolution
of the dark soliton pair’s position (z coordinates) with time t

for elongated harmonic trapping at the BEC limit. We can see

0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0

t units of Tz

So
lit
on
Po
si
tio
n
un
its
of
L 0

FIG. 2. Simulated evolution of the dark soliton pair’s peak
positions with time t (in unit Tz) for elongated harmonic trapping
potential at the BEC limit (γ = 1). (The dark soliton pair’s traces are
plotted in blue and green-gray, respectively. The vertical coordinate

is in the unit of L0 = x0
C3

√
�

mωz
; x0 is the root of equation tanh(x0) =

1/1.225.)
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FIG. 3. Experimental observation of the dark soliton pair’s
oscillation with harmonic trapping frequency νz = 53 Hz (from
Fig. 1 in Ref. [17], courtesy of M. K. Oberthaler and APS).

that the theoretical period Tz presented here agrees fairly well
with the experimental result in Ref. [17] (dark soliton pair’s
oscillating period approximately equals 20 ms � 1/νz = 1/53
s as shown in Fig. 1 in that article). Figure 3, which is
cited from Fig. 1 in Ref. [17] for comparison, shows the
experimental observation of the dynamics of the longitudinal
atomic density showing the dark soliton pair’s oscillation with
harmonic trapping frequency (νz,ν⊥) = (53 Hz,890 Hz).

C. Discussion and prospect

The comparison we just made between the theoretical and
experimental results for a three-dimensional dark soliton pair
lies at the BEC side (γ = 1) of the whole BCS-BEC crossover
regime, where we choose �0(t) = 0 in the 3D GGPE (23).
Far from the BEC limit, zero �0(t) is no longer a good
approximation, and the so-called snake instability for the
dark soliton is found both experimentally and theoretically
[47,48]. Based on the polytropic approximation and numerical
methods, such an instability is investigated in Ref. [48]. An
analytical study of the snake instability based on a GGPE
significantly far from the BEC limit is a possible extension of
the work presented here.

It is true that we identify the oscillatory behavior of
the dark soliton pair, especially in the elongated harmonic

trap case where the oscillatory period agrees fairly well
with the experimental value. It is worth mentioning that
χ (t) can accommodate exponential decay (rise) solutions in
addition to the periodic solution, which means that the spacing
between the two solitons monotonously increases (decreases)
from a certain initial time. This kind of phenomenon is
corroborated in the numerical simulation that is elaborated
on in Ref. [49], which shows that when the initial spacings
of the soliton pair are short, moderate, and long range, they
will approach, oscillate mutually, and move away from each
other, respectively. One possible extension (application) of the
theoretical approach adopted here is to study the collision
of the dark soliton pair and investigate the variations (or
conservation phenomena) before and after collision. But, for
this case, we may need to adopt a modified model incorporating
nonlocal interaction, as discussed in prior work [44]. This is
another topic for future work.

IV. CONCLUSION

In this paper, based on the modified F -expansion method
and the coupled modulus-phase transformation methodology,
we first derived the dark soliton pair solution for the one-
dimensional GGPE. Then, based on the one-dimensional
results and through a self-similar approach, for the three-
dimensional GGPE that models the ultracold Fermi gas in
harmonic trapping potential during BCS-BEC crossover, we
derive the analytical dark soliton pair solution without intro-
ducing any integrability constraint. For the three-dimensional
setting with an elongated harmonic trapping potential at
the BEC limit, our 3D theoretical results demonstrate clear
oscillatory behavior for the dark soliton pair identified, and the
oscillatory period value matches very well with that reported
in the experimental observations [17], indicating the applica-
bility of the mean-field theory-based 3D GGPE in modeling
ultracold Fermi gas with harmonic trapping potential.
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