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Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line
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The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical
dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it
is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an
otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum.
To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line
equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with
those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element
lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially
compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics
of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.
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I. INTRODUCTION

An intrinsic localized mode (ILM) [1], often referred to as
a discrete breather (DB) [2,3], is a characteristic localized
vibrational excitation in a periodic lattice with nonlinear
potential energy. The energy profile of a stationary ILM
resembles that of a force constant defect in a harmonic
lattice [4,5], but like a soliton it can propagate; however, in
contrast to a soliton it looses energy as it moves through the
lattice. The theoretical, numerical, and experimental properties
of these localized excitations have been summarized in a
number of reviews, often focusing on the different kinds
of applications: they range from micro-nanomechanical [6],
to superconducting [7], magnetic [8], optical [3], lattice
dynamical [9,10], and defect formation [11,12].

In the lattice dynamical studies of ILMs nonlinearity enters
the dynamics through the nonlinear properties of the effective
intersite and/or onsite potentials, and the inertial component
is strictly linear. In other fields it has been recognized that
nonlinear inertial contributions do occur. The large amplitude,
strongly nonseparable, collective motion in the vibration-
rotation dynamics of nuclei represents such a case [13–15].
The coordinate-dependent vibrational and rotational masses
that produce high-precision energy levels for the spectrum
of the H+

3 molecule characterize yet a different class [16].
These different demonstrations have encouraged us to consider
the dynamical possibilities of a new type of ILM in a one-
dimensional (1D) nonlinear transmission line. The dynamical
properties of amplitude-dependent inertial masses for strongly
nonseparable modes in a nonlinear vibrational lattice have not
yet been treated; however, nonlinear lumped element electrical
transmission line studies have a long history [17–19], and there
is a well-known translation between inertial mass and electrical
inductance for such linear transmission lines [20]. As long
as electrical pulses extend over many nonlinear elements of
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an electrical transmission line so that continuum equations,
such as the Korteweg-de Vries, could be applied it has been
possible to make contact with soliton behavior [21–25]. In
more recent times interest has shifted from understanding
soliton behavior to the production of high-frequency radiation
using electromagnetic shock waves produced by hysteresis in
nonlinear electric lines [26–28]. Fundamental studies focusing
on a localized nonlinear excitation with width comparable to
the lattice constant of a lumped electrical array have appeared
in the past decade [29–32]. To date all of these ILM systems
have made use of nonlinear capacitors to produce intersite
nonlinear coupling between the linear inductor lattice sites.

In this paper we describe a different kind of ILM associated
with nonlinear inductors equally spaced in an otherwise
linear electrical transmission line. A 1D electric lattice with
linear intersite capacitance coupling plus current-dependent
inductance (without hysteresis) is the starting point for the
development of such an ILM and its production is studied using
three different methods: approximate analytic, driven-damped,
and eigenvector simulations. All three methods are in good
agreement and show that the current ILM is more focused
than the corresponding flux ILM and that for the limit of
large driving amplitude the flux ILM excitation approaches
localization to three cells while the corresponding current ILM
reaches a single lattice cell excitation.

II. THREE SOLUTIONS TO THE FLUX EQUATIONS
OF MOTION

A. Approximate analytic method

The transmission line under consideration is shown in
Fig. 1(a). The array consists of linear capacitors C connected
to coils; each of n turns rapped around a ferrite core. For the
ith nonlinear inductor an often used equation for inductance
without hysteresis is [33–35]

Ii = 1

L0
�i + β

L0n3
�3

i , (1)
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FIG. 1. (a) Circuit diagram for the electric transmission line with
a saturable nonlinear inductor Ls and linear capacitor C. (b) Circuit
for the driven-damped system. Resistance, R. The line is driven by
an oscillator via Vd+ and Vd− through coupling capacitor Cd .

where L0 is the linear inductance, and the total flux � = n�

is the number of turns times the flux through one turn. The site
number i varies from −p/2 + 1 to p/2 for p lattice points,
and i = 0 is the center of the lattice. In the last term, β is
the nonlinear parameter and the flux tends to saturate with
increasing current Ii . The electromotive force across the ith
inductor is

Vi(t) = d�i

dt
= d�i

dIi

dIi

dt
= Ls(Ii)

dIi

dt
. (2)

According to Eq. (1), the nonlinear inductance,

Ls(�i) = L0

1 + 3β

n3 �2
i

, (3)

decreases with increasing flux (or current). Since we end up
focusing on the flux equation the current expression is given in
the Appendix. Applying Kirchhoff’s law to Fig. 1(a) produces
the starting equation,

�̇i = Ls(Ii)İi = −Qi

C
+ Qi−1

C
, (4)

where the dot now identifies the derivative with respect to time.
The dynamical equation of interest is

�̈i = d

dt
[Ls(Ii)İi] = d

dt

[
L0

1 + 3β

n3 �2
i (Ii)

İi

]

= − 1

C
(Ii − Ii+1) + 1

C
(Ii−1 − Ii), (5)

where Ls(Ii) is the electrical analog of a nonlinear mass in an
inertial lattice. Given the complex saturable nonlinear structure
of the current equation it is useful to transform Eq. (5) to a flux
equation using Eq. (1). This has the following form:

�̈i = −ω2
m

4
(2�i − �i+1 − �i−1)

− βω2
m

4n3

(
2�3

i − �3
i+1 − �3

i−1

)
, (6)

where ω2
m = 4/(L0C) identifies the top of the linear plane

wave spectrum and the terms on the far right are analogous to
nonlinear onsite potential terms.

To find the approximate analytical frequency dependence
of the flux ILM of odd symmetry as a function of the flux
amplitude we follow Ref. [36]. Let

�i = ξi cos ωt, (7)

where the center site is

�0 = ξ0 cos ωt ≡ α cos ωt, (8)

and

ξi = (−1)iαNe−|i|q ′a = (−1)iαN

(
1

y

)|i|
(9)

for |i| > 0. Here q ′ is the imaginary part of the wave number,
a is the lattice constant, and the amplitude drops off as e−|i|q ′a

away from the center, with a distinct amplitude ratio, N/y,
between sites i = 0 and i = ±1. The center of the odd mode
is at i = 0 so ξ0 = α and ξi = ξ−i . (The construction of the
even symmetry mode is similar and will not be treated here.)
Substituting Eq. (7) into Eq. (6) and applying the rotating wave
approximation gives a relation for the mode frequency. For the
i = 0 site, the result is

4ω2

ω2
m

=
[

2 + 2
N

y

]
+ λ

[
2 + 2

N3

y3

]
, (10)

where the dimensionless nonlinear parameter λ = 3βα2

4n3 de-
pends on the amplitude squared. For the i = 1 site the
appropriate expression is

4ω2

ω2
m

=
[

2 + 1

y
+ y

N

]
+ λ

(
2
N2

y2
+ N2

y5
+ y

N

)
. (11)

To estimate the mode frequency and nearest-neighbor ampli-
tude, we use the condition that any local mode far from its
center must obey the general relation [37]

4

(
ω2

ω2
m

)
= [2 + 2 cosh(q ′a)] = (y + 1)2

y
. (12)

Solving Eqs. (10), (11), and (12) for ω2/ω2
m, the nearest-

neighbor amplitude, ξ1 = −αN/y and y as a function of
λ gives the characteristic ILM properties. The frequency-
dependent results are described by the dashed curve in
Fig. 2(a), which illustrates that the ILM frequency varies
linearly with amplitude α.

B. Driven damped lattice model

Since there is no general analytic solution for an ILM in this
physical lattice, we need another procedure to generate �i(t)
to compare with the dashed curve shown in Fig. 2(a). The next
approach is to set up a driven+weak damping arrangement for
50 lattice elements shown in Fig. 1(b) and described by

�̈i + ω2
m

4
(2�i − �i+1 − �i−1)

+ ω2
mβ

4n3

(
2�3

i − �3
i+1 − �3

i−1

) + R

L0

d�i

dt

= − Cd

C + Cd

(
d

dt
Vd+ − d

dt
Vd−

)
. (13)
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FIG. 2. (a) ILM frequency squared as a function of the nonlinear
amplitude parameter λ. Solid curve, solution to the eigenvector
equation; dashed curve, solution to the three analytical equation
approximation; and dotted curve, driven-damped simulations. (b) Dif-
ferences between the three kinds of solutions. The solid eigenvector
curve is used as a baseline. The other two curves are measured with
respect to the solid curve. Dashed curve, the three equation method;
dotted is the driven damped method.

Here the resistor R provides damping. Since weak
damping is to be treated, Ls is replaced by L0 in
Eq. (13). Parameters for the driving condition are L0/R =
15000/ωm so that the vibrational life time τ = L0/R =
15000/ωm and a driver strength 2CdVd0ω/(C + Cd ) = 3.95 ×
10−4n3/2ω2

m/
√

β, which is strong enough to move the nonlin-
ear resonance up to ω ∼ 2ωm. The driving term is Vd+ =
−Vd− = Vd0 cos ωt . Starting with a seeded local mode the
ILM amplitude is formed and locked to the driver and the
seed is then removed. The frequency-locked ILM amplitude
automatically increases the larger the driver frequency differ-
ence is from the highest frequency plane-wave normal mode.
In steady state the time-dependent displacement eigenvector
�i(t) is obtained for each amplitude. Such simulations show
that the ILM is stable. The frequency squared as a function
of λ is represented by the dotted line in Fig. 2(a). The results
are quite close to those found with the approximate analytic
three-equation method (dashed curve).

C. Eigenvalue simulations

To further test these two findings a third method is em-
ployed. This is to set the driver-damper = 0 in Eq. (13) and then
solve the equations numerically using Powell’s hybrid method
with MINPACK [38]. Again, we assume a time-dependence
�i(t) = ξi cos ωt and apply the rotating wave approximation

to the nonlinear terms. This gives a set of eigenvector equations

−ω2ξi + ω2
m

4
[2ξi − ξi+1 − ξi−1]

+ λω2
m

4

(
2ξ 3

i − ξ 3
i+1 − ξ 3

i−1

) = 0, (14)

with eigenvector solution ξi and frequency ω at a given
amplitude α = ξ0. One particular ILM solution obtained from
the driven-damped simulation is used as an initial condition.
The code then finds an ILM eigenvector that satisfies the
equations with some tolerance from this initial vector “guess.”
By changing the amplitude slightly from α to α ± 
α other
ILM eigenvalues and eigenvectors are generated for these new
amplitudes. Continuing this process gives the solid curve in
Fig. 2(a). Note that the analytic method results are below
this curve. Since all three curves are in good agreement the
difference between them is plotted in Fig. 2(b) using the
eigenvector results as the baseline. The three-equation method
gives a fixed shift with respect to the solid eigenvector curve,
while the driven-damped results give better agreement at small
amplitude but worse at larger ones.

III. DISCUSSION

There is added value in now comparing the flux ILM
results with those for the current ILM. Equation (1) is used
to make the conversion and a comparison of the eigenvectors
for different amplitudes is presented in Fig. 3. The left column
displays the flux ILM eigenvectors for three different λ values
while the right column shows the corresponding results for the
current ILM. Because the current ILM is spatially compressed
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FIG. 3. Normalized flux and current ILM eigenvectors for three
different amplitude parameters, λ. Left column: (a)–(c) shows flux
eigenvectors for λ = 2,4,10 respectively. Right column: (d)–(f)
displays current eigenvectors for the same λ values. Since each peak
amplitude grows with increasing λ each ordinate value is normalized
to the amplitude peak.
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FIG. 4. (a) Nearest-neighbor amplitude to central element ratio
(NN) for the odd flux ILM vs. λ. Solid curve, eigenvector method;
dashed, three equation analytic method; dotted, driven-damped
method. At this resolution the solid and dotted curves completely
overlap. (b) Rato R of the current ILM NN to the flux ILM NN vs. λ.
With increasing amplitude the current ILM is spatially compressed to
a smaller number of cells compared to the flux ILM. In the asymptotic
limit the flux ILM approaches a three-element eigenvector, while the
current ILM approaches a one-element one.

to a smaller number of unit cells with respect to the flux
ILM, its nearest neighbors show a dramatic decrease in
relative amplitude with increasing λ, indicating that the energy
becomes more concentrated in the central cell. A more precise
comparison is to plot the nearest-neighbor amplitude of the
flux ILM divided by the amplitude of the central element as
a function of λ. We call this ratio NN in Fig. 4(a). It is clear
that in the asymptotic limit this ratio approaches 0.5, as has
been shown earlier to occur for a lattice dynamics chain with
hard quartic potential [39]. In Fig. 4(b) the ratio R of NN for
the current ILM to NN for the flux ILM demonstrates that
for the asymptotic limit the current ILM approaches that of a
single-element excitation.

IV. SUMMARY AND CONCLUSIONS

We have demonstrated that an electric transmission line
with nonlinear inductors and linear capacitors can give rise
to ILMs above the top of the plane wave spectrum. The
nonlinear inductor behaves as an onsite nonlinear component,
and when the array is transformed to a flux nonlinear
transmission line the resulting nonlinear contribution appears
as the analog of an onsite potential. The resulting ILM is
relatively straightforward to identify. The flux ILM has been
calculated in three different ways: they are the three equation
approximate analytic method, a driven damped method in a
50-element lattice, and a numerical eigenvalue method for the
same lattice. All three methods are in good agreement and
show that a current ILM is spatially compressed with respect
to the corresponding flux ILM.

To date all nonlinear lattice dynamic studies of inertial
systems have focused on the nonlinear potential to produce
vibrational ILMs, which, typically, have localized eigenvectors
very similar to those of force constant defects in a harmonic
lattice [9]. Efforts in a related physics field [14] suggested
to us that for inertial lattices with strongly nonseparable,
nonlinear, vibrational modes, amplitude-dependent masses
will need to be considered. To approach this nonlinear lattice
problem indirectly we have made use of the well-known
lumped element transfer between 1D electrical and mechanical
transmission lines to make use of a nonlinear electrical
inductance to understand the dynamical properties of an
amplitude-dependent inertial mass. Our current study of a
monotonic electrical transmission line with an onsite nonlinear
inductance indicates that amplitude-dependent masses of
either nonlinear sign, in a diatomic lattice, should give rise
to localized vibrational modes outside of the plane wave
spectra. In the large amplitude limit it is expected that they
should have eigenvectors very similar to those associated
with mass defects in harmonic lattices [40]. Our findings
imply that the dynamical picture for a strongly, nonseparable,
nonlinear lattice will be to replace the system with ILMs
plus renormalized phonons. The ILM eigenvectors will be
similar to the mass defect and force constant defect types.
This nonlinear inductive ILM study strengthens the analogy
between the dynamics of defects in the harmonic lattice with
ILMs in the strongly anharmonic lattice.
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APPENDIX

Finding the current dependence of the nonlinear inductance
associated with Eq. (3) involves solving a cubic equation. We
use Cardano’s method [41] for the following equation:

t3 + pt + q = 0, (A1)

where for Eq. (1) p = n3

β
and q = − n3

β
L0I . After some algebra

we find

� =
√

n3

3β

(
3

√
J +

√
J 2 + 1 + 3

√
J −

√
J 2 + 1

)
, (A2)

where the normalized current is

J ≡ 33/2β1/2

2n3/2
L0I (A3)

and

λ = 1

4

(
3

√
J0 +

√
J 2

0 + 1 + 3

√
J0 −

√
J 2

0 + 1

)2

, (A4)

where J0 is the maximum amplitude.
A typical current dependence of the nonlinear inductance

calculated using Eq. (3) is shown in Fig. 5(a). For the linear
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FIG. 5. (a) The current dependence of the nonlinear inductance
calculated in the Appendix. (b) The total flux as a function of the
current. Half point of the inductance is at 36 mA, and the nonlinear
parameter at that current is λ = 0.25, while λ = 2.11 at 300 mA. Coil
dimensions are listed in the Appendix.

inductance we assumed a toroidal core made from a Mn-Zn
ferrite known as “75 material” [42]. Core dimensions are 12.7-
mm outer diameter, 7.15-mm inner diameter, and 4.9 mm thick.
With an effective magnetic pass length � = 29.5 mm and cross
section area s = 1.26 × 10−5 m2, a 10 turn winding (n = 10)
gives L0 = 615 μH by using L0 = μlinsn

2/�. The nonlinear
parameter is estimated as follows. The magnetic field H is
calculated multiplying Eq. (1) by n/�, so

H = nI

�
= 1

L0

n

�
nsB + n

�

β

L0n3
n3s3B3

= 1

μlin
B + βs2

μlinn
B3. (A5)

From the B-H curve of the material and Eq. (A5), the linear
and nonlinear parameters are estimated to be μlin = 13 600μ0

and β = 1.205 × 1012(1/Wb2), where μ0 is the magnetic
permeability of vacuum. “75 material” is known as a low-loss
material with a small hysteresis. We used the average value of
the hysteresis loop to compare with Eq. (A5), over the middle
magnetic field region < 0.35 T, smaller than saturation field
of 0.43 T. The resulting inductance shown in Fig. 5 is very
nonlinear. According to Eq. (A4) for I = 300 mA λ ≈ 2.11.
For completeness Fig. 5(b) presents the dependence of the flux
on the current.

[1] A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970
(1988).

[2] S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).
[3] S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).
[4] A. S. Barker and A. J. Sievers, Rev. Mod. Phys. 47, S1

(1975).
[5] H. Bilz, D. Strauch, and R. K. Wehner, Vibrational Infrared and

Raman Spectra of Non-Metals (Springer-Verlag, Berlin, 1984).
[6] M. Sato, B. E. Hubbard, and A. J. Sievers, Rev. Mod. Phys. 78,

137 (2006).
[7] D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57,

43 (2004).
[8] R. Lai and A. J. Sievers, Phys. Rep. 314, 147 (1999).
[9] A. J. Sievers and J. B. Page, Dynamical Properties of Solids:

Phonon Physics the Cutting Edge (North Holland, Amsterdam,
1995), p. 137.

[10] A. Shelkan, V. Hizhnyakov, and M. Klopov, Phys. Rev. B 75,
134304 (2007).

[11] V. Hizhnyakov, M. Haas, A. Shelkan, and M. Klopov, Phys. Scr.
89, 044003 (2014).

[12] J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko,
and V. Hizhnyakov, Physica D 297, 56 (2015).

[13] K. Goeke, P.-G. Reinhard, and D. J. Rowe, Nucl. Phys. A 359,
408 (1981).

[14] G. D. Dang, A. Klein, and N. R. Walet, Phys. Rep. 335, 93
(2000).

[15] N. Hinohara, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi,
AIP Conf. Proc. 1175, 49 (2009).

[16] L. G. Diniz, J. R. Mohallem, A. Alijah, M. Pavanello, L.
Adamowicz, O. L. Polyansky, and J. Tennyson, Phys. Rev. A
88, 032506 (2013).

[17] A. C. Scott, Active Nonlinear Wave Propagation in Electronics
(Wiley-Interscience, New York, 1970).

[18] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE
61, 1443 (1973).

[19] R. Hirota and K. Suzuki, Proc. IEEE 61, 1483 (1973).
[20] L. Brillouin, Wave Propagation in Periodic Structures (McGraw

Hill, New York, 1946).
[21] K. Lonngren, Solitons in Action (Academic Press, New York,

1978).
[22] S. Giambo, P. Pantano, and P. Tucci, Am. J. Phys. 52, 238

(1984).
[23] T. Kuusela, J. Hietarinta, K. Kokko, and R. Laiho, Eur. J. Phys.

8, 27 (1987).
[24] H. Ikezi, S. S. Wojtowicz, R. E. Waltz, J. S. deGrassie, and

D. R. Baker, J. Appl. Phys. 64, 3277 (1988).
[25] E. Sawado, M. Taki, and S. Kiliu, Phys. Rev. B 38, 11911

(1988).
[26] A. M. Belyantsev and A. B. Kozyrev, Tech. Phys. 43, 80 (1998).
[27] N. Seddon, C. R. Spikings, and J. E. Dolan, in IEEE Pulsed

Power Plasma Science Conference (Institute of Electronics and
Electrical Engineers, Albuquerque, NM, 2007), p. 678.

[28] J. Gaudet, E. Schamiloglu, J. O. Rossi, C. J. Buchenauer,
and C. Frost, in Proceedings of the 28th IEEE International
Power Modulators and High-Voltage Conference (IEEE, 2008),
pp. 131–138.

[29] M. Sato, S. Yasui, T. Hikihara, and A. J. Sievers, Europhys. Lett.
80, 30002 (2007).

[30] L. Q. English, R. B. Thakur, and R. Stearrett, Phys. Rev. E 77,
066601 (2008).

[31] L. Q. English, F. Palmero, A. J. Sievers, P. G. Kevrekidis, and
D. H. Barnak, Phys. Rev. E 81, 046605 (2010).

012223-5

http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1016/S0370-1573(98)00090-8
http://dx.doi.org/10.1016/S0370-1573(98)00090-8
http://dx.doi.org/10.1016/S0370-1573(98)00090-8
http://dx.doi.org/10.1016/S0370-1573(98)00090-8
http://dx.doi.org/10.1103/PhysRevB.75.134304
http://dx.doi.org/10.1103/PhysRevB.75.134304
http://dx.doi.org/10.1103/PhysRevB.75.134304
http://dx.doi.org/10.1103/PhysRevB.75.134304
http://dx.doi.org/10.1088/0031-8949/89/04/044003
http://dx.doi.org/10.1088/0031-8949/89/04/044003
http://dx.doi.org/10.1088/0031-8949/89/04/044003
http://dx.doi.org/10.1088/0031-8949/89/04/044003
http://dx.doi.org/10.1016/j.physd.2015.01.001
http://dx.doi.org/10.1016/j.physd.2015.01.001
http://dx.doi.org/10.1016/j.physd.2015.01.001
http://dx.doi.org/10.1016/j.physd.2015.01.001
http://dx.doi.org/10.1016/0375-9474(81)90246-3
http://dx.doi.org/10.1016/0375-9474(81)90246-3
http://dx.doi.org/10.1016/0375-9474(81)90246-3
http://dx.doi.org/10.1016/0375-9474(81)90246-3
http://dx.doi.org/10.1016/S0370-1573(99)00119-2
http://dx.doi.org/10.1016/S0370-1573(99)00119-2
http://dx.doi.org/10.1016/S0370-1573(99)00119-2
http://dx.doi.org/10.1016/S0370-1573(99)00119-2
http://dx.doi.org/10.1063/1.3258265
http://dx.doi.org/10.1063/1.3258265
http://dx.doi.org/10.1063/1.3258265
http://dx.doi.org/10.1063/1.3258265
http://dx.doi.org/10.1103/PhysRevA.88.032506
http://dx.doi.org/10.1103/PhysRevA.88.032506
http://dx.doi.org/10.1103/PhysRevA.88.032506
http://dx.doi.org/10.1103/PhysRevA.88.032506
http://dx.doi.org/10.1109/PROC.1973.9296
http://dx.doi.org/10.1109/PROC.1973.9296
http://dx.doi.org/10.1109/PROC.1973.9296
http://dx.doi.org/10.1109/PROC.1973.9296
http://dx.doi.org/10.1109/PROC.1973.9297
http://dx.doi.org/10.1109/PROC.1973.9297
http://dx.doi.org/10.1109/PROC.1973.9297
http://dx.doi.org/10.1109/PROC.1973.9297
http://dx.doi.org/10.1119/1.13685
http://dx.doi.org/10.1119/1.13685
http://dx.doi.org/10.1119/1.13685
http://dx.doi.org/10.1119/1.13685
http://dx.doi.org/10.1088/0143-0807/8/1/007
http://dx.doi.org/10.1088/0143-0807/8/1/007
http://dx.doi.org/10.1088/0143-0807/8/1/007
http://dx.doi.org/10.1088/0143-0807/8/1/007
http://dx.doi.org/10.1063/1.341517
http://dx.doi.org/10.1063/1.341517
http://dx.doi.org/10.1063/1.341517
http://dx.doi.org/10.1063/1.341517
http://dx.doi.org/10.1103/PhysRevB.38.11911
http://dx.doi.org/10.1103/PhysRevB.38.11911
http://dx.doi.org/10.1103/PhysRevB.38.11911
http://dx.doi.org/10.1103/PhysRevB.38.11911
http://dx.doi.org/10.1134/1.1258941
http://dx.doi.org/10.1134/1.1258941
http://dx.doi.org/10.1134/1.1258941
http://dx.doi.org/10.1134/1.1258941
http://dx.doi.org/10.1209/0295-5075/80/30002
http://dx.doi.org/10.1209/0295-5075/80/30002
http://dx.doi.org/10.1209/0295-5075/80/30002
http://dx.doi.org/10.1209/0295-5075/80/30002
http://dx.doi.org/10.1103/PhysRevE.77.066601
http://dx.doi.org/10.1103/PhysRevE.77.066601
http://dx.doi.org/10.1103/PhysRevE.77.066601
http://dx.doi.org/10.1103/PhysRevE.77.066601
http://dx.doi.org/10.1103/PhysRevE.81.046605
http://dx.doi.org/10.1103/PhysRevE.81.046605
http://dx.doi.org/10.1103/PhysRevE.81.046605
http://dx.doi.org/10.1103/PhysRevE.81.046605


M. SATO, T. MUKAIDE, T. NAKAGUCHI, AND A. J. SIEVERS PHYSICAL REVIEW E 94, 012223 (2016)

[32] L. Q. English, F. Palmero, J. F. Stormes, J. Cuevas, R. Carretero-
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