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Imperfect traveling chimera states induced by local synaptic gradient coupling
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In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are
coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect
traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network.
Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the
earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this
find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of
identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength
of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors
in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state,
and a global amplitude death state.
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I. INTRODUCTION

Research on the collective behavior of identical oscillators
has been revitalized with the discovery of the chimera state [1].
Kuramoto and Battogtokh [2] discovered that the population
of identical oscillators is subdivided into two incongruous
domains: in one domain the neighboring oscillators are
synchronized, whereas in another domain the oscillators
are desynchronized. This intriguing spatiotemporal state was
named the chimera state by Strogatz [3], and it has been in the
center of attention over the past decade. Since its discovery
in phase oscillators under nonlocal coupling by Kuramoto and
Battogtokh [2], other chimera states have also been discovered.
An amplitude-mediated chimera state was reported in [4],
where, under strong global coupling, a network of complex
Ginzberg-Landau oscillators show fluctuations in both the
phase and amplitude part in the incoherent region. Later,
an amplitude chimera state was discovered by Zakharova
et al. [5] where all the oscillators in a network have the
same phase velocity but differ in amplitude in the incoherent
region. Recently, a chimera state was observed also in local
nearest-neighbor coupling [6–8], which proves that nonlocal
or strong global coupling is not an essential requirement to
achieve a chimera state.

The robustness of the chimera state has been proved through
a series of experiments: The first experimental observation of
a chimera state was reported in an optical system [9] and
chemical oscillators [10]. Later, a chimera state was observed
experimentally in several other systems, e.g., in a mechanical
system [11] and a time-delay laser system [12], to name a few.
Recently, Hart et al. [13] reported the experimental observation
of a chimera state in a globally coupled minimal network of
four optoelectronic oscillators. Apart from these manmade
experimental setups, the occurrence of a chimera state has
been reported in real physical and biological systems, e.g., in
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SQUID metamaterial [14,15], ecology [16,17], and quantum
systems [18].

Ever since its discovery, the chimera state has been
strongly connected to several neuronal processes, such as the
unihemispheric slow-wave sleep of some aquatic mammals,
such as dolphins, eared seals, and manatees [19,20], and some
migratory birds [20]. During slow-wave sleep, these species
shut down only one cerebral hemisphere of the brain and
close the opposite eye. During this time, the other half of
the brain monitors what is going on in the environment (for
migratory birds) and controls breathing functions (for aquatic
mammals). This strongly indicates that in the awake part of the
cerebral hemisphere, neuronal oscillators are desynchronized,
while in the sleepy part neuronal oscillators are very much
synchronized, which resembles the chimera state. Recently,
Hizanidis et al. [21] established the occurrence of a chimera
state in a neural network based on the C. elegans soil worm
connectome in terms of Hindmarsh-Rose dynamics.

Therefore, systematic studies on the chimera state in
neuronal systems deserve special attention. Earlier works on
a network of neuronal oscillators considered the FitzHugh-
Nagumo model with type-II excitability [22,23] and the
SNIPER model of type-I excitability [24]; those works dealt
with spiking neurons (as those models could not produce burst-
ing behavior). In this context, neuronal oscillation modeled
by the Hindmarsh-Rose (HR) model is much more realistic
because, depending upon parameter values, it shows both
type-I and type-II excitability and can produce a plethora of
physiologically relevant neuronal oscillations, such as square
wave bursting (both periodic and chaotic), plateau bursting,
spiking, mixed mode bursting, etc. Hizanidis et al. [25]
reported the occurrence of a chimera state in a network of
HR neurons under nonlocal coupling. However, the considered
nonlocal coupling has an ideal rectangular kernel, which has
less biological relevance as far as the coupling function is
concerned.

In this context, synaptic coupling is one of the most realistic
coupling schemes through which neurons are connected. In
the context of interneuronal communication, two variants
of synapses exist, namely chemical and electrical synapses.
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Bera et al. [8] considered the chemical synaptic coupling
with nonlocal, global, and local nearest-neighbor coupling
topology, and they established the occurrence of a chimera
state. In that work, however, only excitatory coupling with
symmetric synaptic coupling strength was considered in all
three coupling topologies. Normally, in a network of neuronal
oscillators, both excitatory and inhibitory interactions are
present [26]. In the absence of time delay, in general, fast
excitatory coupling leads to synchronization and fast inhibitory
coupling promotes antisynchronization. Belykh et al. [27]
showed that the synergistic effect of excitation and inhibition
leads to complete synchronization (i.e., synchrony in both
burst and spike) with a lower coupling threshold. Thus, it is
important to study their simultaneous effect on the occurrence
of multicluster synchrony or a chimera state. The simultaneous
effect of excitatory and inhibitory coupling is best represented
by gradient coupling: in this coupling scheme, one can
control the strength of excitation and inhibition by simply
controlling the parameter associated with gradient coupling.
Earlier, the effect of gradient coupling was studied in the
context of oscillation suppression in nonlinear oscillators
with time-delay diffusive coupling [28], synchronization of
nonlinear coupled systems [29], and control of spatiotemporal
chaotic systems [30,31], but its influence on the occurrence of
a chimera state has not been studied yet.

In this paper, we investigate the effect of local chemical
synaptic gradient coupling on the occurrence of a chimera
state. We choose a network of identical square-wave bursting
Hindmarsh-Rose neuronal oscillators, and we show that
depending upon the proper choice of the coupling parameter
associated with the gradient coupling, we can attain three
different coupling topologies, namely one-way excitatory local
coupling, nearest-neighbor asymmetric excitatory coupling,
and simultaneous excitatory-inhibitory coupling. Remarkably,
we find a chimera state even in the one-way excitatory local
coupling that further relaxes the essential requirement of
getting a chimera state in a network. We identify and confirm
the occurrence of a new chimera pattern, namely the imperfect
traveling chimera state in the network with nearest-neighbor
asymmetric excitatory coupling. We further map in parameter
space the transitions among chimera patterns, synchronized
states, and the amplitude death state with the variation of the
synaptic and gradient coupling strengths.

II. COUPLING SCHEME

We consider a network of N identical Hindmarsh-Rose
neurons [32,33] coupled via a local synaptic gradient coupling
given by

ẋi = ax2
i − x3

i − yi − zi + (Vs − xi)[(ε + r)�(xi+1)

+ (ε − r)�(xi−1)], (1a)

ẏi = (a + α)x2
i − yi, (1b)

żi = μ(bxi + c − zi), (1c)

i = 1,2, . . . ,N (N � 3). The variable xi represents the mem-
brane potential of the ith HR neuron, yi is the fast current
(associated with Na+ or K+), and zi represents the slow
current (associated with Ca2+). The parameter μ determines

the ratio of slow-fast time scales. The sigmoidal function
�(xi) = 1/{1 + exp[−λ(xi − �s)]} represents the fast thresh-
old modulation synaptic coupling [34], where λ determines the
slope of the function and �s is the firing threshold. We use the
periodic boundary condition (xN+1 = x1). We take the reversal
potential Vs = 2 such that Vs > xi(t) is always satisfied; also,
we choose the synaptic threshold �s = −0.25 to ensure that
every spike in a burst can reach the threshold value [27,34]
and the slope of the sigmoidal function λ = 10.

The most interesting and important part of the coupling
function of (1) is the gradient coupling: if we choose r = 0,
then Eq. (1) represents a synaptic nearest-neighbor excitatory
coupling with the synaptic coupling strength ε(> 0). But, for
r > 0, depending upon the relative values of r and ε, three
different scenarios can be implemented:

Case I ε > r: Here we have excitatory coupling [since
(ε ± r) > 0], but now the ith neuron is coupled to its nearest
neighbors with two different synaptic coupling strengths; this
introduces asymmetry in the coupling.

Case II ε = r: This condition represents one-way local
excitatory coupling with the effective synaptic coupling
strength 2ε. As Vs > xi(t) for all time t and xi(t), the coupling
is positive and the synapse is excitatory, i.e., the input from
the (i + 1)th neuron to the ith neuron can enhance the activity
of this neuron.

Case III ε < r: Now the ith neuron is connected to the
(i + 1)th neuron through an excitatory coupling with an
effective synaptic coupling strength (ε + r), but it is connected
to the (i − 1)th neuron via an inhibitory coupling with an
effective synaptic coupling strength (ε − r). In this case,
the input to the ith neuron from the (i + 1)th neuron via
synaptic coupling can enhance its activity, and that from the
(i − 1)th neuron via synaptic coupling can suppress its activity.
Thus, this condition leads to the simultaneous occurrence of
excitation and inhibition in the HR-neuron network, which
is the most important case in the context of neuroscience.
Therefore, we denote r (> 0), which governs the strength as
well as the nature of the coupling, as the gradient coupling
strength, and ε (> 0) as the synaptic coupling strength.

In the following, we will explore the dynamics of the
network under these three distinct coupling conditions; our
main emphasis will be to identify the parameter region of the
synaptic and gradient coupling strengths where the chimera
state occurs.

III. RESULTS

We explore the spatiotemporal dynamics of the consid-
ered network under three different relative values of ε and
r . We consider N = 200 and integrate Eq. (1) using the
fourth-order Runge-Kutta algorithm (step size = 0.001).
In all the simulations, we use an asymmetric V-shaped
profile for initial conditions: The following initial condi-
tions are used: xm = 0.05(99 − m), xn = 0.012(n − 100),
ym = 0.01(99 − m), yn = 0.02(n − 100), zm = 0.0151(99 −
m), and zn = 0.0201(n − 100) (where m = 1, . . . ,100 and
n = 101, . . . ,200). We have also checked for the random
initial conditions uniformly distributed in the range (−2,2)
and find qualitatively the same chimera patterns. Thus, we
understand that, in the present case, the important factor is
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FIG. 1. Square wave bursting: time series of x of an individual
HR neuron given by Eq. (1) (a = 2.8, α = 1.6, c = 5, b = 9, and
μ = 0.001).

the inhomogeneous starting points for each oscillator in phase
space. Also, we examine the lifetime of the observed chimera
states for a sufficiently long time and ensure that it is not a
transient chimera like the amplitude chimera state. Throughout
the paper, we use the following system parameters of HR
neurons: a = 2.8, α = 1.6, c = 5, b = 9, and μ = 0.001.
With these system parameters, an isolated HR neuron exhibits
square-wave bursting (see Fig. 1).

A. Case I: ε > r , asymmetric excitatory coupling:
Imperfect traveling chimera state

We start with the condition ε > r . In this condition, the
ith node is connected to the (i + 1)th node with an effective
synaptic coupling strength (ε + r), whereas it is connected to
the (i − 1)th node with an effective synaptic coupling strength
(ε − r). Since ε > r , the coupling is always excitatory in
nature with asymmetric coupling strengths.

We fix the value of the gradient coupling strength at r = 0.2
and vary the synaptic coupling strength ε. For lower values of
ε (ε � 0.5), all of the neurons exhibit a disordered turbulent
state. With increasing ε we observe that the coupled system
enters into a state where certain neurons are synchronized but
the remaining neurons are in an incoherent state, which is
a signature of a chimera state. However, this chimera state
is not static in the sense that it travels with time in the
spatiotemporal domain. Significantly, this state is not a pure
traveling chimera state, as during its travel some synchronized
neurons are added to the traveling incoherent state. This type of
traveling chimera state where the incoherent domain spreads
to the synchronized domain is a new observation, and we call
it an imperfect traveling chimera state. Earlier, Refs. [35,36]
reported the existence of an imperfect chimera state in coupled
oscillators and phase oscillators with inertia, but the imperfect
traveling chimera state has not been reported previously. The
scenario is shown in Fig. 2: here we take an exemplary value
ε = 0.7 and r = 0.2 (note that ε > r). Figure 2(a) shows the
time evolution of the membrane potential of all neurons for a
long time run. This spatiotemporal plot clearly shows that the
spatiotemporal patterns of varying width are traveling in space

FIG. 2. ε > r: Imperfect traveling chimera state of an ensemble
of HR-neurons with asymmetric excitatory local coupling. (a) Spa-
tiotemporal plot as a function of the neuron index i = 1,2, . . . ,N =
200 for r = 0.2 and ε = 0.7 (ε > r). (b) Snapshot of the variable
xi at t = 2000, (c) local order parameter with node index i. Red
(gray) indicates coherent and blue (dark gray) represents incoherent
domains. (d) Time series of an individual neuron x0.

and time. Figure 2(b) shows a snapshot of all the neurons
at time t = 2000. The spatial coexistence of coherent and
incoherent neurons can be clearly observed from the snapshot.

To characterize the coherence-incoherence pattern and
chimera state, we use the notion of local order parameter
(note that since here we have a traveling chimera state, the
mean phase velocity is not an appropriate measure). The local
order parameter actually represents the local ordering of the
oscillators and thus the degree of (in)coherency; it is defined
as [17,37]

Li =
∣∣∣∣∣∣

1

2δ

∑

|i−k|�δ

ej�k

∣∣∣∣∣∣
, (2)

where j = √−1,i = 1,2, . . . ,N and δ is the nearest neighbors
on both sides of the ith oscillator. Here, we define �i =
arctan(yi/xi) as the geometric phase of the ith HR neuron,
which is a good approximation as long as μ is small (�1).
The local order parameter of the ith neuron, Li ≈ 1, indicates
that the ith neuron belongs to the coherent part of the chimera
state, i.e., Li = 1 means maximum ordering or coherency. On
the other hand, Li ≈ 0 represents that the ith neuron belongs
to the incoherent neighboring nodes. We take the window
size of spatial average as δ = 12 and compute the local order
parameter Li of each neuron for a long time interval, which
is shown in Fig. 2(c). The red (gray) region represents the
coherent nodes, and in between two consecutive traveling
coherent domains we have incoherent traveling domains
[represented in blue (dark gray)]. It is important to note that the
width of the incoherent blue (dark gray) domain changes as it
travels in space: this indicates the spreading of the incoherent
domain to the synchronized domain, which is a clear signature
of the imperfect traveling chimera state. The local dynamics,
i.e., the dynamics of each neuron in this chimera state, are
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identical, and a typical time series of a single HR neuron is
shown in Fig. 2(d), which shows that individual neurons are in
plateau bursting mode. We also examine the effect of network
size on the occurrence of an imperfect traveling chimera, and
we find that it remains qualitatively unchanged even for a
smaller network size (see Appendix). For coupled oscillators
under nonlocal coupling, it has been shown in Ref. [38] that
a smaller network size gives rise to distortion and a finite
lifetime of a chimera state. In our case, however, the qualitative
similarity of the traveling chimera state in both large as well
as small networks may be attributed to the local nature of the
coupling, where an oscillator only experiences the effect of the
nearest neighbors and does not react to all the other oscillators
present in the system. However, this heuristic argument needs
quantitative support by investigating how network size affects
the chimera pattern in local coupling.

For a very narrow region in parameter space, we observe
that the “imperfectness” of the imperfect traveling chimera
state increases for slightly lower values of ε in comparison
with the ε value for which the imperfect traveling chimera
state occurs. Figure 3 shows this case for ε = 0.56 (r = 0.2).
Here we can observe that the chimera state travels erratically in
space and time; also, a new domain is created (destroyed) from
(to) a completely different type of domain [see Fig. 3(a)]. This
is also clearly seen in Figs. 3(b) and 3(c): here Fig. 3(b) shows
the snapshot at t = 1750 that shows a one-headed chimera
state, but at t = 2250 a two-headed chimera state is created,
which is shown in Fig. 3(c). Interestingly, the behavior of the
individual neurons at this state shows a mixed mode oscillation
of square-wave bursting and plateau bursting, which is shown
in Fig. 3(d).

Apart from chimera patterns, we also investigate the
collective behavior of the network at larger values of ε. For
increasing ε (fixed r), beyond the imperfect traveling chimera

FIG. 3. r = 0.2 and ε = 0.56 (ε > r): Imperfect traveling
chimera state with increasing imperfection. (a) Spatiotemporal plot
as a function of the neuron index i = 1,2, . . . ,N = 200. Snapshot of
the variable xi at (b) t = 1750 showing one-headed chimera state,
(c) t = 2250 showing two-headed chimera state. (d) Time series of
an individual neuron x0.

FIG. 4. ε > r , r = 0.2: (a) ε = 1.3, globally synchronized pop-
ulations of neurons. (b) The corresponding time series of a single
neuron. (c) ε = 1.6, global amplitude death. (d) The corresponding
time series of a single neuron.

state the network shows global synchrony. This is shown in
Fig. 4(a) for ε = 1.3. Note that here individual neurons show
plateau bursting [Fig. 4(b)]. Further increase in ε results in
global amplitude death [Fig. 4(c)] where the oscillations of
all the neurons cease. Figure 4(d) shows the time series of
an individual neurons. The transition from oscillatory state to
amplitude death state has a broad relevance in neuroscience
where we can control the neuronal outputs using this local
chemical synaptic coupling.

At this point it is interesting to note the change in the time
series with increasing ε. For the asynchronous state the HR
neurons exhibit square-wave bursting (not shown), but with
increasing ε the square-wave bursting changes into plateau
bursting [Fig. 2(d)] (via the disappearance of homoclinic
bifurcation [27]), through a mixed time series of square-wave
and plateau bursting [Fig. 3(d)]. In the synchronized state,
neurons show a pure plateau bursting that agrees with the
observation of Belykh et al. [34] that plateau bursting promotes
synchrony. The frequency of plateau bursting decreases with
increasing ε, and it eventually reaches an infinite period,
i.e., now global amplitude death emerges [Fig. 4(d)]: this
typical pattern suggests that amplitude death appears through
a saddle-node bifurcation [39].

B. Case II: ε = r , one-way excitatory coupling: Imperfect
chimera state and traveling chimera state

As we discussed earlier for ε = r , each ith neuron is
connected to the (i + 1)th neuron with an effective synaptic
coupling strength of 2ε. If we increase ε from a lower value,
we observe complete turbulence up to ε ≈ 0.5. We find two
chimera patterns beyond that: one is an imperfect chimera
state that occurs for a small range of ε, and beyond that
is the traveling chimera state. Figures 5(a)–5(c) show the
spatiotemporal plot of the amplitude and local order parameter
(Li) and a snapshot at a time instant (t = 3500), respectively,
for the imperfect chimera state at ε = 0.56. The snapshot in
Fig. 5(c) shows the multiheaded chimera pattern. The local
order parameter [Fig. 5(b)] suggests that the incoherent region
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FIG. 5. One-way excitatory coupling ε = r: (a)–(c) ε = r = 0.56: imperfect chimera state; (a) spatiotemporal plot, (b) local order parameter,
and (c) snapshot at t = 3500 shows multiheaded chimera state. (d)–(f) ε = r = 0.6: traveling chimera state; (d) spatiotemporal plot, (e) local
order parameter, and (f) snapshot at t = 3500 shows one-headed chimera state. (g)–(i) ε = r = 0.7: synchronized state; (g) spatiotemporal
plot, (h) local order parameter, and (i) snapshot at t = 3500 shows synchronized xi .

[blue (dark gray)] is not static in space and time, rather
it changes erratically, indicating an imperfect chimera state.
Earlier, the imperfect chimera state was also observed in the
Kuramoto model with inertia using nonlocal coupling [36].

The “imperfect chimera state” observed in our system
[Fig. 5(a) and also see Fig. 3(a)] bears a striking resemblance
to the spatiotemporal intermittency reported in [40] and
discussed in detail in [41]. In [40], the authors considered
an extension of the Oregonator oscillator, and they studied
the spatiotemporal behavior under diffusive nearest-neighbor
coupling: For a fixed coupling strength, they observed various
spatiotemporal intermittent patterns by changing a system
parameter. In contrast, in our present case we consider synap-
tic gradient coupling. Keeping the system parameters fixed
(in the square-wave bursting region), we vary the coupling
strength of the gradient coupling. Since both the HR model
and the Oregonator model show slow and fast oscillations, it
appears that the imperfect chimera state and the spatiotemporal
intermittency share the same origin. However, any conclusive
statement in this regard requires strong quantitative measures,
such as the quantifiers proposed recently in Ref. [41].

If we increase the value of the synaptic coupling strength
ε, we observe a traveling chimera state. Figures 5(d)–5(f)
show the traveling chimera state at ε = 0.6. The local order
parameter [Fig. 5(e)] shows that, indeed, the incoherent (and
the coherent) domain is not static in time and space. From
the snapshot at t = 3500 [Fig. 5(f)], it is observed that the
system depicts a one-headed chimera state. Further increases
in ε result in a globally synchronized state. Figures 5(g)–
5(i) depict this state for ε = 0.7. Here the local parameter
[Fig. 5(h)] attains a value Li ≈ 1, which indicates the presence
of complete synchrony among the neurons. The snapshot at

t = 3500 of xi [Fig. 5(i)] supports this finding. Note that
for ε = r , synchronization occurs at a much lower value in
comparison with that of ε > r . Finally, for ε � 1.45, global
amplitude death occurs when all the neurons come to a
common steady state and achieve a quiescent state (not shown
in the figure).

It is important to note that an earlier chimera state was found
under nonlocal, global, and nearest-neighbor local coupling.
Here, the occurrence of the chimera state even for ε = r

actually reduces the essential requirement of the coupling
function to one-way nearest-neighbor coupling. This finding
may be extended to other coupling schemes also (i.e., other
than chemical synaptic coupling). Previously, the existence of
chimera states was also reported in reaction-diffusion systems,
where each system is coupled locally by diffusion [6,42].
However, it should be noted that such a form of local coupling
through diffusion actually has a nonlocal effect due to the fast
variable. In this way, a three-component reaction-diffusion
model is reduced to an effective two-component model in
which the third component changes so fast that it can be
eliminated adiabatically and it is represented by nonlocal
coupling [43].

C. Case III: ε < r , simultaneous excitation and inhibition:
Traveling chimera state

We now explore the spatiotemporal dynamics of the
considered network for ε < r . Under this condition, a node
is connected to its nearest right neighbor through an excitatory
coupling, whereas it is connected to its left nearest neigh-
bor through inhibitory coupling. Earlier, Belykh et al. [27]
showed that the simultaneous presence of excitation and
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FIG. 6. ε < r : Traveling chimera state in an ensemble of HR-
neuron with excitation-inhibition local coupling r = 8 and ε = 0.6.
(a) Spatiotemporal plot as a function of node index i = 1,2, . . . ,N =
200. (b) Snapshot of the variable xi at t = 3300. (c) Local order
parameter with node index. Red (gray) indicates coherent domains
and blue represents incoherent domains. (d) Time series of an
individual neuron.

inhibition provides a synergistic effect to improve (reduce)
the synchronization threshold [27]. They showed that the
synchronization threshold is reduced due to the fact that the
simultaneous presence of excitation and inhibition turns the
dynamics from square-wave bursting to plateau bursting. Here
also, we investigate the effect of the simultaneous presence of
excitation and inhibition on the occurrence of a chimera state.

We choose ε = 0.6 and increase r from 0.6 to higher
values. We observe a traveling chimera state with increasing
r . However, for much higher values of r , the traveling chimera
state gets weaker, although the traveling wave state (not
a chimera state anymore) persists. Figure 6(a) shows the
spatiotemporal plot of the traveling chimera state for an
exemplary value r = 8.0. The corresponding snapshots of
xi at t = 3300 are shown in Fig. 6(b). It can be observed
that in the “bumplike” spatial domains, not all the nodes are
incoherent; only a certain number of nodes are incoherent,
whereas others maintain a phase-locked state. Note that the
direction of the traveling chimera state for ε < r is just the
reverse to that for ε = r [Fig. 5(d)] or the imperfect traveling
chimera state of ε > r [Fig. 2(a)]. In the latter two cases,
couplings are purely excitatory in nature, but for ε < r the
coupling contains both excitatory and inhibitory connections.
Thus, the change in direction of the traveling chimera state here
may be attributed to the interplay of excitatory and inhibitory
coupling. Figure 6(c) demonstrates the time evolution of the
local order parameter Li of all the neurons showing strips
of coherent and incoherent nodes that travel with time. The
red and blue regions represent the coherent and incoherent
domains, respectively. It is also noteworthy to track the change
in the time series with increasing r: for lower r , the individual
neuron exhibits square-wave bursting, but with the increase of
r , bursting changes into multiple spiking, and for large r the
time series eventually shows a single spike. Figure 6(d) shows

the time series corresponding to the traveling chimera state,
which is a train of two pulses.

Next, we investigate whether the inhibitory coupling alone
can give rise to a chimera state. For this we set ε = 0 and
vary r: we get an incoherent state even for higher values of
r . Significantly, we find that, although excitatory coupling
can induce several chimera patterns, the inhibitory coupling
alone cannot induce a chimera state. However, the presence
of inhibitory coupling along with excitatory coupling supports
chimera and traveling chimera states. It should also be noted
that for ε < 0.5, complete turbulence occurs irrespective of the
value of r; thus the chimera state and synchronization states
(and also the amplitude death state) depend largely upon ε:
only beyond a certain value of ε does the presence of r cause
the system to show several chimera patterns.

We discussed earlier that in the case of a traveling chimera
state, the mean phase velocity is not a suitable characteristic
measure. An alternative way to distinguish the static and
traveling chimera states is to identify the location of the
neurons on a circular ring. An effective tool to identify
the traveling chimera state and its traveling speed has been
proposed by Hizanidis et al. [17]. According to their argument,
in a traveling chimera state, each neuron stays part of the time
in the coherent domain and part of the time in the incoherent
domain without changing their spatial shape, so the maximum
values of each node xi(t) will also change with time. For
this purpose, we calculate the maximum values of xi(t) over
a long time interval as M(t) = max{x1(t),x2(t), . . . ,xN (t)}.
Similarly, one can consider the minimum values of xi(t).
Figure 7(a) shows the variation of maximum values of xi(t)
for a long time interval at r = 8.0. From this figure, the time
series of M(t) shows a periodic behavior, thus indicating the
episodic occurrence of maxima to a certain node. The Fourier
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FIG. 7. Simultaneous presence of excitatory and inhibitory cou-
pling for ε < r: variation of maximum values of xi(t) with time t ,
for (a) r = 8.0 and (c) r = 6.0. The corresponding Fourier transform
of M(t) for (b) r = 8.0 and (d) r = 6.0. (e) Shift of maxima in the
Fourier transform of M(t) for r = 8.0 (red dashed line) and r = 6.0
(blue line).
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FIG. 8. Variation of traveling speed for different values of
gradient coupling strength r for ε = 0.6.

transform of M(t) determines the time period T , which is
required for a single node to attain the maximum amplitude
state. The Fourier transform of M(t) is shown in Fig. 7(b).
We find that the maximum amplitude occurs at frequency
f = 0.001 33 with long period T = 1/f = 751.88. With this
time period T , the entire incoherent and coherent domains
cover the whole circular ring consisting of N nodes with
traveling speed = N/T = 0.266. At lower values of r , e.g.,
at r = 6.0, the variation of M(t) is shown in Fig. 7(c) and
the corresponding Fourier transform is shown in Fig. 7(d).
We find that the maximum amplitude occurs at frequency
f = 0.001 12 with time period T = 892.86. At r = 6.0, the
maximum amplitude occurs at a relatively lower frequency
than that of r = 8.0: Fig. 7(e) shows this, where red dashed
and blue solid lines correspond to r = 8.0 and 6.0, respectively.
Figure 8 shows the variation of traveling speed for different
values of r . To find the traveling speed for each r , we average
over five different realizations. It can be seen that the speed
of a traveling chimera state increases for increasing value
of gradient coupling strength r . This is due to the fact that
increasing r results in the pronounced asymmetry in the
coupling [see Eq. (1a)]. Since the traveling chimera state is
governed by this asymmetry, increasing r in turn increases the
traveling speed.

To explore the complete spatiotemporal dynamics of the
system, we compute the phase diagram in the ε-r parameter
space (Fig. 9) for the range of ε ∈ [0,2] and r ∈ [0,2]. We
change both ε and r with a step size of 0.01. From the
phase diagram it can be noticed that the choice of ε and r

organizes the phase diagram. Below a value of ε (ε � 0.5),
the network shows turbulent behavior irrespective of the value
of r . Beyond that, we notice an imperfect chimera state for
a very narrow region, but after this region the system shows
imperfect traveling chimera for ε > r and a traveling chimera
state for ε � r . It can be seen from the phase diagram (Fig. 9)
that for ε = r , the system enters into global synchrony for a
much lower value of ε. For a larger value of ε, all the neurons
in the network eventually attain a stable homogeneous steady

FIG. 9. Phase diagram in the ε-r plane. NS: turbulence or
unsynchronized state, IC: imperfect chimera state, ITC: imperfect
traveling chimera state, TC: traveling chimera state, SYN: global
synchronized state, AD: global amplitude death.

state and thus global amplitude death occurs in the network.
In the parameter space, the separation lines of turbulence to
an imperfect chimera state, imperfect chimera to a traveling
chimera state, and synchronization to amplitude death are
almost vertical, which means the value of synaptic coupling
strength ε plays an important role in determining such states,
while the gradient coupling strength r plays a crucial role
in organizing the transition from the (imperfect) traveling
chimera state to the synchronized state.

IV. CONCLUSION

In this paper, we have reported the occurrence of several
chimera patterns in a network of Hindmarsh-Rose neuronal
oscillators, which are connected by local chemical synaptic
gradient coupling. Remarkably, we have found a chimera
state even in one-way local coupling, which reduces the
essential connectivity requirement to observe chimera states
below nearest-neighbor local coupling. Depending on the
gradient coupling parameter, we observe imperfect traveling
chimera, imperfect chimera, and traveling chimera states;
of these, the imperfect traveling chimera state has not been
observed earlier for any other coupling scheme. We observed
an imperfect traveling chimera state for asymmetric excitatory
coupling, while for one-way excitatory coupling and also
for simultaneous excitatory-inhibitory coupling we observed
a traveling chimera state, although the direction of travel
in those states is reversed. We also observed a pronounced
change in the time series of the neuronal oscillators: for
predominant excitation, square-wave bursting changes to
plateau bursting and then amplitude death occurs; in contrast,
when both inhibitory and excitatory coupling are present, with
an increase in gradient coupling strength (r), square-wave
bursting eventually changes into spiking behavior.

Since here we have considered nearest-neighbor and one-
way local coupling, it is intuitive to observe traveling-wave
solutions, but it is counterintuitive to observe chimera patterns.
The present study is important in the context of neuroscience
in the sense that this study provides evidence that local
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synaptic (gradient) coupling not only provides synchrony [27]
or amplitude death [39], but under certain circumstances it
may drive the neuronal network to a chimera state.
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APPENDIX: IMPERFECT TRAVELING CHIMERA STATE
FOR A SMALLER NETWORK

Figure 10(a) shows the imperfect traveling chimera state
in a network of N = 50 oscillators under the same coupling
scheme as Eq. (1) (ε = 0.58,r = 0.2). Figure 10(b) shows
the corresponding local order parameter Li . Figure 10(c)
shows the imperfect traveling chimera in a network of
N = 100 oscillators for ε = 0.58 (r = 0.2). Here, we use a
similar asymmetric V-shaped profile for initial conditions, as
discussed in Sec. III. Note the qualitative similarity among the
imperfect traveling chimera states of Fig. 2 and Figs. 10(a)
and 10(c). The phase diagram in the ε-r plane for N = 100
is shown in Fig. 10(d). Note that the parameter zone of

FIG. 10. ε = 0.58,r = 0.2: (a) Imperfect traveling chimera state
and (b) local order parameter Li for N = 50. (c) Imperfect traveling
chimera state for N = 100. (d) Phase diagram for N = 100 oscilla-
tors. Other parameters as in Fig. 2.

getting chimera states is now reduced in comparison with that
for N = 200 (Fig. 9). However, significantly, the qualitative
structure of the whole phase diagram remains the same.
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