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Experimental evidence of deterministic coherence resonance in coupled chaotic
systems with frequency mismatch
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We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two
and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both
the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized
standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos
suppression appears when the coupling strength is increased and the oscillators are in phase synchronization.
In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov
exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in
a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement
with the experiments.
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I. INTRODUCTION

Chaos is an important form of dynamical movement in
nature. The emergence of order from chaos is one of the
greatest mysteries of the universe. Ilya Prigogine, a Belgian
scientist who received a Nobel Prize in 1977 for his work
on thermodynamics of systems operating dynamically under
nonequilibrium conditions, argued that systems far from
equilibrium, with a high flow-through of energy, could produce
a higher degree of order. In his famous book “Order Out of
Chaos” [1], he wrote that in conditions far from equilibrium,
we may have transformation from disorder (thermal chaos)
into order. However, since all of his Nobel-Prize winning
discussions have been philosophical and mathematical (not
experimental), some scientists criticized his view of evolution
from chaos to order, saying that such phenomena may be
manipulated on paper or on a computer screen but not in
real life. The experimental manifestation of the emergence
of periodicity in interacting chaotic systems may shed light
on the understanding of essential mechanisms leading to
self-organization of matter.

In the late 20th century, when the computational tech-
niques became an important scientific tool, many scientists
focused their efforts on developing deterministic methods to
stabilize chaos. Since a chaotic attractor is composed by an
infinite number of unstable periodic orbits, several researchers
proposed to stabilize an unstable periodic orbit embedded
within the chaotic attractor using feedback and nonfeedback
control methods (for comprehensive review see Refs. [2,3]
and references therein). The most recognized techniques
of feedback control, the Ott, Grebogi and Yorke (OGY)
[4] and Pyragas [5] methods, are based on an adjustment
of, respectively, a system parameter or a variable. Since
these methods require a very small change in the parameter
or variable, the control is assumed to be small. Instead,
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nonfeedback control requires an external modulation to induce
a new stable orbit [6–10] and therefore cannot be considered
small, because the external forcing should be strong enough to
modify the system dynamics.

The regularity or coherence of a chaotic system can also
be improved by noise. Sometimes, the influence of noise has
a resonance character referred to as noise-induced coherence
resonance. This effect was detected in both excitable [11–16]
and bistable [17–19] systems. Later, a similar behavior was
discovered in completely deterministic systems without any
noise. For example, in a bistable system chaos plays a role
similar to noise by inducing switches between coexisting
states; the switches become more regular at a certain amplitude
of the chaotic signal [20–22]. Such an effect, known as
deterministic coherence resonance, was also observed in
monostable chaotic systems subject to time-delayed feedback
[23–26], where the increasing feedback signal induced optimal
regularity in the chaotic system.

On the other hand, dynamics of a chaotic system can
be regularized due to its interaction with other systems in
order to reach a synchronous state. In fact, synchronization
is an example of self-organization in nature [27,28], and it
is usually assumed that the interaction between oscillators
enhances their synchronization. However, this is not always
true. Indeed, the increasing coupling between chaotic systems
may result in unexpected behaviors, such as, e.g., oscillation
death [29,30] and coherence enhancement [31,32]. The latter
was predicted only theoretically in two coupled oscillators.
It was surprisingly found [32] that adequate coupling can
force a chaotic oscillator towards more regular oscillations,
so although coupled oscillators have the same dominant
frequency in their power spectra, they follow different phase
trajectories. In terms of synchronization theory, this means that
the oscillators are phase synchronized [33], i.e., they develop
a perfect phase-locking relation for relatively weak coupling
although their amplitudes remain almost uncorrelated [34–37].
Chaos suppression in coupled chaotic oscillators was found in
two cases, first, in the presence of asymmetry in coupling
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and, second, when there is a small mismatch between natural
frequencies of the coupled oscillators. While the former was
observed in bidirectionally coupled identical systems [31], the
latter was theoretically predicted in unidirectionally coupled
oscillators [32].

Phase synchronization is abundant in science and plays
a crucial role in many weakly interacting natural systems,
including lasers [38], electronic circuits [39–41], cardiorespi-
ratory rhythm [42], neurons [43,44], behavioral psychology
[45], and ecology [46,47]. Although synchronization of uni-
directionally coupled chaotic oscillators has been extensively
investigated [33], some features are not yet well understood,
in particular, in the presence of a small detuning between
natural frequencies of the coupled oscillators. Recently, we
have shown [32] that a chaotic slave oscillator coupled with
a chaotic master oscillator becomes more regular when the
oscillators are in phase synchronization. We have found
that such coherence enhancement has a resonant character
with respect to both the coupling strength and frequency
mismatch. The main aim of the present work is to provide
the experimental evidence for this resonance phenomenon.
Since the experimental parameters do not coincide with the
numerical parameters used in Ref. [32], we will perform
numerical simulations of the same equations, but with pa-
rameters exactly matched the experimental ones, and compare
the obtained experimental and numerical results. Furthermore,
to demonstrate the generality of the deterministic coherence
resonance, we will also consider another coupling scheme,
namely a ring of unidirectionally coupled chaotic oscillators.

A system of coupled oscillators can be described as
ẋj = F(xj ,ωj ) + σji(xi − xj ), where xj,i are vectors of state
variables of j th and ith oscillators, F is a vector function, and
σji is a coupling strength. The oscillators are only distinct
by their natural frequencies (ωj �= ωi). Due to nonlinearity,
the dominant frequency �j in the chaotic power spectrum
of the uncoupled j th oscillator usually does not coincide
with its natural frequency (�j �= ωj ). When the oscillators
are unidirectionally coupled, the ith oscillator drives the j th
oscillator. Thus, the former acts as a master, while the latter
acts as a slave. For sufficiently strong coupling, the master
oscillator i entrains the dominant frequency �j of the slave
oscillator j , which results in phase synchronization [35]. The
time-averaged difference between the oscillators’ phases δji =
〈ϕj − ϕi〉 is negative (δji < 0) if the frequency mismatch
�ji = ωj − ωi < 0 and positive (δji > 0) if �ji > 0. In the
former case, the phase of the slave oscillator is locked by
the master oscillator with lag, whereas in the latter case with
anticipation [48].

Deterministic coherence resonance in two unidirectionally
coupled Rössler oscillators with small mismatch between
their natural frequencies has been theoretically described
in Ref. [32]. In the regime of phase synchronization, the
coherence of the slave oscillator was shown to reach the
maximum with respect to both the frequency mismatch �ji

and the coupling strength σji . This coherence enhancement
was attributed to the third and fourth Lyapunov exponents
which took negative values in the parameter range where the
resonance was observed. Here, we present the experimental
evidence of this surprising phenomenon in two and three
unidirectionally coupled oscillators. This effect resembles

“stabilization of chaos by chaos,” i.e., the chaotic system at
a certain coupling strength and a frequency mismatch behaves
more regularly in two coupled oscillators and completely
periodically in a ring of three oscillators.

The rest of the paper is organized as follows. In Sec. II
we describe the model and present experimental results
demonstrating deterministic coherence resonance in two and
three coupled Rössler electronic circuits. In Sec. III we discuss
the results of numerical simulations and compare them with
the experiments. The main conclusions are given in Sec. IV.

II. EXPERIMENT

A. Experimental setup

The experimental setup is constructed on the base of the
electronic circuits shown in Fig. 2. These circuits are analog
implementations of the Rössler oscillator [49] and the diffusive
coupling.

The Kirchhoff’s mesh analysis yields the following
equations:

V̇xj = −αA(Vyj + Vzj ),

V̇yj = α[BVxj + CVyj + σji(Vyi − Vyj )], (1)

V̇zj = α[D + EVzj (Vxj − F )],

where Vxj , Vyj , and Vzj are the output voltages of the three
meshes, α = 103 s−1 is the time scale coefficient, σji is the
coupling strength between the oscillators j and i defined by
the parameters of the coupler [Fig. 1(b)], and A, B, C, D,
E, and F are the parameters expressed in terms of electronic

FIG. 1. Electronic schemes of (a) Rössler oscillator and (b)
coupler.
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components as

A = C1R1,B = R5

C1R2R6
= 1, C = R5

C1R2R7
,

D = V0

10C3R3

(
1 − 2R10

R8 + R9 + R10

)
, E = 15

V0
= 1, (2)

F = V0

10C3R3

(
1 − 2R8

R8 + R9 + R10

)
,

where V0 = 15 V is the power voltage of each mesh.
Although in Eq. (1) the coupling is realized through variable

Vy , our experiments show that there is no principal difference
if the oscillators are coupled through variable Vx . Since we
observe coherence resonance in both cases, here we will only
present the results for the coupling given by Eq. (1).

We carry out two kinds of experiments. First, we study
two unidirectionally coupled Rössler oscillators and, second,
three oscillators unidirectionally coupled in a ring. The natural
frequencies of the oscillators are determined by resistors R1
and R6, different for every oscillator. Since these resistors are
not variable, in the experiments we do not use the natural
frequencies as control parameters because variable resistors
with the required variation step are not available. The full
experimental process is controlled with a virtual interface
developed in LABVIEW 8.5, which can be considered as a
state machine. The coupling strength is regulated by variable
resistor R50 = 3/300 k� with a step of 3 k�. Since σji ∼
1/R50, the oscillators can be considered to be uncoupled when
R50 is high (R50 = 300 k�). This weak coupling does not act
as a residual noise source able to synchronize the oscillators
phases.

The experimental procedure is realized as follows. First, the
coupling is set to the minimum value (R50 = 300 k�). After
a waiting time of 500 ms (roughly corresponding to 60 cycles
of the autonomous system), the output signals from all circuits
are acquired by analog ports. Once the dynamics of the whole
system is recorded, the value of R50 is decreased by one step
(3 k�), and the signals are again stored in the PC for further
analysis. This process is repeated until the maximum coupling
(R50 = 3 k�) is reached.

B. Two coupled oscillators

The parameters of two Rössler oscillators in the master-
slave configuration (master i = 1, slave j = 2) are chosen
so when uncoupled both oscillators are in a chaotic regime.
Since the coupling is unidirectional, we set σ12 = 0 and σ21 =
σ . We observe that at a certain coupling the slave oscillator
becomes more coherent. A glimpse of the results are present in
Fig. 2 with the time series [Figs. 2(a) and 2b)], power spectra
[Figs. 2(c) and 2d)], and phase-space trajectories [Figs. 2(e)
and 2f)] of the uncoupled and coupled oscillators. As seen in
Fig. 2(f), the attractor of the slave oscillator shrinks, meaning
that the oscillations become more regular.

The resistors R1 and R6 in the master and slave elec-
tronic circuits are chosen so the dominant frequencies of
the uncoupled oscillators are, respectively, f1 = 162 Hz and
f2 = 191 Hz [Fig. 2(e)]. With sufficiently strong coupling the
oscillators’ phases become synchronized [Fig. 2(b)] because
the master oscillator entrains the dominant frequency of the
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FIG. 2. Experimental [(a) and (b)] time series, [(c) and (d)] power
spectra, and [(e) and (f)] attractors of uncoupled (left-hand column)
and coupled oscillators with coupling 1/R50 = 2 × 10−5 (right-hand
column). f1 and f2 are the dominant frequencies in the power spectra.
The coherence enhancement in the slave oscillator is characterized
by the shrinking of the attractor (dark blue line) in the phase space.

slave oscillator, so the oscillators have the same dominant
frequency in their power spectra [Fig. 2(d)]. This coupling
leads to chaos suppression in the slave oscillator clearly seen
in the phase-space plot in Fig. 2(f).

For quantitative description of coherence, we use (i) the
peak value of the variable Vy2, (ii) interpeak intervals (IPI), (iii)
normalized standard deviation (NSD) of the peak value of Vy2,
and (iv) NSD of IPI. In Fig. 3 we plot all these characteristics
for variable Vy2 as a function of the coupling strength.

The minimum of NSD in Fig. 3(c) is the signature of
amplitude coherence, while the minimum of NSD in Fig. 3(d)
indicates time coherence. Interestingly, the coherence in time
and amplitude occur for distinct coupling strengths.

The video of recorded oscilloscope traces shown in the
Supplemental Material [50] demonstrates the emergence of
coherence resonance in two coupled electronic circuits while
the coupling strength is increasing.

C. Three coupled oscillators

Now we consider a ring of three unidirectionally coupled
chaotic Rössler oscillators. In this configuration, each oscil-
lator acts simultaneously as a master for one oscillator and a
slave for another. All oscillators are coupled with the same
coupling strength σ21 = σ32 = σ13 = σ . Since the coupling
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FIG. 3. Experimental (a) peak value of Vy2, (b) interpeak intervals
(IPI), (c) normalized standard deviation (NSD) of peak value, and (d)
NSD of IPI versus coupling strength.

is unidirectional, σ12 = σ23 = σ31 = 0. The resistors R1 and
R6 in each of the three circuits are chosen so the dominant
frequencies in the chaotic power spectra of the uncoupled
oscillators are in an ascending order, i.e., f1 < f2 < f3, where
f1 = 152 Hz, f2 = 168 Hz, and f3 = 177 Hz. The time
series, phase portraits, and power spectra of the uncoupled and
coupled oscillators are shown in Fig. 4. For sufficiently strong
coupling, the oscillators in phase synchronization [Fig. 4(b)]
have the same dominant frequency fc = 170 Hz [Fig. 4(d)],
close to the dominant frequency of the oscillator with the
highest energy (in our case this is the oscillator 3). While the
uncoupled or weakly coupled oscillators are chaotic [Figs. 4(a)
and 4(c)], for an intermediate coupling strength they behave
completely periodically [Figs. 4(b) and 4(d)]. The small local
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FIG. 4. Experimental [(a) and (b)] time series, phase portraits,
and [(c) and (d)] power spectra of three [(a) and (c)] uncoupled and
[(b) and (d)] coupled Rössler oscillators demonstrating coherence
enhancement for 1/R50 ≈ 2 × 10−5 �−1.
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FIG. 5. Experimental (a) peak output voltages of three oscillators
and (b) normalized standard deviations of peak voltages as a function
of the coupling strength demonstrating coherence resonance for
1/R50 ≈ 2 × 10−5 �−1.

maxima in the power spectra at f ≈ 88 Hz indicate that the
oscillators are in the period-2 regime.

When the coupling strength is further increased, the
oscillators become chaotic again. The coherence resonance
is clearly seen in the bifurcation diagrams of the peak voltages
[Fig. 5(a)] and NSD of these peaks [Fig. 5(b)].

III. NUMERICAL SIMULATIONS

We perform numerical simulations of the following system
of equations:

ẋj = −ωjyj − zj ,

ẏj = ωjxj + ayj + σji(yi − yj ), (3)

żj = b + zj (xj − c),

where xj , yj , and zj are the state variables of the j th
oscillator. The system Eq. (3) is the dimensionless model of
the experimental system Eq. (1). To simulate our experiments
numerically, we consider the same configurations as in the
experiments, i.e., two and three coupled oscillators. While
in the experiments the oscillators’ natural frequencies ωj

were not varied due to technical difficulties, in the numerical
simulations we used frequency mismatch �ji = ωj − ωi as a
control parameter, in addition to the coupling strength σji = σ .

A. Two coupled oscillators

In the numerical simulations we use the same parameters as
in the experiment, namely a = αC = 0.2, b = αD = 0.2, and
c = αF = 5.7. The natural frequency of the master oscillator
is fixed to ω1 = 1 to provide a chaotic regime.

Figure 6 illustrates how mismatch � ≡ �21 = ω2 − ω1 =
0.1 between the natural frequencies of the slave and master os-
cillators enhances coherence of the slave oscillator dynamics.

The uncoupled oscillators are chaotic [Figs. 6(a), 6(c),
and 6(e)] with different dominant frequencies in their power
spectra, �1 = 1.07 and �2 = 1.16 [Fig. 6(c)]. Due to nonlin-
earity, they are shifted with respect to the natural frequencies
ω1 = 1 and ω2 = 1.1. When the oscillators are coupled with
σ = 0.2, the dominant frequency of the slave oscillator �2

is entrained by the master oscillator [Fig. 6(d)], resulting in
phase synchronization [Fig. 6(b)]. One can see in Fig. 6(f) that
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FIG. 6. Numerical [(a) and (b)] time series, [(c) and (d)] power
spectra, and [(e) and (f)] chaotic attractors of two [(a), (c), and
(e)] uncoupled and [(b), (d), and (f)] coupled Rössler oscillators
[Eq. (3)]. Coherence enhancement of the slave oscillator observed
for frequency mismatch � = 0.1 and coupling σ = 0.2 when its
dominant frequency is entrained by the master oscillator.

the chaotic attractor of the slave oscillator shrinks, meaning
that its dynamics becomes more regular.

Figure 7 demonstrates coherence resonance in the slave
oscillator with respect to its natural frequency, while the natural
frequency of the master oscillator remains fixed to ω1 = 1.

The bifurcation diagrams of the peak value of the variable
y2 [Fig. 7(a)] and the interpeak interval (IPI) [Fig. 7(b)] display
strong resonant suppression of the amplitude variation at ω2 =
1.14. The coherence resonances in amplitude and time are
clearly seen in Figs. 7(c) and 7(d), respectively.

In Fig. 8 we plot NSD of peak y2 [Fig. 8(a)] and IPI
[Fig. 8(b)] in the space of two control parameters, the natural
frequency ω2 of the slave oscillator and the coupling strength
σ . These diagrams have a structure of Arnold tongues centered
at ω2 = 1. Within these tongues, the dominant frequency of
the slave oscillator is entrained by the master oscillator, so the
oscillators are in phase synchronization. The dark blue bands
inside these tongues indicate the region of higher coherence.

The interesting question may arise of whether the coherence
resonance is related to synchronization. To measure synchro-
nization we use similarity function Sij between the oscillators
i and j introduced by Rosenblum et al. [51] to describe phase
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FIG. 7. Numerical (a) peak value of y2, (b) IPI, (c) NSD of peak
y2, and (d) NSD of IPI as a function of natural frequency of slave
oscillator ω2 for σ = 0.2 and ω1 = 1.

and lag synchronization of nonidentical chaotic oscillators:

S2
ij (τ ) = 〈[xj (t) − xi(t + τ )]2〉√〈xj (t)2〉〈xi(t)2〉 , (4)

where τ is the time shift between the state vectors of the
interacting systems. The lower the minimum of the similar-
ity function δ = minτ S(τ ), the better the synchronization.
Figure 9 shows how the minimum similarity between two
coupled oscillators, δ12, depends on both the natural frequency

FIG. 8. Normalized standard deviations of (a) peak y2 and (b)
interpeak intervals in (ω2,σ )-parameter space. The violet (dark)
regions are associated with increasing coherence.
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FIG. 9. Minimum similarity as a function of (a) natural frequency
of slave oscillator ω2 for σ = 0.2 and (b) coupling σ for ω2 = 1.1.

of the slave oscillator ω2 [Fig. 9(a)] and the coupling strength
σ [Fig. 9(b)]. The slump of the dependence in Fig. 9(a)
close to ω2 = 1 results from phase synchronization when the
natural frequency of the slave oscillator ω2 approaches the
natural frequency of the master oscillator ω1 = 1. When the
oscillators’ natural frequencies exactly match (ω2 = ω1 = 1),
complete synchronization is observed (δ12 = 0) because in this
case we deal with identical systems. Another, local, minimum
at ω2 = 1.14 coincides with the deterministic coherence
resonance in Fig. 7. This means that enhanced coherence is
accompanied by improving phase synchronization. Note that
changes in the similarity function associated with coherence
resonance are only present in the frequency dependence in
Fig. 9(a) but not in the dependence on the coupling strength.
Indeed, as one can see from Fig. 8, the maximal coherence
occurs for σ = 0.2 without qualitative changes for this value
in Fig. 9(b). Evidently, synchronization measures cannot be
used to characterize coherence because the latter occurs in
one (slave) oscillator only, while synchronization refers to a
relative behavior between two oscillatory systems.

Next, we analyze the Lyapunov exponent spectrum in
order to demonstrate how the control parameters affect
the system stability. Since the dynamics of the master
oscillator does not depend on the control parameters, the
stability of the whole system is determined by the dynam-
ics of the slave oscillator only. All six Lyapunov expo-
nents λ1−6 are plotted in Fig. 10 in the (ω2,σ )-parameter
space.

Since the master oscillator is chaotic, the first largest
Lyapunov exponent λ1 [Fig. 10(a)] is always positive for all
control parameters. Depending on the control parameters, the
second exponent λ2 [Fig. 10(b)] is either positive or zero. The
most important information about the system stability can be
extracted from the divergence or convergence of the phase-
space trajectory towards the directions of the slave oscillator
variables, i.e., the third and fourth Lyapunov exponents, λ3

and λ4. One can see from Figs. 10(c) and 10(d) that these
exponents take negative values and reach minima in the dark
(blue) region in the parameter range 1.1 < ω2 < 1.15 and
σ > 0.13, corresponding to the best coherence of the slave
oscillator. Lower Lyapunov exponents, i.e., higher stability
of the system, are associated with coherence enhancement.
However, in the region of complete synchronization when the
oscillators are identical (ω2 = ω1 = 1), these exponents are
close to zero. By comparing the NSD diagrams in Fig. 9 with
the Lyapunov exponents in Fig. 10 we can see their strong

FIG. 10. Lyapunov exponents [(a)–(f)] λ1−6 of two coupled oscil-
lators in (ω2,σ )-parameter space. Deterministic coherence resonance
is associated with negative λ3 and λ4 in the region of the central blue
(dark) spots in (c) and (d).

correlation in the region of the coherence resonance where the
minimum NSD matches the minima of the third and fourth
Lyapunov exponents. The fifth and sixth Lyapunov exponents,
λ5 and λ6, do not yield additional information because they are
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FIG. 11. Numerical bifurcation diagram of peak x with respect
to natural frequency of the uncoupled Rössler oscillator.

always negative in the explored parameter range [Figs. 10(e)
and 10(f)].

B. Three coupled oscillators

For numerical simulations of the three Rössler oscillators
unidirectionally coupled in a ring we choose the parameters
a = 0.165, b = 0.2, and c = 10 because for these parameters
the uncoupled oscillator exhibits a chaotic regime in a wide
range of the natural frequency, as shown in the bifurcation
diagram in Fig. 11. This allows us to vary significantly the
distance between the oscillators (frequency mismatch) as long
as they remain chaotic.

For simplicity, we consider a symmetric case where the
distances between the oscillators 1 and 2 and the oscillators 2
and 3 are the same, i.e., �21 = �32 = �13/2 = �. To study
the influence of the detuning � on the coherence, we fix
the natural frequency of the oscillator 2 to ω2 = 0.9 and use
� as a control parameter. Figure 12 shows the time series,
phase portraits, and power spectra of the x variable of the
uncoupled [Figs. 12(a) and 12(c)] and coupled oscillators with
the coupling strength σ = 0.2 [Figs. 12(c) and 12(d)].

Being uncoupled, the oscillators are chaotic with different
dominant frequencies in their power spectra [Fig. 12(c)]. As
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FIG. 12. Numerical [(a) and (b)] time series, phase portraits, and
[(c) and (d)] power spectra of three [(a) and (c)] uncoupled and [(b)
and (d)] coupled Rössler oscillators for σ = 0.33 and � = 0.2. The
coupled oscillators behave periodically.

FIG. 13. NSD of peak (a) x1, (b) x2, and (c) x3 in (�,σ )-parameter
space.

the coupling strength σ is increased, the oscillators’ phases
synchronize, resulting in the same dominant frequency in their
power spectra [Fig. 12(d)]. When σ is further increased, they
oscillate in a period-2 regime [Fig. 12(b)]. These results are in
good agreement with the experiment.

Figure 13 shows NSD of the peak value of the variable x for
every oscillator as a function of both frequency mismatch (dis-
tance) � and coupling strength σ . While for small distances, all
oscillators are incoherent (chaotic) [left-hand (green) tongues],
they become highly coherent for intermediate distances and
coupling [right-hand (dark blue) tongues]. Therefore, there
exists a preferential coupling for which the coherence is
maximized. High NSD for � > 0.2 and 0.2 < σ < 0.4 does
not mean low coherence; this occurs because for these
parameters the oscillators are involved in a period-doubling
regime where the difference between amplitudes of subsequent
peaks is large.

The resonance behavior with respect to both the coupling
strength and the distance is clearly seen in Fig. 14, where
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FIG. 14. [(a) and (b)] NSD of peak x versus (a) coupling for
� = 0.03 and (b) mismatch for σ = 0.2. The minima of NSD indicate
coherence resonance. [(c) and (d)] Minimum similarity versus (c)
coupling for � = 0.03 and (d) mismatch for σ = 0.2. The maxima
δij at � ≈ 0.2 indicate partial desynchronization.

we present one-dimensional plots of NSDs for fixed � = 0.03
[Fig. 14(a)] and fixed σ = 0.2 [Fig. 14(b)]. In Fig. 14(a), NSDs
of the peak x of all oscillators take minimal values at σ ≈ 0.08
displaying the coherence resonance behavior. In Fig. 14(b),
the coherence enhancement is observed in a wide range of
distances (0.1 < � < 0.23).

In the previous section we have shown that in the
case of two coupled oscillators the coherence resonance
was accompanied by improving phase synchronization. Now
we are interested in how the enhancing coherence affects
synchronization in the case of three ring-coupled oscillators.
In Fig. 14(c) we plot the minimum similarity δij for each
pair of the coupled oscillators as a function of the coupling
strength for the same detuning � = 0.03 as in Fig. 14(a).
When the coupling is small (σ < 0.05), δij is very large,
meaning that the oscillators are asynchronous. A sudden
slump in δij near σ = 0.05 indicates the onset of phase
synchronization. By comparing Fig. 14(a) with Fig. 14(c) one
can see that the coherence resonance occurs near the onset of
phase synchronization. As the coupling increases, δij slowly
decreases, meaning there is improved phase synchronization.
The evident situation, that synchronization of the oscillators
1 and 3 with the largest frequency mismatch is worse than
the synchronization of other pairs of oscillators with smaller
mismatch, is illustrated in Fig. 14(c).

The effect of the frequency mismatch on synchronization
is demonstrated in Fig. 14(d). When � = 0 the oscillators
are identical and therefore completely synchronized. As �

is increased, δij also increases, leading to desynchronization.
For small � the minimum similarity of the oscillators 1 and
3 (δ31) with the largest frequency mismatch is higher than
δij of other, closer located oscillators. The maxima of δij at
� ≈ 0.2 mean partial desynchronization due to coherence en-
hancement, i.e., the oscillators are less similar in spite of higher
coherence.

FIG. 15. Largest Lyapunov exponent of three ring-coupled os-
cillators in (�,σ )-parameter space. The blue dark tongue indicates
the region of coherence resonance and periodicity for large � and
intermediate σ .

It is important to check whether the coupled system does
become stable in a certain region of the coupling strength and
frequency mismatch. For this purpose we analyze the system
stability through Lyapunov exponents. In Fig. 15 we plot the
largest Lyapunov exponent in the parameter space of distance
� and coupling σ .

When the oscillators’ frequencies are very close to each
other, they are chaotic for any coupling strength, whereas for
larger distances their dynamics become more regular. The
comparison of Figs. 15 and 13 shows that the coherence
enhancement is associated with increasing system stability in
the dark blue tongue. Indeed, for relatively large distances
(� > 0.1) and intermediate coupling (0.1 < σ > 0.4) the
largest Lyapunov exponent takes negative values; in this
parameter region a period-2 orbit is stabilized.

IV. CONCLUSION

In this paper we have presented the experimental evidence
of the appearence of order in a chaotic system under the
influence of a chaotic signal generated by another simi-
lar system. Such coherence enhancement has been demon-
strated in two and three unidirectionally coupled Rössler
oscillators with small mismatch between their natural fre-
quencies. The enhanced coherence has a resonant charac-
ter with respect to the coupling strength and frequency
mismatch.

To characterize this deterministic coherence resonance
we have used the normalized standard deviations of the
peak amplitude and interpeak interval. In the case of two
coupled oscillators the coherence resonance is accompanied
by improved phase synchronization, while in the ring of
three oscillators it is associated with partial desynchro-
nization. In the latter case the stabilization of a periodic
orbit has been observed. The results of the numerical
simulations are in good agreement with the experimental
results.

The analysis of the Lyapunov exponent spectra has shown
that in two coupled oscillators, the coherence enhancement is
associated with negative third and fourth Lyapunov exponents,
while in the ring of three oscillators, all Lyapunov exponents

012218-8



EXPERIMENTAL EVIDENCE OF DETERMINISTIC . . . PHYSICAL REVIEW E 94, 012218 (2016)

take negative values in a certain range of the frequency
mismatch and coupling strength. The last phenomenon is the
manifestation of self-stabilization of coupled chaotic systems
due to their interaction.
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[3] E. Schöll and H. G. Schuster, Handbook of Chaos Control
(Wiley-VCH, Weinheim, 2007).

[4] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196
(1990).

[5] K. Pyragas, Phys. Lett. A 170, 421 (1992).
[6] R. Lima and M. Pettini, Phys. Rev. A 41, 726 (1990).
[7] Y. Braiman and I. Goldhirsch, Phys. Rev. Lett. 66, 2545 (1991).
[8] R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arecchi, Phys.

Rev. E 49, R2528(R) (1994).
[9] A. N. Pisarchik, V. N. Chizhevsky, R. Corbalán, and R. Vilaseca,

Phys. Rev. E 55, 2455 (1997).
[10] A. N. Pisarchik, B. F. Kuntsevich, and R. Corbalán, Phys. Rev.

E 57, 4046 (1998).
[11] A. S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775

(1997).
[12] Hu Gang, T. Ditzinger, C. Z. Ning, and H. Haken, Phys. Rev.

Lett. 71, 807 (1993).
[13] A. Neiman, P. I. Saparin, and L. Stone, Phys. Rev. E 56, 270

(1997).
[14] D. E. Postnov, S. K. Han, T. G. Yim, and O. V. Sosnovtseva,

Phys. Rev. E 59, R3791(R) (1999).
[15] G. Giacomelli, M. Giudici, S. Balle, and J. R. Tredicce, Phys.

Rev. Lett. 84, 3298 (2000).
[16] B. Lindner, J. Garcı́a-Ojalvo, A. Neiman, and L. Schimansky-

Geier, Phys. Rep. 392, 321 (2004).
[17] L. S. Tsimring and A. Pikovsky, Phys. Rev. Lett. 87, 250602

(2001).
[18] K. Panajotov, M. Sciamanna, A. Tabaka, P. Megret, M. Blondel,

G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff,
Phys. Rev. A 69, 011801(R) (2004).

[19] M. Arizaleta Arteaga, M. Valencia, M. Sciamanna,
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