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Multiplicative noise can lead to the collapse of dissipative solitons
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We investigate the influence of spatially homogeneous multiplicative noise on the formation of localized
patterns in the framework of the cubic-quintic complex Ginzburg-Landau equation. We find that for sufficiently
large multiplicative noise the formation of stationary and temporally periodic dissipative solitons is suppressed.
This result is characterized by a linear relation between the bifurcation parameter and the noise amplitude required
for suppression. For the regime associated with exploding dissipative solitons we find a reduction in the number
of explosions for larger noise strength as well as a conversion to other types of dissipative solitons or to filling-in
and eventually a collapse to the zero solution.
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Noise, a phenomenon well known and extensively studied
in physics and chemistry [1,2], is ubiquitous in nature. More
recently interest in noise and its possible effects is also growing
in biology [3].

Although most studies addressed the effect of noise added
to a deterministic equation, multiplicative noise for which
the stochastic force multiplies a function of the stochastic
variables, has also attracted a considerable amount of at-
tention over the years. Originally this interest was driven
by experiments on spatially homogeneous systems, such as
electronic circuits [4] and optical systems, namely, the dye
laser [5]. This in turn led to theoretical investigations of these
zero-dimensional problems [6,7].

For spatially extended pattern-forming systems early work
focused on the effect of spatially homogeneous multiplicative
noise on the onset of pattern formation in electroconvection
in nematic liquid crystals. It was demonstrated that the
onset of spatial patterns could be postponed by a substantial
amount by superposing noise on the driving voltage and
that relaxation rates showed a strong linear dependence
on the noise strength [8,9]. Even until today quantitative
experimental studies on the interaction of noise and pattern
formation in spatially extended nonequilibrium systems are
quite infrequent. When it comes to the influence of noise,
whose amplitude is a substantial fraction (say ∼10% or so) of
the deterministic amplitude most of the recent experimental
studies have been carried out on surface reactions under
the influence of combined additive and multiplicative noise
[10–14] or purely multiplicative noise [15].

For pattern formation in cubic Ginzburg-Landau and Swift-
Hohenberg-type equations with real coefficients under the
influence of multiplicative noise there is a large body of
modeling literature including Refs. [16,17] (and references
cited therein) focusing in particular on applications to domain
growth processes and on modeling Benard convection in
simple fluids.

We note that the supercritical Ginzburg-Landau equation
with complex coefficients and without spatial dependence has
in all cases one attractor (zero for μ < 0) and a limit cycle (for
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μ > 0). For μ < 0 multiplicative noise cannot be amplified
starting from the stable solution. For μ > 0 the limit cycle
cannot jump to the zero solution because this is unstable. For
the subcritical case (the case in the following study), we have,
without spatial degrees of freedom, two attractors: the zero
solution and a limit cycle which coexist. Again, starting from
the stable zero solution multiplicative noise does not become
amplified. Starting from the limit cycle one needs a very large
amount of noise to jump to the zero stable solution. In this
sense the bifurcation points can be shifted a bit. We emphasize
that in the study described below we investigate the influence
of a small amount of multiplicative noise (less than 10%
compared to the pulse amplitude) on stable localized solutions
in the cubic-quintic complex Ginzburg-Landau equation, that
is, including spatial degrees of freedom.

A field for which the influence of noise on pattern-forming
nonequilibrium systems has been addressed only recently is
stable spatially localized solutions (also denoted as dissipative
solitons (DSs) [18]). These spatially localized solutions, which
have been studied in particular for the complex cubic-quintic
Ginzburg-Landau equation (CQGLE), can be stationary
[19–23], breathing with one frequency, two frequencies, or
even chaotically [24]. For the case of anomalous linear
dispersion exploding dissipative solitons have been found [25]
and studied experimentally [26,27] and theoretically [28–34].

Regarding the influence of noise on dissipative solitons, the
focus has been so far on additive noise of various strengths.
It has been demonstrated that weak additive noise can lead to
the partial annihilation of counterpropagating pulses [35], a
phenomenon that had been observed before experimentally
near the onset of binary fluid convection [36,37] and for
surface reactions [38,39]. For single DSs weak noise was
shown to induce explosions via various routes [40], whereas
large noise can induce noisy localized structures for values
of the bifurcation parameter for which DSs no longer stably
exist [41].

Here we study the question of localized solutions in the
framework of the CQGLE under the influence of spatially
homogeneous multiplicative noise. We find that spatially
homogeneous multiplicative noise has qualitatively different
effects on dissipative solitons from the previously studied
influence of additive noise δ correlated in space and time.
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The motivation to study spatially homogeneous noise in the
multiplicative case is due to the fact that previously well-
controlled experiments studying the influence of multiplicative
noise on pattern formation in spatially extended systems have
been performed for this type of noise [8,9,15].

As the most striking result we find a linear suppression
of the onset of the formation of dissipative solitons by
multiplicative noise. This result is reminiscent of previous
experimental results obtained for the effect of multiplicative
noise on spatially extended regular patterns, for example, for
the suppression of the onset of electroconvection in liquid
crystals [8,9].

The CQGLE with multiplicative noise we investigate here
is of the form

∂tA = μA + (βr + iβi)|A|2A + (γr + iγi)|A|4A
+ (Dr + iDi)∂xxA + Aηξ, (1)

where A(x,t) is a complex field, βr is positive, and γr is
negative in order to guarantee that the bifurcation is subcritical
but saturates to quintic order. The stochastic force ξ (t) denotes
white noise with the properties 〈ξ 〉 = 0 and 〈ξ (t)ξ (t ′)〉 =
δ(t − t ′). That means we consider multiplicative noise, which
is real and homogeneous in space.

In our numerical simulations we keep all parameters fixed
except for μ, the distance from linear onset, and η, the
noise strength. The parameter values are βr = 1, βi = 0.8,

γr = −0.1, γi = −0.6, Dr = 0.125, and Di = 0.5 (positive)
corresponding to an anomalous dispersion regime. Stable
pulses can only exist when the CQGLE becomes nonvaria-
tional. Thus, at least one of the parameters (βi,γi,Di) must be
different from zero [19,20,34,42].

For deterministic dissipative solitons it has been shown that
stationary DS, oscillatory DS with one and two frequencies,
chaotically breathing DSs, as well as exploding DSs stably
exist over a range of parameters. Although stationary dis-
sipative solitons are known to exist for one nonvanishing
imaginary coefficient (compare, for example, Ref. [42]),
exploding dissipative solitons have only been observed for
at least three nonvanishing imaginary parts of the coefficients.
This can be traced back to the fact that exploding dissipative
solitons are characterized in their time evolution by several
stages, which are all unstable. One must have an instability
in the side wings, one must be able to generate a collapse at
maximum amplitude, and they have to be wide enough to show
the instability in the wings but not too wide to prevent filling-in.
Therefore to study the influence of multiplicative noise on the
sequence of transitions from stationary DS to exploding DSs
we have chosen three nonvanishing values for the imaginary
parts of the coefficients in the cubic-quintic CGL equation.

The bifurcation parameter μ is varied from ∼ − 1.23 to
−0.07. This range is chosen in a way to guarantee that there
are stable dissipative solitons for the whole parameter range
considered, including stationary, periodic, doubly periodic
(two frequencies), as well as exploding dissipative solitons.
For μ < −1.23 stable stationary DSs no longer exist deter-
ministically. One is below the “saddle node” for localized
solutions.

In the discretized problem the stochastic force ξ (x,t) is
replaced by χr/

√
dt , where χr corresponds to uncorrelated

random numbers obeying a standard normal distribution.
To perform the numerical simulations for Eq. (1) we

implemented a split-step pseudospectral method where the
differential operator is computed in Fourier space and the
nonlinear terms are computed in the time step by using a
fourth order Runge-Kutta algorithm. The simulations were
performed using 1024 Fourier modes ensuring that even small
scales are well solved. This fact was verified by measuring the
spectral convergence during explosions. To further ensure that
our simulations were performed, using the right numerical
parameters, we tried different values for the number of
Fourier modes from 256 to 2048, and the results were always
consistent. In parallel we carried out extensive numerical
calculations using finite differencing, a box of size L = 50
and N = 625, leading to a grid spacing of dx = 0.08 and
typically a time step dt of dt = 0.005. In both cases we varied
the time step and N to make sure that none of our results is
sensitively dependent on this choice.

We make use of spatially homogeneous multiplicative
noise since it is the type of noise one can apply most
easily to experimental systems showing spatiotemporal pattern
formation. This applies to systems, such as the onset of pattern
formation and/or higher instabilities in electroconvection in
nematic liquid crystals [8,9], as well as to concentration and
temperature noise applied to the catalytic oxidation of CO un-
der ultrahigh vacuum conditions [10–15]. In all experimentally
studied cases in spatially extended systems the multiplica-
tive noise applied externally was spatially homogeneous in
nature.

To clarify the qualitatively different noise effects of additive
noise δ correlated in space and time and multiplicative noise
homogeneous in space and δ correlated in time only, we have
plotted in Figs. 1(a) and 1(b) snapshots of a stationary DS
under the influence of additive noise δ correlated in space
and time [Fig. 1(a)] and multiplicative noise only δ correlated
in time [Fig. 1(b)]. Inspection of these snapshots reveals
immediately this qualitatively different behavior. Whereas in
the additive case noise acts mainly as a perturbation on short
length and time scales giving the state a noisy appearance,
multiplicative noise of the type considered here leads to a
collective enhancement and depression of the amplitude as
a function of space. We focus here, inspired by previous
experimental work, on spatially homogeneous multiplicative
noise. It is this spatially homogeneous nature which leads
to the collective enhancement and suppression (in space) of
the amplitude. Correspondingly the effects of multiplicative
spatially homogeneous noise will tend to favor spatially
homogeneous solutions for large enough noise strength leading
to suppression of a spatial pattern or to filling-in.

In Fig. 2 we have plotted the transition from a noisy
dissipative soliton to collapse (spatially homogeneous state)
where we have plotted on the ordinate the noise strength
η. For the range of the bifurcation parameter μ plotted in
Fig. 2 we have deterministically stationary spatially local-
ized solutions (−1.23 < μ < −0.227), a temporally periodic
localized solution with one frequency (f1) (−0.227 < μ <

−0.202), and temporally localized solutions with two frequen-
cies (f1,f2) (−0.202 < μ < −0.183). For −0.183 = μc < μ
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FIG. 1. The qualitative difference between the effects of additive
noise δ correlated in space and time versus spatially homogeneous
multiplicative noise δ correlated in time is shown for μ = −0.4.
While additive noise δ correlated in space and time (η = 0.05) leads
to rapid spatial and temporal random oscillations superposed on a DS
(a), spatially homogeneous multiplicative noise (η = 0.15) leads to a
spatially correlated (collective) increase and decrease in the pattern
amplitude (solid lines), which is random as a function of time (b).
The dashed lines are the deterministic stationary DSs in both cases.
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FIG. 2. The critical strength of multiplicative noise η to induce the
transition from stationary and periodic dissipative solitons to collapse
is plotted as a function of the distance from linear onset μ. We see
that there is a linear relation over a large range of values for μ.

exploding dissipative solitons prevail. The data points denote
the limit of collapse for Tmax = 2000.

Inspection of Fig. 2 reveals that there is a linear relation
between the value of the noise strength necessary to induce
collapse almost all the way for all values of the bifurcation
parameter for which one has a transition to a state which
is regular in space and time. Only close to the transition
to exploding dissipative solitons does this simple relation
break down. Thus we conclude that the zero solution can be
stabilized by external multiplicative noise against the onset of
formation of dissipative solitons by a significant magnitude
brought out by Fig. 2. It is clear that by increasing Tmax one
would get a smaller slope. In the limit of infinite waiting
time only the zero solution will be obtained since it corre-
sponds to the global minimum for sufficiently negative values
of μ.

The situation becomes more complex when the influence
of multiplicative noise on exploding dissipative solitons is
investigated. In Fig. 3 we show two phase diagrams of the
states occurring as a function of the bifurcation parameter μ

and the noise strength η for the range of −0.12 < μ < −0.07
and 0.28 < η < 0.33. For Fig. 3(a) we have used Tmax =
2000 whereas simulations in Fig. 3(b) ran until Tmax = 6000.
Naturally small changes in dx or dt lead to small shifts of
the different behaviors but not to a significantly different
phase diagram. Differences between both phase diagrams
correspond to points which need more time (longer than
T = 2000) to lead to filling-in. Most points remain unchanged.
Tmax = 6000 corresponds to ∼106 iterations. For Fig. 3 the
initial conditions are exploding solitons corresponding to a
certain μ and η = 0. Then we connect the noise. We used
periodic boundary conditions. We note that first of all there
is no simple linear relation between the value of collapse of
exploding dissipative solitons and the bifurcation parameter
anymore. But in addition other states intervene the transition
collapse—exploding dissipative solitons. This includes—as
is readily inferred from Fig. 3—a filling-in transition to a
spatially homogeneous finite amplitude pattern as well as a
two-phase region for which one can obtain—depending on
initial conditions in the asymptotic limit in time—different
outcomes, namely, filling-in or, alternatively, noisy exploding
dissipative solitons.

As the bifurcation parameter μ is approaching zero the
behavior is becoming increasingly complex. This can be traced
back to the additional slow time scale coming into play as
the linear onset is approached. As is already known from the
purely deterministic behavior this region is characterized by
rather long transients and associated with a pattern filling a
fairly large part of the sample [31].

In Fig. 4 we have plotted the frequency of explosions
in the range of noisy exploding dissipative solitons as a
function of noise strength. Figures 4(a) and 4(b) show the
frequency of explosions far from the transition exploding
dissipative solitons to dissipative solitons with two frequencies
(f1,f2) for four different values of the bifurcation parameter
μ in a linear plot [Fig. 4(a)] and in a semilogarithmic plot
[Fig. 4(b)]. We conclude that the number of explosions
is reduced monotonically as the noise strength increases.
From these two plots we conclude that there is no simple
scaling behavior covering the entire range of noise strengths
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FIG. 3. Phase diagrams showing the observed patterns as a
function of noise strength η on the ordinate versus the bifurcation
parameter μ in the regime of exploding dissipative solitons for (a)
Tmax = 2000 and for (b) Tmax = 6000. We show the parameter range
μ from −0.12 to −0.07 and for 0.28 < η < 0.33. Solid triangles ( )
are representing collapsed states (zero solution), black solid circles
( ) correspond to exploding dissipative solitons that neither fill-in
nor collapse, squares ( ) are representing a “two-phase” behavior
corresponding either to a filling-in or to an explosive state that is
neither filling-in nor collapsing, depending on the chosen initial
conditions. Finally the region denoted by the red solid circles ( )
corresponds to filling-in independent of initial conditions.

plotted. Nevertheless we conclude from (a) that there is a
regime of values for η sufficiently far from collapse for
which the frequency decreases approximately linearly as a
function of η and from (b) that there is a linear scaling in a
logarithmic plot close to the collapse of exploding dissipative
solitons.

Figure 4(c) shows the behavior as the critical value μc for
the appearance of exploding dissipative solitons is approached.
As we can see from Fig. 4(c) the frequency of explosions goes
through a maximum as μc is approached. This maximum could
be associated with two observations. Purely deterministically
it has been shown before that the frequency for explosions
decreases as the bifurcation parameter μ is reduced [31].
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FIG. 4. The frequency of explosions as a function of the multi-
plicative noise strength is plotted in (a) on a linear scale and in (b)
on a logarithmic scale for four values of the bifurcation parameter:
μ = −0.12 denoted as black solid circles ( ), μ = −0.14 denoted
as triangles ( ), μ = −0.17 denoted as solid squares ( ), and
μ = −0.175 denoted as open circles ( ). (c) shows the behavior
in the vicinity of the transition to exploding dissipative solitons,
μc: ε = 9×10−4 denoted as squares (�), ε = 4×10−4 denoted as
solid circles ( ), ε = 7×10−6 denoted as solid squares ( ), and
ε = 10−6 denoted as triangles ( ), where ε denotes the distance
from μc: ε = μ − μc.
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Combining this feature with the fact that the number of
explosions goes down with noise strength as the critical noise
strength for collapse is approached, we conclude sufficiently
close to μc the number of explosions can go through a
maximum as it is indeed observed.

In Fig. 5 we show the possible types of behavior in response
to multiplicative noise applied to exploding dissipative solitons
for two points belonging to Fig. 3(b), namely, μ = −0.08, η =
0.31 and μ = 0.08, η = 0.29. For the former we show the
collapse to the zero stable solution at T ∼ 1480, and for the
latter we show the two possible types of behavior: filling-in
after a long time (T ∼ 3000) and neither filling-in nor collapse.
We have plotted in all cases [(a)–(c)] a global variable, namely,
an averaged (in space) R(x,t):[

∫
R(x,t)dx]/L. We note that

the applied multiplicative noise shows no special features in
the temporal vicinity of collapse or filling-in.

In conclusion, we have demonstrated that the influence
of spatially homogeneous multiplicative noise can induce a
transition to a spatially homogeneous state over a large range
of the bifurcation parameter. For stationary DSs as well as
for DSs with regular temporal behavior we find a linear
relation between the critical value of the noise amplitude
for the suppression of DSs and the bifurcation parameter.
For exploding DSs the emerging picture as a function of the
bifurcation parameter is more complex since multiplicative
noise can also induce a transition to filling-in as the linear
threshold is approached. In general we find that multiplicative
noise leads to a reduction of the number of explosions with
growing noise strength. This reduction can be understood using
the explosion formation mechanism described in Ref. [31].
There explosions are generated by the growth of small
perturbations around the DS. Due to the multiplicative noise
the linear loss is changed, and the perturbations can be slowed
down in their growth or even suppressed thus delaying the
formation of explosions.

The present study opens the door to several areas of
investigation. Clearly a key direction to go into is to study
the influence of spatial dimensionality on the phenomena
described here; this includes dissipative solitons localized in
two dimensions [21,30,33] as well as quasi-one-dimensional
DSs [22,23,34,43]. Second it will be important to examine to
what extent the results presented here can be carried over to
other models, such as reaction diffusion systems for which one
has shown recently that they can support exploding DSs [44].

It has been noted in the context of modeling a Hopf bifurca-
tion with multiplicative noise in the framework of a Brusselator
model [45] that the coupling to fast variables must be modeled
appropriately. Early experimental tests of these predictions
have been carried out using analog simulator experiments
with regard to postponement or advancement of the critical
bifurcation parameter in the presence of colored multiplicative
noise [46]. Quite recently the subcritical Hopf bifurcation in
the presence of multiplicative noise in the framework of a
Landau model without spatial degrees of freedom has been
investigated [47]. When interpreting experiments one should
therefore keep in mind a possible coupling to fast modes in the
presence of multiplicative noise.

Perhaps the most clear-cut candidate to study the ef-
fects predicted here experimentally are the stable localized
convective patterns which have been observed near the
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FIG. 5. Possible types of behavior in response to multiplicative
noise applied to exploding dissipative solitons (a) μ = −0.08, η =
0.31 and (b) and (c) μ = 0.08, η = 0.29. (a) shows the collapse to
zero at T ∼ 1480, and (b) and (c) show two possible types of behavior:
filling-in for long times (T ∼ 3000) or persistent explosions. We have
plotted in all cases [(a)–(c)] a global variable, namely, an averaged
(in space) R(x,t). We note that the applied multiplicative noise (d)
shows no special features in the temporal vicinity of collapse or
filling-in.
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onset of thermal convection in binary fluid mixtures in an
annulus [36,37,48,49]. Other candidates to investigate the
results of our study experimentally are surface reactions,
such as the catalytic oxidation of CO for which one has
already a considerable amount of experience [10–15] for the
externally controlled superposition of noise on parameters,
such as partial pressure, flow rate, and temperature. To find
experimentally a well-controllable chemical or bioinspired
system to show the type of behavior described here is
certainly a challenge. Candidates include systems for which

solitonlike structures and their collisions have been observed
[14,38,39,50].
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