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Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system
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We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near
a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns
can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along
the chain of interacting particles. During their displacements the particles are continually redistributed on the
envelope. This change of particle location induces a small modulation of the potential energy of the system,
with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant
and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion
with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical
effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low
temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For
these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion
behavior at low temperature.
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I. INTRODUCTION

Quasi-one-dimensional systems of interacting particles
transversely confined in periodic channels allow nonlinear
localized patterns. In this paper we focus on the thermal motion
of these patterns, which exhibit surprisingly rich dynamics.
These systems of interacting particles are conceptually simple
and have been extensively studied for their configurational
properties. For instance, laser-cooled ions in Paul traps (the so-
called ions crystals or Coulomb crystals) are good candidates
to create entangled states, which is a key step toward quantum
information [1]; understanding the classical behavior of these
systems is a necessity, which motivated several recent works
on Coulomb crystals [2–13]. There are many other physical
systems consisting of interacting particles confined in narrow
channels, with a typical size that extends several orders of
magnitude, such as optically confined paramagnetic colloidal
particles [14–16], plasma dust in electrostatic traps [17–21],
and electrostatically interacting macroscopic beads [13,22–
24].

In these confined systems, the equilibrium positions of the
particles result from the competition between the repulsive
interaction energy U (r) and the transverse confining potential,
which may be approximated by a harmonic potential of
stiffness β. At large stiffness, the particles are aligned along
the axis of the confining cell. When β decreases just below
a critical value βZZ , it becomes energetically favorable for
the particles to adopt a staggered row configuration. This
structural phase transition is known as the zigzag transition
[3–7,14–18,20,22,23]. There are two symmetric zigzag
patterns with the same energy, so the zigzag transition is
basically a pitchfork bifurcation.

The nature of this transition depends on the interaction
range and the boundary conditions implied by the geometry
of the confining cell. In Refs. [13,24] we have shown that
one has to distinguish Coulombic (infinite range) inter-
actions from finite-range interactions and cells with rigid
walls at each extremities from cells of annular shape (or
cyclic boundary conditions in the longitudinal direction). For

Coulombic interactions, regardless of the boundary condi-
tions, the bifurcation is always supercritical [3,5,6,13]. For
cells with rigid extremities, regardless of the interaction
range, the bifurcation is also supercritical [14,15,20,21,23].
In contrast, for short-range interactions and cyclic boundary
conditions, a subcritical pitchfork bifurcation is evidenced
[13,16,19,24]. The physical origin of this change in nature
of the bifurcation is the nonlinear coupling between the
soft mode at the bifurcation and the Goldstone mode due
to the translational invariance along the cyclic channel
[24].

As a consequence of the subcriticality, there is a range
of transverse confinement that allows phases to coexist,
corresponding to a localized zigzag pattern surrounded by
aligned particles [19,24,25]. These localized zigzag patterns
are well described as a zigzag phase modulated by a solitary-
wave envelope [24] (see Fig. 1 for an example) and will
henceforth be called bubbles.

These bubbles are equilibrium patterns that are stable in
a large temperature range [25]. This is evidenced in Fig. 1,
which exhibits the motion of a bubble on a long-time scale
(much longer than the typical time scales of the system; see
Sec. III A). In this example the temperature is high enough
for the bubble displacement to extend up to the simulated
cell size and nevertheless the bubble is preserved during
the whole simulation. Note that the bubble displacements
correspond to the motion of a solitary-wave envelope and not
to a global displacement of the particles themselves. Indeed,
during the bubble motion, the entire set of particles involved
in the localized zigzag pattern is completely renewed for large
enough displacements. This will be clearly seen later by a
comparison between the trajectory of a typical particle and the
trajectory of the bubble itself [see Fig. 5(a)].

Thus, for each bubble envelope position the particles adopt
a specific configuration, which will be calculated along with its
corresponding potential energy Ep. The change in particle po-
sitions relative to the bubble envelope induces a small variation
of the potential energy of the chain, which is a periodic function
of the bubble position. We emphasize that this periodic
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FIG. 1. Three snapshots of a bubble in a system of N = 32 particles in a cell of length L = 60 mm, for a temperature T = 5 × 109 K and
ε = 0.08. The blue circles are the coordinates (xi,yi) of the point particles at time (a) 100 s, (b) 500 s, and (c) 700 s. The solid cyan line is the
analytical bubble shape of Eq. (5). This shape is the same in every plot. The red straight line indicates the bubble position given by Eq. (14).

potential energy is inherently related to the discrete character
of the system.

In this paper we show that, at high temperature, the bubbles
behave as quasiparticles undergoing free thermal diffusion and
we calculate their diffusion coefficients. At low temperature we
evidence the sensitivity of the bubble motion to the modulation
of the potential energy Ep. In particular we show that for
temperatures low enough for the thermal energy to be of the
same order as this potential energy modulation, the bubble
motion may be described as that of a quasiparticle in a periodic
potential. For lower temperatures the bubble may be trapped
by this potential.

The influence of the discrete character of the underlying
system on the motion of solitary waves has been already
observed in several classical systems. The oldest is the
dislocation motion in crystals, with the Frenkel-Kontorova
model [26]. Other examples are ferroelectric domain walls,
walls between incommensurate phases, soliton dynamics in
magnetic materials, and nonlinear dynamics of DNA; for an
extensive review see [27]. Note that in all the reported analyses,
these effects arise from the solitary-wave motion along an
external periodic potential. This is not the case here, where the
potential is intrinsic to the discrete system itself.

We recall in Sec. II the theoretical description of the
bubbles in the framework of a continuous nonlinear model.
We define the mass of the quasiparticle that describes a
bubble and calculate the potential energy variation due to the
relative displacement of the bubble envelope with respect to
the underlying particle chain. The numerical simulations and
data analysis are described in Sec. III. The bubble motion
exhibited in simulations done at high temperature is reported
on in Sec. IV. In Sec. V we focus on low-temperature bubble
behavior and discuss the relevant discretization effects. We
summarize in Sec. VI. Three Appendixes are devoted to
technical details.

II. THEORETICAL DESCRIPTION OF
THE ZIGZAG BUBBLES

A. Bubbles as solitary-wave envelope

In this section we summarize the analytic description of
a bubble as solitary-wave envelope [24] and calculate its
effective mass. Let us consider N particles aligned along
the x axis, in a cell of length L, in the limits L → ∞
and N → ∞ at constant density N/L ≡ 1/d. The repulsive

interaction potential between the particles is denoted by U (r)
and the stiffness of the transverse confining harmonic potential
is denoted by β. In the vicinity of the zigzag transition,
β = βZZ(1 − ε) with |ε| � 1, where βZZ is the bifurcation
threshold at which the aligned particle configuration becomes
unstable. Throughout the paper, the parameter ε measures the
transverse confinement and is therefore the control parameter.
A particle at the point {x,0} for β � βZZ is found at the
position {x + φ(x,t), ± h(x,t)} for β � βZZ , where the field
φ(x,t) describes the longitudinal modulation of the particle
positions, the field h(x,t) describes the absolute value of the
particle transverse displacements, and the sign depends on the
particle rank. We take into account the interactions up to next
nearest neighbors and the fields φ(x,t) and h(x,t) are assumed
to be slowly varying functions of x and of time t . We work in
dimensionless units, with the distances x, φ, and h expressed
in units of d and the time expressed in units of d/c⊥, where c⊥
is the velocity of the long-wavelength linear transverse waves
(see Appendix A).

A systematic expansion of the energy density, in powers of
ε, shows that the dynamics near the bifurcation is given by the
Lagrangian density

L = 1

2

(
∂h

∂t

)2

+ 1

2

(
∂φ

∂t

)2

+ εβZZ

2
h2 − a3

2

(
h4 + h2 ∂φ

∂x

)
− 1

2

(
∂h

∂x

)2

− b3

2

(
∂φ

∂x

)2

− a5

6
h6, (1)

where all coefficients are expressed as functions of the
interaction potential U (r) and its derivatives (see Appendix A).
The corresponding field equations are

∂2φ

∂t2
= a3h

∂h

∂x
+ b3

∂2φ

∂x2
, (2)

∂2h

∂t2
= εβZZh − a3

(
2h3 + h

∂φ

∂x

)
+ ∂2h

∂x2
− a5h

5. (3)

We look at the stationary solutions {φ(x),h(x)} of this system.
Equation (2) is easily integrated to give

dφ

dx
= −αh(x)2 where α ≡ a3

2b3
. (4)

When the expression (4) is substituted into (3), the coefficient
of h3 becomes a3(α − 2), which ensures a subcritical zigzag
transition for α > 2 that allows phase coexistence. It is
therefore consistent to look for localized zigzag patterns, with
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an envelope h(x) that is a stationary solution of Eq. (3) that
vanishes at x → ±∞. In Ref. [24] it is found as

h(x) = h+h−√
(h2+ − h2−) cosh2(

√−εβZZx) + h2−
, (5)

where

h2
± = 3a3(α − 2)

4a5

(
1 ±

√
1 + 16εβZZa5

3a2
3(α − 2)2

)
for

− 3a2
3(α − 2)2

16βZZa5
� ε � 0. (6)

The longitudinal modulation φ(x) associated with the bubble
envelope may be deduced from Eq. (4) after integration and
reads

φ(x) = −α
h+h−√−εβZZ

arctanh

[
h−
h+

tanh(
√

−εβZZx)

]
, (7)

where the integration constant is such that φ(x = 0) = 0.
The description of the bubble as a solitary-wave envelope

also allows one to calculate its effective mass. Indeed, from
the Lagrangian density (1), we deduce the stress-energy tensor
[28] and calculate the linear momentum density P ,

P = − ∂L
∂
(

∂φ

∂t

) ∂φ

∂x
− ∂L

∂
(

∂h
∂t

) ∂h

∂x
= −

(
∂φ

∂t

∂φ

∂x
+ ∂h

∂t

∂h

∂x

)
.

(8)

For a bubble that moves at constant velocity V such that
h(x,t) = h(ξ ≡ x − V t), the linear momentum density be-
comes

P = V

[(
dφ

dξ

)2

+
(

dh

dξ

)2
]

= V

[
α2h4 +

(
dh

dξ

)2
]
, (9)

where we have injected (4) to get the rightmost expres-
sion. The linear momentum of the bubble is given by the
integration of (9) on the whole ξ axis, with h(ξ ) given
by (5). We can therefore define the mass of a bubble as
MB = limV →0

∫ ∞
−∞[P(ξ )/V ]dξ . After some algebra, we get

MB = 3α2√−εβZZ

a5

[
1 + χ2

χ
arctanh χ − 1

]
−

√
3εβZZ

4
√

a5

[
1 + χ2

χ
− (1 − χ2)2

χ2
arctanh χ

]
, (10)

where 0 < χ ≡ h−/h+ < 1.
Let us add two comments. First, to establish (9), we have

used (4), which is valid for stationary bubbles. It is shown in
Appendix B that this is still the case for bubbles that move at
low velocity V � 1. Moreover, we show that thermal motion
fulfills this inequality, so MB is a very good estimate of the
mass of the bubble as a quasiparticle.

Furthermore, despite the obvious fact that actual systems
are always finite, the analysis performed in the thermodynamic
limit remains relevant to experiments in annular cells [19,29] or
to simulations with cyclic boundary conditions [24]. Indeed,
the rotational invariance exhibited by such systems ensures
the existence of a Goldstone mode, hence the subcriticality
of the bifurcation. In order to apply our continuous model to

a finite cyclic system, we have to consider an effective infinite
system with a set of parameters εeff and deff that are properly
calculated to ensure that the length of the particle chain is
equal to the actual length L of the cyclic cell (see Ref. [24]
and Appendix C). The constants in Eqs. (2) and (3) are then
evaluated for d = deff and ε = εeff . From now on, for the sake
of simplicity, the subscript “eff” will be omitted. In Fig. 1
we plot the bubble envelope h(x − x0), where x0 represents
the position of the envelope apex. The functional form h(·)
of the bubble is uniquely determined by the system size and
the parameter ε used in the simulations: Once the effective
distance is deduced from Eq. (C2), the bubble envelope follows
from Eq. (5). The position x0 is thus the only fitting parameter
in the plots of Fig. 1. Therefore, Fig. 1 represents snapshots
of the same bubble and evidences that thermal fluctuations
induce the motion of the bubble in the simulation cell, without
deformations.

B. Effects of the discrete character of the system

Beyond this continuous description, the system consists
of a finite number N of particles. In consequence, an actual
bubble is a configuration of particles distributed according to
the continuous solitary wave {φ(x),h(x)} described previously.
Each configuration is determined by the relative position of the
envelope apex with respect to the underlying chain. Let us first
put a system of N equidistant particles on an envelope with
the apex exactly located on the longitudinal position of the
particle i0. The corresponding discrete configuration is

xi = d[i + φ(i − i0)],
(11)

yi = d(−1)ih(i − i0)

for i ∈ [1,N ]. In the case where the envelope apex is located
between two neighboring particles, the chain of particles
is shifted by 	 with respect to the envelope. The particle
positions then become

xi = d[i + 	 + φ(i − i0 + 	)],
(12)

yi = d(−1)ih(i − i0 + 	)

for i ∈ [1,N ]. These configurations are thus periodic with a
period 	 = 1. Two examples of such configurations are shown
in Fig. 2(a) for 	 = 0 and Fig. 2(b) for 	 = 1/2.

Note that the symmetry of the configuration depends on
the envelope position. By construction, the first configu-
ration (	 = 0) exhibits a mirror symmetry relative to the
plan x = i0d. Since h(x) is an even function [see Eq. (5)]
and φ(x) is an odd function [see Eq. (7)], this symmetry
happens more generally when the shift is 	 = p, with p an
integer. The second configuration (	 = 1/2) has an inversion
symmetry with respect to the center {x = (i0 − 1/2)d,y = 0}.
In the general case, the center of this inversion symmetry is
{x = (i0 − p − 1/2)d,y = 0} when 	 = p + 1/2, with p an
integer.

Knowing the particle positions as a function of the envelope
displacement 	 [see Eq. (12)], we can compute the potential
energy Ep(ε,	) of the corresponding configuration. This
energy Ep(ε,	) is plotted in Fig. 3 as a function of 	

for two values of the confinement ε that correspond to
localized patterns of different widths. As a consequence of
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(a) (b)

FIG. 2. Discrete configurations of the particles in a bubble, zoomed in on the center particles. The number of particles is N = 64 and the
cell length is L = 120 mm. The abscissa is the longitudinal position in units of d and the ordinate is the transverse positions in mm. The dashed
cyan line is the solitary-wave envelope (5) centered at x = 0. The open circles indicate the unperturbed chain of particles and the crosses are
the actual positions of the particles in the bubble. The arrows show the displacements of the particles. (a) The center particle is at the bubble
apex 	 = 0 [see Eq. (11)]. The solid black line indicates the plane of mirror symmetry. (b) Configuration shifted by half a period 	 = 1/2
[see Eq. (12)]. The thick black plus sign indicates the symmetry center.

the periodicity of the discrete configurations, this potential
energy is necessarily a periodic function of 	 with period 1.
We have found that Ep(ε,	) is a sinusoidal function of 	,

Ep(ε,	) = 	E(ε)

2
cos 2π	. (13)

Surprisingly, the configurations associated with an
extremum of potential energy depend on the confinement. In
the case of Fig. 3(a) the configuration of minimum energy
corresponds to a particle located at the envelope apex (	 = p,
with p an integer), whereas in the case of Fig. 3(b) the
configuration of minimum energy corresponds to the envelope
apex located at the middle of two particles (	 = p + 1/2,
with p an integer).

Moreover, a systematic study of the amplitude 	E(ε)
shows that it varies with the confinement parameter ε as a
succession of arches between zero and a maximum that slowly
increases with ε (see Fig. 4). These arches are almost regularly
spaced, the difference between two successive zeros of 	E(ε)
being roughly constant [see Fig. 4(b)].

For a given arch, the respective symmetries of the config-
urations associated with the minimum and the maximum of
Ep(ε,	) are fixed, whereas for the next arch these symmetries
are reversed. The blue dashed lines in Fig. 4(a) correspond
to confinements for which the minimal energy configurations
exhibit a mirror symmetry. For instance, the blue square in
Fig. 4(a) corresponds to the energy plotted in Fig. 3(a). The
solid red lines in Fig. 4(a) correspond to confinements for
which the minimal energy configurations exhibit a center
symmetry. The red circle in Fig. 4(a) corresponds to the energy
plotted in Fig. 3(b).

III. SIMULATIONS AND DATA ANALYSIS

A. Simulated system

We simulate the dynamics of N identical point particles
of mass m moving on a plane, submitted to a thermal bath
at temperature T by the numerical integration of coupled
Langevin equations [30]. The thermal bath is accounted for

(a) (b)

FIG. 3. (a) and (b) The thick solid cyan line plots the potential energy for a bubble configuration (10−10 nJ) as a function of the dimensionless
shift 	, for N = 64 particles in a cell of length L = 120 mm and for confinement (a) ε = 0.077 and (b) ε = 0.22. The thin black solid line is
a sinusoidal fit. Below we plot the particle configurations that correspond to the indices 1, 2, and 3 in (a) and (b). The dashed red line indicates
the mirror symmetry plane and the red plus sign indicates the center of symmetry.
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FIG. 4. (a) Plot of the energetic barrier 	E(ε) (in 10−10 nJ) as a function of the confinement ε, for N = 64 particles in a cell of length
L = 120 mm. The dashed blue line corresponds to confinements for which the configurations of minimal energy exhibit a mirror symmetry
and the solid red line corresponds to confinements for which the configurations of minimal energy exhibit a center symmetry. The peculiar
confinements ε1, ε2, and ε3 are discussed in Sec. V. The blue square indicates the confinement of Fig. 3(a) and the red dot indicates the
confinement of Fig. 3(b). (b) Plot of the difference between two successive zeros of 	E(ε) as a function of the confinement ε.

by a damping constant γ and by random forces applied on
each particle, with the statistical properties of uncorrelated
white Gaussian noise. The length of the simulation cell is
L. The particles interact with a repulsive potential, which in
all simulations is a screened electrostatic interaction U (r) =
U0K0(r/λ0) with energy scale U0 and a characteristic length
λ0 � L, where K0 is the modified Bessel function of index
0 (see [30]). The particles are transversally confined in a
quasi-one-dimensional geometry by a harmonic potential of
stiffness β and periodic boundary conditions are applied in
the longitudinal direction. In all simulations we take λ0 =
0.48 mm and d ≡ L/N = 1.875 mm, which ensures α > 2 in
Eq. (4), hence a subcritical pitchfork bifurcation.

The temperature scale is fixed by the choice of U0.
Somewhat arbitrarily, we have chosen the relevant energy
scale of an experimental system of charged macroscopic beads
[29,31], so U (d) ≈ 0.117 nJ or U (d)/kB ≈ 8.46 × 1012 K.
Above T ∼ 5 × 1012 K, the homogeneous zigzag pattern
is destroyed by the thermal fluctuations. We have shown in
Ref. [25] that the stability domain of the bubbles toward
thermal fluctuations extends up to 1010 K. Thermal motion of
the bubbles is seen in the simulations down to 106 K, as shown
in Sec. V. The temperature range that we consider in this paper
is thus extended to four orders of magnitude, between 106 and
1010 K.

The bubble motion is studied for damping constants γ = 1
and 10 s−1. This is to be compared to the duration of the
simulation runs, which is typically 105 s, and to the typical
time scales d/c ∼ 0.1 s and L/c ∼ 10 s (for L = 60 mm),
where c is the typical velocity of acoustic waves in the system
(see Appendix A).

An important feature of our analysis is the dependence of
the transport coefficients on the shape of the bubble envelope.
We therefore vary the system size N and the transverse
confinement β in order to change the shape of the bubbles. The
range of transverse confinement that allows the appearance of
bubbles in the simulations has been given elsewhere (see Fig. 3
of Ref. [24]). We have restricted these domains somewhat be-
cause the consistency of the bubble mass calculation requires
a bubble size that is much smaller than L. When expressed
in terms of the dimensionless parameter ε, the parameters
used in this paper are ε ∈ [0.130,0.340] for N = 16, ε ∈
[0.060,0.400] for N = 32, and ε ∈ [0.004,0.130] for N = 64.

B. Measurements of the bubble position

In order to study the bubble motion, we could obtain its
instantaneous position from a fit by the analytic expression
of the solitary-wave envelope, as shown by the solid cyan
line in Fig. 1. However, the numerical process to adjust the
position of the solitary-wave envelope is time consuming. Thus
we use a much quicker method, based on the instantaneous
particle positions {xi(t),yi(t)}, which enhances the weight
of the particles inside the bubble [large |yi(t)|]. The bubble
position xB(t) is defined as

xB(t) =
∑N

i=1 xi(t)yi
2(t)∑N

i=1 yi
2(t)

. (14)

The validity of this method has been verified by comparison
with the lengthier one discussed previously, as shown in Fig. 1.

A typical trajectory xB(t) is shown in Fig. 5(a), together with
the longitudinal motion of a typical particle. The bubble motion
extends along many interparticle distances. During the same
time, a typical particle evidences much smaller longitudinal
displacements. This confirms that the bubble motions is not
associated with global longitudinal motion of the particles,
but with the motion of the solitary-wave envelope leading to a
transverse reorganization of the particles.

The trajectory xB(t) fluctuates on two very different time
scales, presenting some fast fluctuations of small amplitude
embedded in a slower displacement of much larger amplitude.
These two time scales correspond to different dynamical
processes. The slowest motion results from the motion of
the bubble envelope and will mainly be described in the
next section. In contrast, the fast fluctuations are associated
with thermal excitations of the individual particles or of their
collective vibrational modes. These fast transverse fluctuations
induce local rearrangement of the particles, which results in
jumps of the bubble of a typical distance d. This is made clear
in Fig. 5(b), where we compare the bubble position xB(t) with
the position xi(t) of the particle with maximum transverse
displacement |yi(t)|.

IV. BUBBLE FREE DIFFUSION AT HIGH TEMPERATURE

In this section we consider the bubble motion that takes
place when the temperature is much larger than the amplitude
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FIG. 5. Plot of the longitudinal displacements (in mm) as a function of time (in s), for a system of N = 32 particles, L = 60 mm, at
T = 5. × 109 K, γ = 1 s−1, and ε = 0.08. (a) Typical trajectory of a bubble, measured by xB(t) [red (dark gray) solid line], and longitudinal
motion of a typical particle [cyan (light gray) solid line]. (b) Zoom in on the bubble trajectory (red solid line) [note the scale difference from
(a)] and instantaneous position of the particle with maximum transverse displacement (green dots).

	E(ε) of the periodic potential due to the discreteness of the
system, discussed in Sec. II B.

A. Bubble mean-square displacement

As shown in Fig. 5, the bubble motion looks like a random
walk. We therefore consider the bubble trajectory statistical
properties and calculate the mean-square displacement (MSD)
〈	xB

2(t)〉. In Fig. 6 we show the bubble MSD at three
temperatures T = 109, 5 × 109, and 1010 K for two dissipation
coefficients γ = 1 and 10 s−1. In Figs. 6(a) and 6(c) we also
display, for the sake of comparison, the longitudinal MSD of a

typical particle in the chain, which is two orders of magnitude
smaller. When we plot 〈	xB

2(t)〉/kBT , as in Figs. 6(b) and
6(d), we see a collapse of the data, which evidences that the
bubble behaves as a coherent pattern that undergoes stochastic
motion because of a thermal bath. The plots of Fig. 6 extend
over six time decades and clearly exhibit two asymptotic
regimes. At very short times (in Fig. 6, t � 0.1 s) the bubble
MSD scales as t2 and is independent of γ . In contrast, at long
times (in Fig. 6, t � 10 s) the bubble MSD scales as t with a
coefficient that decreases as 1/γ as the friction increases.

Note that the characteristic times of the two asymptotic
regimes for the bubble motion might be estimated from the
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FIG. 6. (a) and (c) Plots of the bubble MSD (logarithmic scale, in mm2) as a function of time (logarithmic scale, in s) for N = 32 particles
in a cell of length L = 60 mm and ε = 0.08. The temperatures are T = 109 K (blue squares), T = 5 × 109 K (red triangles), and T = 1010 K
(green circles). The damping constant is (a) γ = 1 s−1 and (c) γ = 10 s−1. For the sake of comparison, the longitudinal MSDs of a typical
particle in the system with temperature T = 109 K are shown as cyan diamonds. The dashed black lines correspond to the ballistic regime and
the solid black lines to the diffusive regimes for a single particle in the chain [30]. (b) and (d) Plots of 〈	xB

2(t)〉/kBT (logarithmic scale, in
s2 kg−1) as a function of time (logarithmic scale, in s) for (b) γ = 1 s−1 and (d) γ = 10 s−1. The solid black line is the free diffusion of a bubble
of mass MB defined in Eq. (10) and the dashed black line is the ballistic regime of Eq. (15), without any fitting parameter.
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FIG. 7. Plot of the bubble MSD (logarithmic scale, in mm2) as a
function of time (logarithmic scale, in s) for ε = 0.06 (green circles),
ε = 0.07 (cyan triangles), ε = 0.10 (purple squares), and ε = 0.18
(red diamonds); N = 32 particles; L = 60 mm; temperature T =
5 × 109 K; and γ = 1 s−1.

typical acoustic wave velocity c in the chain (see Appendix A),
the interparticle distance d, and the system size L. For instance,
the characteristic time for a wave to travel between nearest
neighbors is d/c. It defines the time scale beneath which the
particles are independent, so the bubble dynamics results from
the uncorrelated fluctuations of individual particles. A rough
estimate gives d/c ∼ 0.1 s, which is consistent with the short-
time scale in Fig. 6. On the other hand, the characteristic time
L/c for a wave to travel along the whole cell defines the time
scale above which long-range correlations occur between the
particles, characterizing a regime of coherent displacements
of the particles associated with large solitary-wave motion. A
rough estimate gives L/c ∼ 10 s, which is again consistent
with the long-time scale in Fig. 6.

B. Long-time bubble free diffusion

As of now, we have some evidence that at long times
the bubble behaves like a quasiparticle freely diffusing in
a thermal bath. We expect a specific diffusion coefficient
DB = kBT /Mγ , where the mass M is exactly the mass MB

calculated in the framework of the continuous model [see
Sec. II and Eq. (10)]. In order to check our interpretation,
we have measured the bubble MSD for several values of
the transverse stiffness by varying the parameter ε. These
measurements are shown in Fig. 7. A diffusive behavior at
long times, with 〈	xB

2〉 ∝ t , is observed regardless of the
transverse confinement. The confinement is found to slightly
shift the MSD with a diffusion coefficient that decreases
with the confinement, which suggests an increase of the
quasiparticle mass.

In Fig. 8 we have reported the values of effective diffusion
coefficients DB extracted from the long-time behavior of the
bubble MSD for several confinements ε and for three system
sizes N = 16, 32, and 64 at a fixed density (see Sec. III A).
We see that DB(ε) is a strongly decreasing function of ε

for a given system size. Regardless of the system size, the
thin bubbles (small ε) diffuse much faster than the wide
bubbles (large ε). In order to discriminate if this effect is
due to the release of the transverse confinement or if it is a
characteristic of the bubble shape, we have taken advantage of
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FIG. 8. Plot of the diffusion coefficient DB extracted from the
long-time behavior of the bubble MSD, normalized by the diffusion
coefficient of a free single particle D0 = kBT /mγ , as a function of
the confinement ε. We show data for N = 16 and L = 30 mm (green
diamonds), N = 32 and L = 60 mm (red triangles), and N = 64 and
L = 120 mm (blue circles).

the possibility to observe an identical solitary-wave envelope
at different values of confinement ε with a careful choice of
the parameters (N,ε). We show in Fig. 9(a) three bubbles
with identical envelopes, observed in systems of N = 64, 32,
and 16 particles. The corresponding bubble MSDs measured
at the same temperature T and for the same dissipation
coefficient γ are identical [see Fig. 9(b)]. This evidences that
the dependence of the diffusion coefficient on ε is linked to the
bubble envelope and not directly to the transverse confinement
itself.

We have thus evidenced that, at long times, the bubbles
behave as free quasiparticles in a thermal bath and their
MSDs only depend on their shape. Therefore, their diffusion
coefficient must be DB = kBT /MBγ , where MB is the mass
of a bubble [see Eq. (10)]. In Fig. 10(a) we compare the
diffusion coefficients measured from the long-time behavior of
the bubble MSD (closed symbols) to the diffusion coefficients
kBT /MBγ , for two system sizes.1 There is no fitting parameter
and the agreement is excellent. Moreover, we show in
Fig. 10(b) that the diffusion coefficients measured for both
system sizes collapse on the same curve and actually scale as
the inverse of the effective mass MB(ε).

Note also that the diffusion coefficients are consistent with
the picture of a random walk exhibited Fig. 5(b). We may
consider that the bubble does random jumps of amplitude d

(the interparticle distance) with a characteristic time τ , which
would give a diffusion coefficient D ∼ d2/2τ . For instance,
Fig. 5(b) gives a rough estimate of τ ∼ 5 s; since T = 5 ×
109 K and γ = 1 s−1, this gives DB/D0 ∼ 12, which is of the
same order of magnitude as the data displayed in Figs. 7 and 10.

In conclusion, we have shown that the bubble motion at long
times may be described as the free diffusion, at temperature
T , of a quasiparticle of mass MB.

1As explained in Appendix C, the continuous model makes sense if
the system size is much larger than the bubble width. The calculations
are valid for N = 32 and 64, but systems of only N = 16 particles
are too small. As shown in Fig. 8, the phenomenology is nevertheless
the same.
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FIG. 9. (a) Three identical bubbles obtained for three sets of parameters (N,ε): (16,0.25) and L = 30 mm, green triangles; (32,0.1) and
L = 60 mm, red crosses; and (64,0.03) and L = 120 mm, blue circles. We display the configurations xi and yi (both with length in mm), with
the bubble apex in the middle of the cell. (b) Plot of the bubble MSD (logarithmic scale, in mm2) as a function of time (logarithmic scale,
in s) for the three configurations of (a), using the same symbols. The temperature is T = 5×109 K and the dissipation is γ = 1 s−1 in every
simulation. The solid black line is the free diffusion of a bubble of mass MB defined in Eq. (10) and the dashed black line is the ballistic regime
of Eq. (15), without any fitting parameter.

C. Short-time bubble behavior

At short time, for each particle i the positions xi(t) and yi(t)
are basically independent random variables. This is the basis
for a simple calculation of the MSD 〈	x2

B(t)〉. The particles
randomly fluctuate around their equilibrium positions xi and
yi . We thus set xi(t) = xi + δxi(t) and yi(t) = yi + δyi(t),
where the small fluctuations δxi(t) and δyi(t) are such that
〈δx2

i (t)〉 = (kBT /m)t2 and 〈δy2
i (t)〉 = (kBT /m)t2. Since all

the correlations between particle displacements are negligible,
by substituting these expressions into Eq. (14) we obtain

〈
	x2

B(t)
〉 =

(∑N
i=1 4(xi − xB)2yi

2 + ∑N
i=1 yi

4( ∑N
i=1 yi

2)2

)
kBT

m
t2

for xB =
∑N

i=1 xi yi
2∑N

i=1 yi
2

. (15)

As expected, we recover that 〈	x2
B(t)〉 scales as t2 and

is proportional to the temperature and independent of γ .
This explains the collapse evidenced in Figs. 6(b) and 6(d).
Moreover, we get an expression for the prefactor of the t2

scaling law that may be compared to our measurements. This

is done in Figs. 6(b), 6(d), and 9(b), where it is shown,
without any fitting parameter, that Eq. (15) describes indeed
very well the short-time (typically t � 0.1 s) behavior of
the bubble MSD. Let us emphasize that this t2 scaling does
not correspond to the ballistic regime of the quasiparticle,
which would rather give (kBT /MB)t2, which numerically is
ruled out by the data. This is consistent with our assumption
that the short-time behavior of the bubble only results from
independent fluctuations of the particles.

It is indicated that, when the bubble diffuses with strong
dissipation, there exists an intermediate regime between
the ballistic and the long-time one for which the MSD is
proportional to tα with α < 1 [see Fig. 6(c)]. This behavior
is characterized by the collective modes of vibration charac-
teristic in systems of interacting particles, as we have shown
in Ref. [30].

V. BUBBLE TRAPPING AND ACTIVATED JUMPS
AT LOW TEMPERATURE

The low-temperature regime is reached when the thermal
energy kBT is smaller than or of the same order as the
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FIG. 10. (a) Plot of the diffusion coefficient DB, normalized by the free particle diffusion coefficient D0 = kBT /mγ , as a function of the
confinement ε, for N = 32 and L = 60 mm (red triangles) and N = 64 and L = 120 mm (blue circles). The closed symbols correspond to the
diffusion coefficients deduced from the long-time MSD and the open symbols correspond to the calculated diffusion coefficients kBT /MBγ ,
where the mass MB is given by (10). (b) A log-log plot of DB/D0 as a function of the dimensionless mass MB/m of the quasiparticle. The
dashed line is the theoretical expectation of slope −1.
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FIG. 11. (a) and (c) Plots of the longitudinal bubble position xB (in mm) as a function of time (in s), for a system of N = 64 particles in
a cell of L = 120 mm with γ = 1 s−1. (a) and (b) The confinement is εt = 0.085 and 	E(εt ) = 7.9 × 10−10 nJ. (c) and (d) The confinement
is εb = 0.093 and 	E(εb) = 1.0 10−10 nJ. The temperatures are T = 106 K (cyan circles), T = 5 × 106 K (green squares), T = 7 × 106 K
(red triangles), and 2 × 107 K (blue diamonds). (b) and (d) Plots of the corresponding MSD 〈	x2

B(t)〉/kBT (logarithmic scale, in s2 kg−1) as a
function of time (logarithmic scale, in s).

amplitude of the modulated potential energy. To be specific,
we deduce from Figs. 3 and 4 that 	E(ε) ∼ 10−10 nJ,
hence the temperature T ∼ 104 K, which corresponds to a
very low temperature in our system (the relevant energy
scales are recalled in Sec III A). In this regime, the bubble
motion becomes sensitive to the energetic cost induced by the
modulated potential Ep(ε,	).

A. Trapping and activated jumps

In the framework of our quasiparticle description, the
bubble dynamics may be interpreted as a thermally activated
motion in a modulated potential Ep(ε,	) [see Eq. (13)]. The
motion of a single particle in an external periodic potential
has been widely studied [32–34]. When 	E(ε) � kBT , the
particle is trapped in a well, leading to a saturation in its
MSD. By contrast, when 	E(ε) and kBT are comparable, the
thermal fluctuations of the particle may allow its motion above
the energetic barrier 	E(ε) and large motion results from suc-
cessive jumps from one well to the next one, the characteristic
time between two jumps decreasing exponentially with the
temperature [33]. Such activated motion results in a smaller
diffusion coefficient than for the free particle diffusion [32].

This phenomenology is evidenced by the low-temperature
bubble motion. In Fig. 11(a) we display the bubble trajectories
for increasing temperatures inducing four different bubble
dynamics. For T = 106 K, the bubble is trapped around one
potential minimum, its trajectory being roughly a constant.
For higher temperatures, we observe discrete bubble jumps
between successive potential minima. For T = 5 × 106 K
only one jump is observed in the time sequence, while for

T = 7 × 106 K several jumps occur. These observations agree
with the behaviors expected from the quasiparticle model
in this intermediate range of temperature for which discrete
jumps occur, with a characteristic time between jumps that
quickly decreases with the temperature. Eventually, for T =
2 × 107 K the temperature is high enough for the bubble not
to be trapped anymore, so its trajectory looks like that of a free
particle. The corresponding bubble MSD 〈	x2

B(t)〉 is plotted
in Fig. 11(b). For the lowest temperature (T = 106 K) the
MSD saturates since the bubble is trapped. In contrast, for
intermediate temperatures (T = 5 × 106 and 7 × 106 K), the
MSD scales as t at long times after an intermediate regime
corresponding to the transitory bubble trapping. The duration
of this intermediate regime, as the characteristic time between
jumps, decreases with increasing temperature. Eventually,
for larger temperature (T = 2 × 107 K) the MSD scales as
t as that of a free particle, with the diffusion coefficient
DB = kBT /MBγ calculated in Sec. IV, as shown by the black
line in Fig. 11(b).

All these behaviors are in perfect qualitative agreement with
a description of the bubble motion as that of a quasiparticle
of mass MB in an external periodic potential. However, the
confinement ε in Fig. 11(a) corresponds to a temperature
of T ∼ 7.7 × 104 K. It thus seems that the calculation
of the modulated potential energy described in Sec. II B
underestimates the modulation amplitude.

B. Restored free diffusion for specific transverse confinements

Besides the numerical value of the modulated potential
energy, we have evidenced an impressive behavior of the
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FIG. 12. Plots of the bubble MSD 〈	x2
B(t)〉 (logarithmic scale, in mm2) as a function of time (logarithmic scale, in s) for a system of

N = 64 particles in a cell of length L = 120 mm in a thermal bath at T = 106 K and γ = 1 s−1 for the confinements (a) ε1 = 0.12 (green
circles), ε = 0.13 (cyan diamonds), and ε2 = 0.134 (blue triangles) and (b) ε2 = 0.134 (blue triangles), ε = 0.138 (purple diamonds), and
ε3 = 0.145 (red circles). The solid black line is the long-time diffusive behavior with DB = kBT /MBγ . Below we display the minimum energy
configurations associated with each confinement, in increasing order of ε from left to right. The dashed lines indicate the mirror symmetry
plane and the plus signs indicate the centers of symmetry.

modulation amplitude, which vanishes for specific values of
the transverse confinement (see Fig. 4). In order to establish
the relevance of our description of the low-temperature bubble
motion, we now focus on these specific values ε∗ of the
transverse confinement such that 	E(ε∗) = 0.

In the plots of Figs. 11(c) and 11(d), we display simulations
data obtained for such a confinement, with a very small
barrier 	E(ε), at the same temperatures as for Figs. 11(a)
and 11(b). For T = 5 × 106, 7 × 106, and 2 × 107 K the
trajectories are very similar and look like those of freely
diffusing particles. This is confirmed by the MSD plots, which
show that 〈	x2

B(t)〉/kBT does not depend on the temperature
[see Fig. 11(d)]. For the lowest temperature, in contrast with the
case of Fig. 11(a), several jumps occur during the simulation,
which evidences that the bubble is no longer trapped in a
potential well. The bubble MSD is neither that of a freely
diffusing quasiparticle nor that of a trapped one.

Let us now focus on the neighborhood of a particular zero of
	E(ε) [ε = ε2 in Fig. 4(a)], considering confinements in the
range ε1 < ε < ε2 and then ε2 < ε < ε3 in order to explore
the whole amplitude 	E(ε) between a maximum (ε1 or ε3)
and a zero (ε2). For this small confinement range the bubble
envelopes are expected to be very similar and to have almost
the same bubble mass MB . The corresponding MSD 〈	x2

B(t)〉
is displayed in Fig. 12. As in the previous case, for confinement
ε = ε2 such that 	E(ε2) ≈ 0 the MSD only scales as t ,
whereas for the other confinement values for which 	E(ε) > 0
the MSD saturates. The saturation values of the MSD and the
times at which they are reached increase as ε goes from ε1 up
to ε2, which is consistent with the fact that 	E(ε) < 	E(ε1)
[see Fig. 12(a)]. In Fig. 12(b) the saturation values of the

MSD and the times at which they are reached decrease as ε

goes from ε2 up to ε3, which is again consistent with the fact
that 	E(ε) < 	E(ε3). Before saturation the MSDs behave as
DBt , with the same coefficient DB = kBT /MBγ whatever ε is,
which is consistent with the fact that the bubble envelopes are
very much the same, as shown by the bottom plots Fig. 12. Note
that, as expected from Figs. 3 and 4, the symmetry of the bubble
configuration changes when the confinement crosses the zero
of 	E(ε). The configurations displayed in Fig. 12 show for
ε1 < ε < ε2 a mirror symmetry, whereas for ε2 < ε < ε3 they
present an inversion point symmetry.

This analysis has been extended to the whole ε range of
Fig. 4 by a systematic study of the bubble MSD saturation
values 〈	x2

B〉sat and the configuration symmetries. The results
are presented in Fig. 13. We observe a series of regularly spaced
peaks of the bubble MSD saturation value. These peaks should
be associated with very small values of 	E(ε). In Table I we
display these peak locations deduced from Fig. 13 together
with the zeros of 	E(ε) (see Fig. 4). We see that both sets
of numerical values are very much the same. Moreover, the
alternate change of configuration symmetry predicted in Fig. 4
is indeed observed, as indicated in Fig. 13.

The values of 	E(ε) can be estimated from the saturation
values of the bubble MSD. For a particle trapped in a minimum
of the potential Ep(ε,	) [see Eq. (13)], the saturation value
is expected to be 〈	x2〉sat = kBT d2/4π2	E. The estimated
	E(ε) are plotted Fig. 13(b). The resulting plot is in qualitative
agreement with Fig. 4, but the measured energetic barriers are
two orders of magnitude higher than the one expected. Despite
this discrepancy in the numerical values of the energetic bar-
rier, we have provided in this section convincing evidence that
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FIG. 13. (a) Plot of the saturation values of the MSD 〈	x2
B(t)〉 (in mm2) as a function of the confinement ε, for N = 64 particles in a cell

of L = 120 mm. (b) Plot of the amplitude 	E(ε) (in 10−7 nJ) as a function of the confinement ε (see the text for the calculation method). In
both plots the symmetries of the minimal energy configuration are, respectively, indicated in blue for the vertical plan symmetry (VP) and in
red for the inversion point symmetry (IP).

the bubble motion at low temperature is very well described
like those of a quasiparticle of mass MB in an external periodic
potential. This periodic potential is due to the positions of the
discrete particles along the solitary-wave envelope. Indeed,
for the specific transverse confinement values at which the
amplitude of the periodic potential vanishes, the bubble MSD
is very strongly enhanced.

VI. CONCLUSION

In this paper we focused on the dynamics of localized
nonlinear patterns in a quasi-one-dimensional system of
interacting particles near a subcritical pitchfork bifurcation.
These patterns, which we call bubbles, are well described by
a solitary-wave envelope deduced from the normal form at the
bifurcation.

The bubbles are stable in a large temperature range and
diffuse over large distances without any distortion. We describe
their thermal motion by their mean-square displacements.

At high temperature, the thermal motion of the bubble
displays all characteristics of free quasiparticle diffusion. The
relevant diffusion coefficient is given by DB = kBT /MBγ ,
where MB is the bubble mass that is analytically deduced
from the normal form.

TABLE I. Column 1 lists the zeros of 	E(ε) [see Fig. 4 (a)],
column 2 the locations of the peaks in the saturation values of the
bubble MSD [see Fig. 13(a)], and column 3 the estimate of the error
on the peak locations, deduced from their widths.

ε εnum δεnum

0.075 0.068 ± 0.003
0.094 0.093 ± 0.001
0.114 0.112 ± 0.003
0.133 0.136 ± 0.002
0.153 0.155 ± 0.002
0.172 0.175 ± 0.002
0.190 0.196 ± 0.002
0.216 0.215 ± 0.001

Because of the discrete character of the system, for
each bubble envelope position the particles adopt a specific
configuration. When we compute the potential energy of the
system, we exhibit a periodic modulation induced by the
change in particle positions relative to the bubble envelope. The
amplitude of this modulation depends on the transverse con-
finement and vanishes for a series of regularly spaced values.

If these potential energy modulations are irrelevant at
high temperature, we have exhibited significant physical
consequences at low temperature. For nonzero modulation
amplitude, at very low temperature, the bubbles are trapped
in the potential minima and their MSD saturates. At higher
temperature the bubbles diffuse by random jumps from one
minimum to another, so the MSD scales as t at long times
after an intermediate regime corresponding to a temporary
bubble trapping. For the specific confinement values such
that the modulation amplitude vanishes, the bubble exhibits
free particle diffusion even at these very low temperatures.
The zeros of the modulation amplitude deduced from the
simulation data are in very good agreement with the calculation
of the discrete configuration energy. From the analysis of the
variations of the saturation values of the MSD as a function
of the confinement ε we have estimated the amplitude of the
modulated potential. Its dependence upon the confinement is
in qualitative agreement with the model, but the numerical
values are larger than expected.

APPENDIX A: COEFFICIENTS OF THE
NONLINEAR MODEL

In this appendix we express the coefficients in Eqs. (1)–(3)
as functions of the interaction potential U (r). We recall that the
model includes interactions up to second neighbors only. We
also emphasize that all coefficients are dimensionless, hence
there are minor differences from the notation of Ref. [24].

The velocities c⊥ of transverse acoustic waves and c‖ of
longitudinal waves are

mc2
⊥ = d[2U ′(2d) − U ′(d)], mc2

‖ = d2[U ′′(d) + 4U ′′(2d)],

(A1)
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where m is the mass of a particle and U ′ ≡ dU/dr . The
coefficients in Eqs. (2) and (3) are expressed as

βZZ = −4d U ′

mc2
⊥

, a3 = 4d(d U ′′ − U ′)
mc2

⊥
, b3 =

(
c‖
c⊥

)2

,

(A2)

where the derivatives of the potential are to be taken at r = d.
The coefficients βZZ , a3, and b3 are positive.

The remaining coefficient is

a5 = 2d

mc2
⊥

[2(6 − 6α + α2)(U ′ − d U ′′) + (2 − α)2d2U ′′′].

(A3)

Note that this definition of a5 assumes the result of Eq. (4).
Using it in (1) or in (3) is thus not rigorous. As said in Ref. [24],
we neglect in the Lagrangian density some highly derived
terms in h and φ. We have checked that their contributions to
the energy of a bubble are negligible. In the remaining terms,
we use (4) to get the h6 term in the Lagrangian density. The
approximation made in the definition of a5 is thus physically
consistent for stationary patterns.

APPENDIX B: BUBBLES MOVING AT
CONSTANT VELOCITY

A word of caution may be useful about the extension of
our calculations to nonstationary bubbles moving at constant
velocity V . Let ξ = x − V t and let us assume that h(x,t) =
h(ξ ) and φ(x,t) = φ(ξ ). Substituting these Ansätze into (2),
we deduce

(b3 − V 2)φ′′ = −a3hh′ =⇒ φ′ = − αb3

b3 − V 2
h2 ≡ −α̃(V )h2,

(B1)

where h′ = dh/dξ . For subsonic bubbles, V < 1 (we recall
that c⊥ is the velocity unit and b3 ≈ 4), hence α̃ > α so that
the subcriticality of the bifurcation is preserved. Therefore, the
calculations may proceed exactly as before and we obtain for
the amplitude of the moving bubble the same as in (5), but the
constant α has to be replaced by α̃(V ).

In the case of the thermal diffusion of a bubble, the velocity
V may be estimated from the bubble mass MB [see Eq. (10)]
and the thermal energy, as V ∼ √

2kBT /MB . We deduce from
Fig. 10 that a typical value for the bubble mass is MB/m ∼
0.2. Thus, even at T = 1010 K, we get V ∼ 0.1 cm/s. In
contrast, for an interparticle distance d = 60/32 mm, using
Eq. (A1) and the numerical values of Sec. III A, we get
c⊥ ∼ c‖/2 ∼ 1.5 cm/s. The correction (V/c⊥)2 is thus very
small, so α̃(V ) ≈ α is an excellent approximation. Therefore,
the stationary bubble given in Eqs. (5) and (6) is an accurate
description of nonstationary bubbles that undergo thermal
motion.

APPENDIX C: CYCLIC BOUNDARY CONDITIONS

The analysis of Sec. II A assumes a system in the ther-
modynamic limit. The simulations are done with N particles
in a cell of finite length L, with cyclic boundary conditions.
These boundary conditions ensure rotational invariance of the

simulated system, which preserves the nonlinear soft mode
coupling at the basis of Eqs. (2) and (3).

In the simulations, the bubbles are observed when the
stiffness βsimu of the confining potential is such that βsimu <

−4U ′(d)/d, where d = L/N is the mean interparticle distance
(note that βsimu is assumed to be in N/m in this appendix). This
defines a positive parameter εsimu as βsimu = [−4U ′(d)/d](1 −
εsimu). The parameter εsimu is simply written ε throughout the
text. It measures the transverse confining potential taken in a
given simulation.

The bubbles are energetically allowed because the longi-
tudinal distance between the particles in the bubble (those
with h > 0) is smaller than d, so the distance between the
particles outside the bubble (those with h = 0) is greater
than d. A bubble takes place in the simulation cell when the
energy increase due to the particles that climb the transverse
potential is more than compensated for by the energy loss of
the remaining particles that become further apart. Let deff > d

be the distance between neighboring particles outside the bub-
ble. We may define an effective bifurcation parameter εeff such
that

βsimu = −4
U ′(d)

d
(1 − εsimu) = −4

U ′(deff)

deff
(1 − εeff). (C1)

A bubble may appear if this effective bifurcation parameter
εeff is negative, as shown by Eq. (5). Since −U ′(d)/d is a
strongly decreasing function of the distance, this is possible
for deff > d.

When there is a bubble in the system, the longitudinal
distance between neighboring particles is modulated by the
variation of φ. The system length is obtained after integrating
on the cell range −L/2 � x � L/2. This provides the consis-
tency condition

L = deff[N + 2φ(L/2)], (C2)

since φ(x) is an odd function [see Eq. (7)]. Here all parameters
are known functions of deff [see Eqs. (6) and (7) and
Appendix A], so the only unknown quantity in this equation
is deff .

In Ref. [25] we have plotted the calculated values of
deff and the relevant values of εeff .2 For practical purposes
both formulas are equivalent. The values of deff are always
greater than d and the values of εeff are negative, which
is consistent with our description of the bubbles. A bubble
observed in a finite cell of length L is thus interpreted as
a bubble in an infinite system with an interparticle distance
deff at infinity. The calculation of deff ensures that the actual
length of the simulated cell is preserved. The comparison
between the bubble patterns given by the simulations and the
analytic expression (5), calculated for the value of deff in a
way that is described above, exhibits very good agreement
(see Fig. 1 in the present paper; other examples are provided
in [24,25]).

2Strictly speaking, we have used in Ref. [25] the approximate
formula L = deff [N + 2φ(∞)] rather than Eq. (C2).
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