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Dynamical playground of a higher-order cubic Ginzburg-Landau equation: From orbital
connections and limit cycles to invariant tori and the onset of chaos
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The dynamical behavior of a higher-order cubic Ginzburg-Landau equation is found to include a wide range
of scenarios due to the interplay of higher-order physically relevant terms. We find that the competition between
the third-order dispersion and stimulated Raman scattering effects gives rise to rich dynamics: this extends
from Poincaré-Bendixson–type scenarios, in the sense that bounded solutions may converge either to distinct
equilibria via orbital connections or to space-time periodic solutions, to the emergence of almost periodic and
chaotic behavior. One of our main results is that third-order dispersion has a dominant role in the development
of such complex dynamics, since it can be chiefly responsible (even in the absence of other higher-order effects)
for the existence of periodic, quasiperiodic, and chaotic spatiotemporal structures. Suitable low-dimensional
phase-space diagnostics are devised and used to illustrate the different possibilities and identify their respective
parametric intervals over multiple parameters of the model.
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I. INTRODUCTION

Nonlinear evolution equations are often associated with
the theory of solitons and integrable systems [1]. A prime
example is the nonlinear Schrödinger (NLS) equation, which
constitutes one of the universal nonlinear evolution equations,
with applications ranging from deep water waves to optics [2].
Remarkable phenomena are also exhibited by its higher-order
variants, emerging in a diverse spectrum of applications, such
as nonlinear optics [3], nonlinear metamaterials [4], and water
waves of finite depth [5–7]. On the other hand, dissipative
variants of NLS models incorporating gain and loss have also
been used in optics [8], e.g., in the physics of mode-locked
lasers [9,10] (see also the relevant works [11] and [12]) and
polariton superfluids [13] (see, e.g., Ref. [14] for various
applications). Note that such dissipative NLS models can be
viewed as variants of the complex Ginzburg-Landau (CGL)
equation, which has been extensively studied, especially
in the context of pattern formation in far-from-equilibrium
systems [15].

Dissipative nonlinear evolution equations (incorporating
gain, loss, external driving, or combinations thereof) may
exhibit (and potentially be attracted to) low-dimensional
dynamical features, such as (a) one or more equilibria (and
orbits connecting them), (b) periodic orbits, (c) quasiperiodic
orbits, and (d) low-dimensional chaotic dynamics [16]. The
availability of dynamical scenarios (a)-(d) depends on the
effective dimensionality of the low-dimensional behavior;
one-dimensionality only allows fixed points, planar systems
governed by the Poincaré-Bendixson (PB) theorem [16] can
also feature periodic orbits, and higher dimensions allow for
quasiperiodic or chaotic dynamics. Various prototypical partial
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differential equation models have demonstrated a PB-type
behavior as an intermediate bifurcation stage in the route
to spatiotemporal chaos. Examples include the Kuramoto-
Sivashinsky [17] and CGL equations; regarding the latter,
which is of primary interest in this work, we refer to the
seminal works [18] for the spatiotemporal transition to chaos.
In addition to the above autonomous systems, spatiotemporal
chaos was also found in nonautonomous systems, due to
the interplay between loss and external forces, such as the
damped-driven NLS equation [19–21] (where the hyperbolic
structure of the underlying integrable NLS equation is a
prerequisite [22]) and the sine-Gordon [23] system.

In this work, we focus on the role of higher-order effects and
investigate the possibility of bifurcation phenomena leading
to the existence of the above prototypical examples of low-
dimensional dynamics in an autonomous, physically important
higher-order CGL-type model. This model is motivated by
the higher-order NLS equation that is commonly used, e.g.,
in studies of ultrashort pulses in optical fibers [3], but also
incorporates (linear or nonlinear) gain and loss; it is, thus,
a physically relevant variant of a higher-order cubic CGL
equation—without the diffusion term. Note that higher-order
versions of the CGL equation have only recently started
attracting attention [27], while extended second-order CGL
models have been extensively studied in various contexts
previously [8,14,15]. In particular, we refer to the pioneering
work [10], followed by the important contributions [11]
and [12], which revealed the existence of the aforementioned
low-dimensional dynamical scenarios for second-order quintic
CGL models. The results in [10]–[12] were established
by numerical and even analytical reductions to suitable
finite-dimensional dynamical systems, capturing the long-time
dynamics of the original infinite-dimensional one. Notably, the
dynamical scenarios revealed were associated with a variety
of novel localized structures (known as pulsating solitons).
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However, a crucial feature of these models as acknowledged,
by the authors of [10], is the presence of a higher-order
(quintic) nonlinearity. This is a key trait distinguishing that set
of works from the present one where only cubic nonlinearity
is employed, yet the presence of higher-order effects, most
notably third-order dispersion as we see below, plays a
catalytic role in the emergence of the relevant phenomenology.

More specifically, we point out that the third-order cubic
CGL model that we consider herein is essentially different
from the second-order cubic-quintic model discussed in [10]–
[12], not only from a mathematical but also from a physical
point of view: indeed, in the context of optics, the model
considered in the latter works refers to the propagation of short
pulses, in the picosecond regime, in media featuring saturation
of the nonlinear refractive index, while the model we consider
here is relevant to the propagation of ultrashort pulses, in the
subpicosecond or femtosecond regime [3]. For this reason,
our model includes third-order dispersion and higher-order
nonlinear effects, which appear naturally as higher-order
corrections of the usual NLS model. In that regard, and if gain
and loss are also incorporated, it is important to ask whether,
and how, the physically important (on the femtosecond time
scale) higher-order effects may be responsible for tracing
a path to complex dynamics, as a result of the potential
breaking of the homoclinic structure of its unperturbed NLS
counterpart.

The main findings of our investigation are the following.
First, we show that incorporating gain and loss terms gives rise
to the existence of an attractor; a rigorous proof is provided,
based on the interpretation of the energy balance equation
and properties of the functional (phase) space in which the
problem defines an infinite-dimensional flow. The structure
of the attractor is then investigated numerically. Given that
our model is characterized by six free parameters (which
renders a systematic investigation of their role a nontrivial
task), we opt to keep four parameters fixed, with values
suggested by the physics of ultrashort optical pulses [3], and
vary the remaining two. In particular, we vary the coefficients
of the third-order dispersion and the higher-order nonlinear
dissipation, accounting for the stimulated Raman scattering
(SRS) effect (more important reasons for this choice become
apparent below). We find that, for a sufficiently small SRS
coefficient, variations of the third-order dispersion strength
give rise to a transition path from dynamics reminiscent of
the PB theorem, including orbital connections between steady
states of high multiplicity and convergence to limit cycles,
to invariant tori or even chaotic attractors. However, when
the SRS effect becomes stronger, the above scenarios are
screened by convergence to steady states. It is emphasized that
the third-order dispersion is found to be chiefly responsible
for a dynamical transition from periodic, to quasiperiodic,
and, eventually, to chaotic structures. Therefore, our results
show that higher (third)-order dispersion and dissipative
(SRS) effects are important mechanisms for the emergence
of complex spatiotemporal transitions in CGL models.

Our presentation is organized as follows. In Sec. II, we
present the model and discuss the existence of a limit set
(attractor). Details on the proof of such a limit set are given in
Appendix A. The structure of the attractor is then investigated
numerically in Sec. III. We thus reveal the emergence of all

dynamical scenarios and corresponding regimes of complex
asymptotic behavior. Finally, Sec. IV summarizes our findings.

II. MOTIVATION AND PRESENTATION OF THE MODEL

Our model is motivated by the higher-order NLS equation

i∂tu − s

2
∂2
xu + |u|2u = iβ∂3

xu + iμ∂x(|u|2u)

+ (σR + iν)u∂x(|u|2), (1)

where u(x,t) is a complex field, subscripts denote partial
differentiation, β, μ, ν, and σR are positive constants, and s =
±1 denotes the normal (anomalous) group velocity dispersion.
Note that Eq. (1) can be viewed as a perturbed NLS equation,
with the perturbation (in the case of small values of relevant
coefficients) appearing on the right-hand side (see, e.g.,
Refs. [3] and the discussion below).

Variants of Eq. (1) appear in a variety of physical contexts,
where they are derived at higher-order approximations of per-
turbation theory [the lowest-order nonlinear model is simply
the NLS equation on the left-hand side of Eq. (1)]. The most
prominent example is probably that of nonlinear optics [3]. In
this case, t and x denote the propagation distance and retarded
time, respectively, while u(x,t) is the electric-field envelope.
While the unperturbed NLS equation is sufficient to describe
optical pulse propagation, for ultrashort pulses third-order
dispersion and self-steepening (characterized by coefficients
β, μ, and ν, respectively) become important and have to be
incorporated in the model. Similar situations also occur in other
contexts, and thus, corresponding versions of Eq. (2) have
been derived and used, e.g., in nonlinear metamaterials [4],
but also in water waves at a finite depth [5–7]. Moreover,
in the context of optics, and for relatively long propagation
distances, higher-order nonlinear dissipative effects, such as
the SRS effect, of strength σR > 0, are also important [3].

In addition to the above-mentioned effects, our aim is to
investigate the dynamics in the framework of Eq. (1), but also
incorporating linear or nonlinear gain and loss. This way, in
what follows, we analyze the model

i∂tu − s

2
∂2
xu + |u|2u = iγ u + iδ|u|2u + iμ∂x(|u|2u)

+ iβ∂3
xu + (σR + iν)u∂x(|u|2), (2)

which includes linear loss (γ < 0) [linear gain (γ > 0)]. These
effects are physically relevant in nonlinear optics [3,8,14]:
indeed, nonlinear gain (δ > 0) [nonlinear loss (δ < 0)] may
be used to counterbalance the effects of the linear loss and
gain mechanisms and can potentially stabilize optical solitons
(see, e.g., Refs. [24] and [25]). As also explained below, here
we focus on the case of linear gain, γ > 0, and nonlinear loss,
δ < 0, corresponding to a constant gain distribution and the
intensity-dependent two-photon absorption, respectively (see,
e.g., Refs. [26]).

Obviously, the presence of gain and loss renders Eq. (2) a
higher-order cubic CGL equation (cf. recent studies [27] on
such models). Note that in Eq. (2), diffusion is absent: such
a linear term would be of the form iD∂2

xu (D = const) and
would appear on the right-hand side of Eq. (2) to account
for the presence of spectral filtering or linear parabolic gain
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(D > 0) or loss (D < 0) [10–12]. Instead, the equation only
features linear dispersion through the term proportional to s

on the left-hand side of Eq. (2).
The gain and loss effects are pivotal for the dissipative

nature of the infinite-dimensional flow that is defined below.
This dissipative nature is reflected in the existence of an
attractor, capturing its long-time dynamics; nevertheless, as
we show below, the structure of the attractor is determined by
the remaining higher-order effects.

Here, we focus on the case s = 1 and supplement Eq. (2)
with periodic boundary conditions for u and its spatial
derivatives up to the second order, namely,

u(x + 2L,t) = u(x,t) and
∂

j
x (x + 2L,t) = ∂

j
x (x,t), j = 1,2,

(3)

∀ (x,t) ∈ R × [0,T ], for some T > 0, where L > 0 is given.
The initial condition,

u(x,0) = u0(x), ∀ x ∈ R, (4)

also satisfies the periodicity conditions, (3). Here, we should
mention that the periodic boundary conditions that we consider
here are also motivated by the context of optics. Recalling
that the roles of space and time are interchanged in the latter
context, we note that, indeed, in optical cavities (e.g., those
for lasers), the period L would account for the (retarded) time
it takes light to traverse to the laser cavity once, and thus,
the boundaries represent the same point in real space-time
(see, e.g., Refs. [28]–[31]). In this context, the dynamics
analyzed below are relevant to the dynamical transitions and
the observation of chaotic optical waveforms in fiber ring
lasers [30].

As shown in Ref. [32], all possible regimes except γ >

0, δ < 0, are associated with finite-time collapse or decay.
Furthermore, a critical value γ ∗ can be identified in the regime
γ < 0, δ > 0, which separates finite-time collapse from the
decay of solutions. On the other hand, for γ > 0, δ < 0, we
prove in Appendix A the existence of a limit set (attractor)
ω(u0), attracting all bounded orbits initiating from arbitrary,
appropriately smooth initial data u0 (considered elements
of a suitable Sobolev space). In the next section, we show
numerically that the attractor ω(u0) captures the full route
from PB-type dynamics to quasiperiodic or chaotic dynamics.

III. NUMERICAL RESULTS

The structure of the limit set ω(u0) is investigated by
numerical integration via a high-accuracy pseudospectral
method. In our simulations, we fix the half-length of 	 to
L = 50, and the ratio −γ /δ to be of the order of unity, and
thus fix γ = 1.5 and δ = −1. This choice, which stems from
the fact that this ratio determines the constant-density steady
state (see below), is particularly convenient for illustration
purposes. Furthermore, motivated by the fact that, in the
context of optics, parameters describing higher-order effects
take, typically, small values [3], we fix μ = ν = 0.01, while
third-order dispersion and SRS strengths, β > 0, σR > 0, are
varied in the intervals [0,1] and [0,0.3], respectively.

Obviously, the above choice is merely a low-dimensional
projection of the full six-dimensional parameter space. Nev-
ertheless, since our scope here is to illustrate the role of

higher-order effects on the emergence of complex dynamics in
Eq. (2), we show below that the variations of β and σR alone
do offer a clear physical picture in that regard. To be more
specific, the choice of those particular parameters stems from
the following facts. First, third-order dispersion is the sole
linear higher-order effect which is important also in the linear
regime (as it modifies the linear dispersion relation). Second,
the stimulated Raman scattering effect is the first higher-order
dissipative effect and, as such, is expected to play a dominant
role in the long-time nonlinear dynamics of the system.

Naturally, the nontrivial task (as also highlighted above)
of investigating the full parameter space is interesting and
relevant in its own right, yet it is beyond the scope of this
work.

In our simulations, the limit set ω(u0) is visualized by pro-
jections of the flow to suitable two-dimensional (2D) or three-
dimensional (3D) spaces, defined by P2 = {(X,Y ) ∈ R2}
and P3 = {(X,Y,Z) ∈ R3}. Here, X(t) = |u(x1,t)|2, Y (t) =
|u(x2,t)|2, Z(t) = |u(x3,t)|2 for arbitrary spatial coordinates
x1, x2, x3 ∈ 	.

A. Steady-state and orbital connections regime

First, we use continuous wave (cw) initial data,

u0(x) = ε exp

(
− i

Kπx

L

)
≡ εφK,

of amplitude ε > 0 and wave number K > 0, which is an
element of the 1D linear subspace

VK = {
u ∈ L2(	) : u = εφK (x), ε > 0

}
of L2(	). Here we should note that there exists a cw
state which is an exact solution of Eq. (2); this solution
is generically subject to modulational instability (MI) [33]
(so-called Benjamin-Feir instability in the context of deep
water waves [34]). The exact cw solution, as well as the
relevant MI analysis, is presented in Appendix B. However,
this analysis is not capable of providing any insights into the
long-time dynamics of the solutions. Indeed, although it can
be used as a means to understand the destabilization of the cw
steady state, it does not offer any information regarding the
long-time behavior and the states the system passes through.
As we show below, the intricate dynamics that emerge cannot
be fully understood in the framework of the MI picture.

Using the above cw initial data and varying σR > 0, we find
that ω(u0) is an equilibrium state. Specifically, there exists a
critical wave number Kmax such that, for K < Kmax, ω(u0) =
φb, i.e., a steady state of constant density |φb|2 = − γ

δ
, and

for K � Kmax, ω(u0) = 
p, i.e., a steady state of spatially
periodic density. We find that Kmax decreases as σR increases:
if σR = 0, 0.1, 0.2, and 0.3, and β = 0.02, then Kmax = 16,
13, 10, and 5, respectively.

The dynamical scenario ω(u0) = {φb} for β = 0.02, σR =
0.3, and K = 4 is illustrated in Fig. 1. The projection of
the cw equilibrium φb to the 2D space P2 is the fixed point
A = (|φb|2,|φb|2) = (− γ

δ
,− γ

δ
) = (1.5,1.5). The right panel in

Fig. 1 illustrates the convergence of the projected linear orbits
to A, associated with the choice of spatial coordinates x1 =
5, x2 = 10. The dashed blue (solid red) line is the projection
of the flow for the cw with ε = 3 (ε = 0.01); the arrows
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FIG. 1. The scenario ω(u0) = {φb}. Left: Convergence to fixed
point A. Right: Fixed point A as a limit circle of radius

√−γ /δ.

indicate the direction of the 2D projection of the flow. The cw
steady state φb is an element of VK and differs from the initial
condition only in amplitude. Hence, VK defines a stable linear
subspace for A. The right panel in Fig. 1 shows the steady-state

φb as a limit circle A of radius
√

− γ

δ
= √

1.5, in the 2D

space Re(u(0,t)),Im(u(0,t)). The limit circle corresponds to
the rotating linear oscillations of the real and imaginary parts
of the solution u. Effectively in this case, the solution preserves
its plane-wave form but its amplitude, say h(t), satisfies a
Bernoulli equation. This can be seen as follows: we substitute
u(x,t) = W (t)eiKx in Eq. (2) and obtain the following equation
for the time-dependent amplitude W (t) (as usual, overdots
denote time derivatives):

iẆ − 1
2K2W + |W |2W = iγW + iδ|W |2W

+βK3W − μKW. (5)

Then, taking W (t) = h(t) exp[i(K2/2 − βK3 + μK)t], we
obtain from Eq. (5) the Bernoulli equation:

ḣ = γ h + δh3.

Thus, for h(0) = ε,

lim
t→∞ h2(t) = −γ

δ
≡ |φb|2.

Next, consider the scenario ω(u0) = {
p}, for β =
0.02σR = 0.3, and K = 5, illustrated in Fig. 2. The upper
panel shows density snapshots for a cw initial condition with
ε = 0.01. The solution has reached the cw steady state φb

exponentially rapidly, but at t ≈ 500 the instability of the
state φb emerges. Although transient oscillations of increasing
amplitude occur (cf. snapshot at t = 683) due to the linear
gain γ > 0, the nonlinear loss δ < 0 prevents collapse of the
solution. After t ≈ 685, we observe convergence to the new
steady state 
p (reached at t ≈ 700), whose profile remains
unchanged till the end of integration (t = 3000). The orbital
connection, via the transient dynamics, between steady state
φb and steady state 
p is illustrated in the projections of the
flow on the spaces P2 and P3; cf. lower-left and lower-right
panels in Fig. 2, respectively, for x1 = 0 and x2 = 4.5. In two
dimensions, B ≈ (1.5,0.15) is the new fixed point, while in
three dimensions, A = (1.5,1.5,1.5) and B ≈ (1.5,0.15,1.16).
The infinite-dimensional orbital connection,

{0} (unstable)
O1−→ {φb} (unstable)

O2−→ {
p} = ω(u0),

FIG. 2. The scenario ω(u0) = {
p}. Upper panels: Density snap-
shots at times (a) t ≈ 500, (b) t ≈ 683, and (c) t ≈ 700. Lower panels:
Orbital connections O → A → B in 2D (left) and 3D (right) spaces.

where O1 and O2 denote the orbits connecting the steady
states, is projected to the 2D and 3D connections:

O (unstable)
O′

1−→ {A} (unstable)
O′

2−→ {B}.
The projected orbits highlight the spiraling of the stable
manifold of the limit point B around the unstable linear
subspace of O = (0,0,0) connecting O and A. The connection
was found to be stable with respect to variations of ε; cf. dashed
blue (solid red) linear converging orbit in the lower-left panel,
corresponding to a cw initial condition of amplitude ε = 2
(ε = 0.01).

B. Space-time periodic (limit-cycle) regime

Upon increasing β, for σR = 0.01, we observe the birth of
yet another feature, namely, traveling space-time oscillations.
The upper panel in Fig. 3 shows density snapshots for
a cw initial condition of K = 5, ε = 0.01, and β = 0.55.
Now, instability of the steady state φb leads to the birth
of a stable, traveling space-time periodic solution, whose
profile is shown for t = 180 (arrow indicates the propagation
direction). The projections for x1 = 0, x2 = 5, and x3 = 10
on P2 (lower-left panel) and P3 (lower-right panel) illustrate
the periodic solution as a limit cycle L, i.e., a periodic
orbit. The solid blue (dashed red) linear orbit shown in
the lower-left panel corresponds to the cw initial conditions
of K = 5 and ε = 3 (ε = 0.01), highlighting the stability
(i.e., attracting nature) of the limit cycle with respect to ε.
Specifically, for fixed σR = 0.01 and K > 4, there exists
an interval Iβ,K = [βmin(K),βmax(K)] such that for some
β ∈ Iβ,K , the initial condition may converge to a space-time
periodic solution; e.g., for K = 5, Iβ,5 ≈ [0.5,0.57], while for
K = 20, Iβ,20 ≈ [0.7,1.2]. On the other hand, when β /∈ Iβ,K ,
the initial condition converges to a steady state. Evidently,
the structure of the limit set ω(u0) for Eq. (2), consisting
either of distinct equilibria and orbits connecting them or of
a limit cycle, is reminiscent of scenarios associated with PB
dynamics.
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FIG. 3. Dynamics scenario ω(u0) = L, i.e., a space-time periodic
traveling wave. Upper panels: Density snapshots at times (a) t ≈ 135,
(b) t ≈ 150, and (c) t ≈ 180. Lower panels: Convergence O → A →
L, the limit cycle in 2D (left) and 3D (right) spaces.

It is important to remark that third-order dispersion plays a
critical role in this scenario of ω(u0) = L, as it can be chiefly
responsible for the emergence of a limit cycle. Indeed, Fig. 4
shows the dynamics for a cw initial condition of K = 15 and
amplitudes as in Fig. 3, but for β = 0.02 and σR = μ = ν = 0.
Furthermore, the third-order dispersion alone can also give rise
to even more complex behavior (see below).

C. Quasiperiodic and chaotic regime

The interval Iβ,K may be partitioned to subintervals where
quasiperiodic or even chaotic behavior emerges. Figure 5
shows the 3D projection of the flow onP3, for x1 = 5, x2 = 10,

FIG. 4. Dynamics scenario ω(u0) = L, in the presence of third-
order dispersion only, namely, for β = 0.02 and μ = ν = σR = 0.
Upper panel: Density snapshots at times (a) t ≈ 400, (b) t ≈ 420, and
(c) t ≈ 450, for a single-cw initial condition of K = 15, ε = 0.01,
and β = 0.02. Lower panels: Convergence O → A → L, i.e., the
stable limit cycle, in the 2D (left) and 3D (right) spaces.

x3 = 15, t ∈ [0,350], β = 0.52, and σR = μ = ν = 0.01, for
cw conditions of ε = 0.01 and K = 5. We observe the birth
of quasiperiodic orbits from the instability of the steady state
φb and the transition to chaotic behavior manifested by their
trapping to a chaotic attractor S.

The upper-left panel in Fig. 6 shows part of a chaotic
orbit in S for t ∈ [180,200] and β = 0.5 ≈ βmin(5). The
first two snapshots in the lower panel show profiles of the
solution corresponding to points P1 and P2, for t = 150 and
t = 165. The “windings” of the chaotic orbits are evident in the
upper-left panel in Fig. 6 and similarly, also, in the lower-right
panel in Fig. 5. The chaotic behavior manifests itself in the
time-fluctuating amplitude, the changes in the waveform’s
spatial periodicity, and the propagation direction of the chaotic
traveling wave.

The interval Iβ,K = [βmin(K),βmax(K)] can be parti-
tioned into the following subintervals: a chaotic, Iβ,K,c =
[βmin(K),βch(K)], a quasiperiodic, Iβ,K,q = (βch(K),βlc(K)),
and a limit-cycle, Iβ,K,lc = [βlc(K),βmax(K)], subinterval. Let
βmin(K) be the critical value for the onset of quasiperiodic
behavior and the transition to the chaotic regime. Then, as
β → βch(K), the chaotic features are less evident and emerge
at later times. Chaotic orbits still exist for β = βch(K). For
β > βch(K), solutions remain quasiperiodic, and the orbit is
trapped within an invariant torus-like set Q. For K = 5, we find
that βch(5) ≈ 0.53. The projection on P3 of Q for β = 0.54 >

βch(5) is shown in the upper-right panel in Fig. 6. The orbit is
plotted for t ∈ [1800,2000], and the profile of a quasiperiodic
solution within Q at t = 1900 is shown in the third snapshot
in the lower panel. The set Q persists as long as β < βlc(K).
When βlc(K) � β � βmax(K), set Q is replaced by a limit
cycle. For K = 5, we find the following subintervals of Iβ,5 ≈
[0.5,0.57]: the chaotic, Iβ,5,c ≈ [0.5,0.53], the quasiperiodic,

FIG. 5. Birth of a chaotic attractor ω(u0) = S. Transition from
the instability of the cw steady state A, to quasiperiodic behavior, and
then to chaotic behavior for t ∈ [0,330].
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FIG. 6. Upper panels: A chaotic path in S for t ∈ [180,200]
(left) and projection in 3D space P3 of the invariant torus-like set
Q for t ∈ [1800,2000] (right). Lower panels: Chaotic waveforms,
corresponding to point P1 at time t ≈ 150 (left) and point P2 at time
t ≈ 165 (middle), and a quasiperiodic solution in Q at time t ≈ 1900
(right).

Iβ,5,q ≈ (0.53,0.55), and the limit-cycle, Iβ,5,lc ≈ [0.55,0.57],
subintervals. For K = 5, the above subintervals were detected
with accuracy 10−3: for β = 0.549, set Q persists, while for
β = 0.55, the initial state is trapped in the limit cycle.

D. Numerical bifurcation diagrams

The richness of the dynamics can be summarized in a
bifurcation diagnostic (“diagnostic I”), namely, the β − ||u||∞
bifurcation diagram, shown in the upper panel in Fig. 7.
The bifurcation curve (solid blue line) illustrates the variations
of the ||u||∞ norm of the solutions, defined as

||u||∞ = max(x,t)∈D|u(x,t)|, D = [−L,L] × [0,Tmax],

where Tmax denotes the end of the interval of numerical
integration [0,Tmax]; the third-order dispersion coefficient is
β ∈ [0,1], while the rest of the parameters are fixed to the
values σR = μ = ν = 0.01, and for the cw initial conditions
we use ε = 0.01 and K = 5. The system was integrated
until Tmax = 3000. The branches AB and FG correspond to
the intervals β ∈ [0,0.18) and β ∈ (0.57,1], respectively, and
are associated with the dynamical scenario ω(u0) = {φb},
i.e., convergence to the steady state of constant density,
|φb|2 = − γ

δ
. The intersection of the bifurcation curve with

the auxiliary “separatrix” B, at β ≈ 0.18, designates the
transition to the equilibrium metastability region BC (yellow
shaded area), in the interval β ∈ [0.18,0.5). Fluctuations of
the bifurcation curve are associated with metastable dynamical
scenarios between distinct states. One such scenario may refer
to the orbital connections between steady states mentioned
above; another one may correspond to a transition from
unstable periodic orbits to chaotic oscillations and an eventual
convergence to steady state. These scenarios are followed by
drastically different transient dynamics characterizing these
connections.

FIG. 7. From top to bottom. First row: β − ||u||∞ bifurcation
diagram (Diagnostic I) for fixed σR = μ = ν = 0.01 and the cw
initial conditions of ε = 0.01 and K = 5. Second row: Magnification
of the quasiperiodic region DE shown in the preceding panel. Third
row: Profiles of the distinct steady states involved in the orbital
connection E1 → E2 → E3 occurring at β = 0.3 in the metastable
region BC. The system is at rest in steady state E1 for 5 � t � 35,
in E2 for 60 � t � 68, and in E3 for 100 � t � 3000, which is the
end of integration. Fourth row: Transition from an unstable periodic
orbit (PO) to chaotic oscillations (CH) which are eventually damped
to steady state E3. The unstable periodic orbit (PO) survives for
62 � t � 105, and the chaotic orbit for 120 � t � 203. The system
is at rest in steady state E3 for 217 � t � 3000, which is the end of
integration.

As the first example, we note the metastable transition– -
at β = 0.3 (vertical dashed red line)—between three distinct
steady states, E1 → E2 → E3 (with E1 labeling the steady
state of constant density, |φb|2 = − γ

δ
). The third-row in Fig. 7

shows the density profiles of these steady states. The second
example refers to the transition from an unstable periodic
orbit, PO (which emerges from the instability of the steady
state φb), to chaotic oscillations, CO, and the convergence to
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the final steady-state, E3; this transition occurs for β = 0.47
(horizontal dashed black line). Density profiles during this
transition are shown in the fourth row in Fig. 7. For the first
example, the ultimate state E3 is reached at t ≈ 103, and the
solution remains unchanged until the end of integration, while
for the second example, the ultimate state E3 is reached at
t ≈ 217.

The intersection of the bifurcation curve with the second
auxiliary separatrix C, with an almost-vertical slope, is
associated with the transition to the chaotic region CD (gray
shaded area in Fig. 7), corresponding to the interval Iβ,5,c ≈
[0.5,0.53]. The sudden jump of the bifurcation curve (with an
infinite slope) at the intersection with separatrix D designates
the entrance into the quasiperiodic regime DE (pale-red shaded
area), associated with the interval Iβ,5,q ≈ (0.53,0.55). This
region is magnified in the second row in Fig. 7. On the other
hand, the next steep jump, at the intersection with separatrix
E (also magnified in the second row in Fig. 7), depicts
the entrance to the space-time periodic regime EF (pale-
green shaded area), associated with the limit-cycle interval
Iβ,5,lc ≈ [0.55,0.57]. The limit-cycle branch bifurcates from
the intersection with separatrix F, beyond which the branch of
the constant-density steady state FG is traced.

Another bifurcation diagnostic (Diagnostic II) that we use
herein is the one associated with the variation of the quantity

||u(Tmax)||2α = 1

2L

∫ L

−L

|u(x,Tmax)|2dx

with respect to β. For sufficiently large Tmax, ||u(Tmax)||2α can
be thought of as the superior limit of Eq. (A2). The drawback
in the above diagnostic is that the transient dynamics are
hidden (for sufficiently large Tmax); more generally, the result
hinges strongly on the selection of Tmax, but not necessarily
strongly on the evolution for earlier times or mirroring that for
later times. Nevertheless, for sufficiently large Tmax, it can be
particularly useful in detecting convergence to different steady
states, e.g., ω(u0) = {φb} or ω(u0) = {
p}, via metastability.
Furthermore, it is also able to detect regimes of more complex
behavior, similarly to the ||u||∞ diagnostic. Figure 8 shows the
β − ||u(Tmax)||2α bifurcation curve (solid red line) for Tmax =
3000; the rest of the parameters are as in Fig. 7. The four shaded
regions correspond to the same distinct dynamical regimes that
were detected in the β − ||u||∞ bifurcation diagram in Fig. 7.
The horizontal straight lines

||u(Tmax)||2α = 1.5 = −γ

δ

in regions AB and FG show that, in these regimes of β,
solutions converge to the steady state φb. The intersection
of the bifurcation curve with the auxiliary “separatrix” B,
at β ≈ 0.18, still designates the transition to the equilibrium
metastability region BC. However, the new straight horizontal
line ||u(Tmax)||2α = 0.68 clearly shows that, after the transient
metastability dynamics, the solution favors a particular steady
state of convergence, namely, E3 for these parameters.

It is now useful to compare Diagnostics I and II. First, we
note that the comparison between the two in the metastability
regime BC reveals that far from equilibrium transient dynamics
are identified only by the fluctuations in the β − ||u||∞ curve
(Diagnostic I)—and not those in the β − ||u(Tmax)||2α curve

FIG. 8. β − ||u(Tmax)||2α bifurcation diagram (Diagnostic II) for
fixed σR = μ = ν = 0.01 and the cw initial conditions of ε = 0.01
and K = 5.

(Diagnostic II). These fluctuations can be understood by
the fact that ||u||∞ may be reached at a certain instant,
t0 ∈ [0,Tmax], and also by noting that, in general, ||u||∞ �=
max−L�x�L|
(x)| [i.e., the ||u||∞ norm of a steady state

(x)]. Diagnostic II, on the other hand, reveals that in
the metastability regime BC, the dynamics favors a distinct
steady state (as mentioned above)—a fact that cannot be
captured by Diagnostic I. As far as the other regimes are
concerned, Diagnostic II can also capture the transition to
the chaotic regime CD, indicated by the intersection of the
bifurcation curve with the auxiliary separatrix C, as well
as by its large rapid fluctuations within region CD. The
sudden jump of the bifurcation curve at the intersection with
separatrix D designates the entrance into the quasiperiodic
regime, portrayed by the small, almost-horizontal branch
of quasiperiodic solutions within region DE. Note that the
transition to the quasiperiodic regime is much more apparent
in Diagnostic II than in Diagnostic I. The intersection of the
bifurcation curve with separatrix E (at a point where the curve
has a local minimum in region DF) is again associated with the
entrance to the space-time periodic regime EF (corresponding
to the branch of space-time periodic solutions). This branch
bifurcates from the straight line FG (pertinent to constant-
density steady states) at its intersection with separatrix F.

It is important, at this point, to make some additional
remarks. First, the interval Iβ,K , corresponding to region CF
in the bifurcation diagrams, was found to be unstable under
variations of σR > 0. Corresponding (in)stability regimes are
illustrated in the top panel in Fig. 9, where a Diagnostic
II–type diagram is shown, namely, the bifurcation curve
σR − ||u(Tmax)||2α (solid red line). This diagram is plotted for
fixed Tmax = 3000 and β = 0.52 (recall that, in the previous
case, for fixed σR = 0.01, it was found that β = 0.52 ∈
Iβ,5,c ≈ [0.5,0.53], i.e., in the chaotic regime); the rest of
the parameters are as in Fig. 7. It is shown that for relatively
small values of the SRS coefficient, namely, for σR < 0.03 (cf.
the gray shaded area, labeled SR), chaotic behavior persists.
On the other hand, above this threshold, i.e., for σR > 0.03,
chaotic structures are destroyed, and the system enters into
the metastability regime (labeled RW in the diagram). The
ultimate steady state is E3 for these parameters. Note that the
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FIG. 9. Upper panel: σR − ||u(Tmax)||2α bifurcation diagram (Di-
agnostic II) for fixed β = 0.52, μ = ν = 0.01, and the cw initial
conditions of ε = 0.01 and K = 5. Lower-left panel: A chaotic path
for t ∈ [600,650], when β = 0.53, σR = μ = ν = 0, and the initial
conditions are as in the upper panel. Lower-right panel: Chaotic
waveforms corresponding to points P1 at t ≈ 600 (top), P2 at t ≈ 625
(middle), and P3 at t ≈ 650 (bottom).

instability of quasiperiodic and space-time periodic regimes
under the influence of small increments in σR , occurs in a
very similar manner and can be plotted in similar bifurcation
diagrams (results not shown here).

Second, the interval Iβ,K persists even in the absence of
the rest of the higher-order effects, i.e., for σR = μ = ν = 0.
This highlights the fact that the third-order dispersion plays
a dominant role in the emergence of complex dynamics. An
example of the chaotic behavior, for β = 0.53 and μ = ν =
σR = 0, is shown in the lower panel in Fig. 9. In particular, the
lower-left plot shows part of a chaotic orbit for t ∈ [600,650]
of the 3D projection of the flow onP3, for x1 = 5, x2 = 10, and
x3 = 15. Furthermore, the three snapshots in the lower-right
plots show profiles of the solution corresponding to points P1,
P2, and P3 of the chaotic path shown on the left, for t = 600,
t = 625, and t = 650, respectively.

IV. CONCLUSIONS

In conclusion, we have studied a physically important
and broadly relevant higher-order Ginzburg-Landau equation,
with zero diffusion. The considered model is motivated by
a higher-order nonlinear Schrödinger equation, which finds

applications in a variety of contexts, ranging from nonlinear
fiber optics to deep water waves; the model also incorporates
linear loss and nonlinear gain, while it is supplemented with
periodic boundary conditions which are relevant to optical
cavities settings such as those employed, e.g., in ring lasers.

Our analysis reveals that the infinite-dimensional dynamics
of this model can be reduced to a sequence of low-dimensional
dynamical scenarios (fixed points, periodic and quasiperiodic,
as well as chaotic, orbits) that can be suitably revealed in
reduced (2D and 3D) phase-space representations. Such a
dynamical picture is shared by various nonintegrable perturba-
tions of Hamiltonian partial differential equations (such as the
NLS and Sine-Gordon equations), as these perturbations may
break the homoclinic structure of their integrable counterparts.
However, the path to all the above dynamical scenarios can be
traced in drastically different ways and to essentially distinct
roots, even if the systems have similar origins for their dissipa-
tive nature manifested by the existence of an attractor, e.g., due
to the presence of gain or loss, as in the case of CGL models.

In particular, in our higher-order CGL model, keeping gain
and loss—as well as other coefficients of the higher-order
effects—fixed, we have shown that the competition between
third-order dispersion and the SRS effect (in the presence of
nonlinearity, dispersion, and gain or loss) can trace a path from
Poincaré-Bendixson–type behavior to quasiperiodic or chaotic
dynamics. These dynamical transitions are also reminiscent of
those observed in fiber ring lasers or in the path towards optical
turbulence phenomena [30,35]. A conspicuous finding is that
third-order dispersion chiefly appears to play a critical role in
controlling the transition from periodic to quasiperiodic, and
eventually to chaotic, behavior, even in the absence of the rest
of the higher-order effects.

Our results highlight that higher-order effects may play a
primary role in the birth of spatiotemporal transitions in mixed
gain-loss systems, suggesting further investigations. First, in
the framework of the model considered here, it would be
particularly interesting to investigate more broadly the full
six-parameter space, rather than its low-dimensional projec-
tion considered herein. Second, another interesting direction
would be the identification of a low-dimensional attractor,
its dimension, and its dependence on the spatial length [21],
as well as the construction of appropriate finite-dimensional
reduced systems able to capture the effective low-dimensional
dynamics [36]. Finally, it would be interesting to investigate
the role of higher-order effects in other autonomous systems
with gain and loss.
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APPENDIX A: EXISTENCE OF A LIMIT SET
(ATTRACTOR)

In this Appendix, we define an extended dynamical system
associated with the initial boundary value problem, (2)–(4).
In particular, we briefly sketch the proof of the existence
of a limit-set attractor, capturing all bounded orbits of this
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dynamical system, which originates from sufficiently smooth
initial data, (4).

The starting point of our proof is the power balance
equation [37],

d

dt

∫ L

−L

|u|2dx = 2γ

∫ L

−L

|u|2dx + 2δ

∫ L

−L

|u|4dx, (A1)

satisfied by any local solution u ∈ C([0,T ],Hk
per(	)), which

originates from sufficiently smooth initial data u0 ∈ Hk
per(	),

for fixed k � 3. Here, Hk
per(	) denotes the Sobolev spaces

of periodic functions Hk
per [38], in the fundamental interval

	 = [−L,L]:

Hk
per(	) = {u : 	 → C, u and ∂j

x u ∈ L2(	), j = 1, . . . ,k;

u and ∂j
x u for j = 1, . . . ,k − 1 are 2L-periodic}.

Analysis of (A1) results in the asymptotic estimate,

lim sup
t→∞

1

2L

∫ L

−L

|u(x,t)|2dx � −γ

δ
; (A2)

hence local in time solutions u ∈ C([0,T ],Hk
per(	)) are uni-

formly bounded in L2(	). This allows for the definition of the
extended dynamical system

ϕ(t,u0) : Hk
per(	)) → L2(	), ϕ(t,u0) = u,

whose orbits are bounded ∀t � 0. Moreover, from the above
asymptotic estimate, we derive that if L2(	) is endowed with
the equivalent averaged norm,

||u||2α = 1

2L

∫ L

−L

|u|2dx,

then its ball

Bα(0,ρ) =
{
u ∈ L2(	) : ||u||2α � ρ2, ρ2 > −γ

δ

}

attracts all bounded sets B ∈ Hk
per(	). That is, there exists

T ∗ > 0, such that ϕ(t,B) ⊂ Bα , for all t � T ∗. Thus, we may
define for any bounded set B ∈ Hk

per(	)), k � 3, its ω-limit set
in L2(	):

ω(B) =
⋂
s�0

⋃
t�s

ϕ(t,B).

The closures are taken with respect to the weak topology of
L2(	). Then the standard (embedding) properties of Sobolev
spaces imply that the attractor ω(B) is at least weakly compact
in L2(	) or relatively compact in the dual space H−1

per (	).
For any initial condition (4), u0 ∈ B, we denote its limit set
ω(u0) ⊂ ω(B).

APPENDIX B: MODULATIONAL INSTABILITY

In this Appendix we provide the MI analysis of the cw state,

u = u(t) = Aeiθ(x,t), θ (x,t) = k0x − ω0t (B1)

(where A is a real constant), which is an exact analytical
solution of Eq. (2) (for an MI analysis of the cw solution of
Eq. (1), cf. Ref. [39]). This solution exists when the following
dispersion relation holds:

ω0 = βk3
0 − k2

0/2 − μA2k0 + i(γ + δA2) − A2,

while A2 = −γ /δ, to suppress any exponential growth. This
amplitude value is consistent with the equilibria (steady states)
of the system.

Now consider a small perturbation to this cw solution,

u(x,t) = [A + u1(x,t)]eiθ(x,t),

inserted into Eq. (2). Linearizing the system with respect to u1

we obtain

i(u1t − k0u1x) − 1

2
u1xx + A2(u1 + u∗

1) = iδA2(u1 + u∗
1)

+ iβ
(
3k2

0u1x − 3ik0u1xx − u1xxx

)
− iμA2(ik0u1 + ik0u

∗
1 + 2u1x + u∗

1x)

− i(ν − iσR)A2(u1x + u∗
1x),

where asterisks denote complex conjugates. Solutions of the
above equations are sought in the form

u1(x,t) = c1e
i(kx−ωt) + c2e

−i(kx−ωt),

where c1,2 are real constants, while k and ω are the wave
number and frequency of the perturbations. In this way, we
obtain the dispersion relation,

δ2ω2 + p1(k)ω + p2(k) = 0 (B2)

where

p1(k) = −2βk3 + 2
[ − 3βk2

0 + k0 + A2(2μ + ν − iσR)
]
k,

p2(k) = β2k6

+ [ − 3β2k2
0 + βk0 − 2βA2(2μ + ν − iσR) − 1/4

]
k4

+ [
9β2k4

0 − 6βk3
0 + k2

0(1 − 6βA2(μ + ν − iσR))

+ k0A
2(β(6 − 6iδ) + 3μ + 2ν − 2iσR)

+A2(iδ + μA2(3μ + 2ν − 2iσR) − 1
]
k2,

and it should be recalled that A2 = −γ /δ. It is clear that
the system will always be modulationally unstable, since the
solutions of Eq. (B2) are in general complex.
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