
PHYSICAL REVIEW E 94, 012208 (2016)

Phase-flip chimera induced by environmental nonlocal coupling

V. K. Chandrasekar,1 R. Gopal,2,3 D. V. Senthilkumar,4,* and M. Lakshmanan2

1Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, India
2Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

3Department of Physics, Nehru Memorial College, Puthanampatti, Tiruchirapalli 621 007, India
4School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India

(Received 30 January 2016; revised manuscript received 11 May 2016; published 7 July 2016)

We report the emergence of a collective dynamical state, namely, the phase-flip chimera, from an ensemble
of identical nonlinear oscillators that are coupled indirectly via the dynamical variables from a common
environment, which in turn are nonlocally coupled. The phase-flip chimera is characterized by the coexistence
of two adjacent out-of-phase synchronized coherent domains interspersed by an incoherent domain, in which
the nearby oscillators are in out-of-phase synchronized states. Attractors of the coherent domains are either
from the same or from different basins of attractions, depending on whether they are periodic or chaotic. The
conventional chimera precedes the phase-flip chimera in general. Further, the phase-flip chimera emerges after
the completely synchronized evolution of the ensemble, in contrast to conventional chimeras, which emerge
as an intermediate state between completely incoherent and coherent states. We have also characterized the
observed dynamical transitions using the strength of incoherence, probability distribution of the correlation
coefficient, and framework of the master stability function.
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I. INTRODUCTION

The identification of an intriguing collective dynamical
state, namely, the chimera state, in an ensemble of cou-
pled identical nonlinear oscillators with nonlocal coupling
[1–4] has initiated intense research activities in the recent
literature [4–9]. A chimera state represents a spatially in-
homogeneous state characterized by coexisting coherent and
incoherent domains in an ensemble of identical oscillators.
Experimentally, a chimera has also been revealed in popula-
tions of coupled chemical oscillators [10], in electro-optical
systems [11], and in metronomes [12]. Real-world examples
mimicking chimera states can be found in power grids [13], in
unihemispheric sleep of animals [14], in multiple time scales
of sleep dynamics [15], etc. Different types of chimera states
such as the amplitude-mediated chimera [16] and intensity-
induced chimera [17] have also been identified [18]. Recently,
it has been shown that a symmetry-breaking coupling in
the Stuart-Landau oscillators leads to the manifestation of
chimera death [19,20]. The collective state with inhomoge-
neous flipping between the steady states (oscillation death)
of an ensemble was called chimera death. Very recently,
noise-induced coherence-resonance chimeras in a network of
excitable elements were reported [21]. Coherence-resonance
chimeras are associated with alternating switching of the
location of coherent and incoherent domains.

In this paper, we unravel a novel dynamical regime emerg-
ing from inhomogeneous synchronized states. In particular, we
consider an ensemble of identical nonlinear oscillators coupled
via a common dynamic environment with nonlocal coupling.
We show that the ensemble of oscillators splits into coexisting
coherent and incoherent domains for appropriate strengths
of the nonlocal coupling. Nearby oscillators in coherent
domains exhibit in-phase synchronized oscillations, while
adjacent oscillators in incoherent domains exhibit out-of-phase
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oscillations. Note that the term coherent (incoherent) domains
here represents the homogeneous (inhomogeneous) nature of
the dynamics of the attractors in the corresponding domain and
does not refer to the nature of the attractors, that is, whether
they are coherent attractors with a fixed center of rotation or
incoherent attractors with more than one center of rotation.

Further, we find that some of the nearby coherent domains
exhibit in-phase oscillations in one of the domains and
antiphase oscillations in the other, resembling the phase-flip
transition [22]. Specifically, out-of-phase synchronized nearby
coherent domains are interspersed by an incoherent domain
(where the phases of the adjacent oscillators flip between 0
and π ) at the phase-flip transition, which we call a phase-flip
chimera. It is a dynamically active emerging behavior, in
contrast to chimera death [19,20], where nearby oscillators
populate the same branch of the inhomogeneous steady state
in the coherent domain, while nearby oscillators populate
different branches of the inhomogeneous steady state in the
incoherent domain. Further, we find that the conventional
chimera is preceded by the phase-flip chimera in addition to
the other collective dynamical regimes such as coherent and
synchronized states in an ensemble of paradigmatic Rössler
oscillators in both the periodic and the chaotic regimes. We
have used the measures strength of incoherence and probability
distribution of the correlation coefficient to characterize the
phase-flip chimeras and the observed dynamical transitions.
In addition, we have employed the framework of the master
stability function (MSF) to demarcate the synchronized and
desynchronized parameter space, which agrees very well
with the simulation results. It must be pointed out that the
synchronized regime is a multistability regime coexisting with
conventional chimeras and phase-flip chimeras depending on
the distribution of the initial conditions.

The plan of the paper is as follows. We discuss the
emergence of a phase-flip chimera in an ensemble of Rössler
oscillators in the periodic regime in Sec. II and in the chaotic
regime in Sec. III. We provide certain quantification measures
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such as the strength of incoherence, the probability distribution
of the correlation coefficient, and the framework of the MSF
to characterize the different collective dynamical behavior
in the ensemble of oscillators in Sec. IV. Discussion of the
global dynamical behavior in terms of two-parameter phase
diagrams is provided in Sec. V. Emergence of a phase-flip
chimera with global coupling among the agents in the common
environment is discussed in Sec. VI and the conclusion is
provided in Sec. VII. In Appendix A, we consider the effect
of the relaxation time, while the effect of coupling to other
variables is discussed in Appendix B.

II. PHASE-FLIP CHIMERA IN AN ENSEMBLE OF
RÖSSLER OSCILLATORS IN THE PERIODIC REGIME

To elucidate the above results, we consider an ensemble
of identical Rössler oscillators with a common dynamic
environmental coupling represented as

ẋi = −yi − zi, (1a)

ẏi = xi + ayi, (1b)

żi = b + zi(xi − c) + kwi, (1c)

ẇi = −αwi + zi

2
+ ε

2P

j=i+P∑
j=i−P

(wj − wi), (1d)

i = 1, . . . ,N , where a, b, c, and α are the system parameters,
and N is the number of oscillators in the ensemble. The os-
cillators in the ensemble are coupled indirectly via nonlocally
coupled dynamic agents wi in the common environment. k

is the strength with which the agent wi from the common
environment interacts with the ith oscillator in the ensemble.
ε is the strength of the nonlocal coupling. P ∈ [1,N/2] is the
number of nearest neighbors on each side of any oscillator
in the ring with a coupling radius r = P

N
. The environment

or medium plays a crucial role in facilitating the complex
collective dynamics such as decoherence, dissipation, and
relaxation in quantum systems [23], in coordinated rhythms
in biological systems [24], and in quorum sensing [25]. The

dynamics of the individual agent given by ẇi in Eq. (1d) is
related to the interactions of molecules between the cells and
their environment [26–28]. In the following, we demonstrate
the existence of a phase-flip chimera in an ensemble of Rössler
oscillators in both periodic and chaotic regimes.

Individual Rössler oscillators in the ensemble exhibit
periodic oscillations for the parameters a = 0.165, b = 0.4,
and c = 8.5. We have used random initial conditions uniformly
distributed between −1 and +1. We have fixed N = 100,
k = 10, and the coupling radius r to r = 0.3. (N = 100 is
chosen only for clarity, in the sense that the jumping phases
can be distinctly seen. One can indeed choose any value of
N for our analysis.) Snapshots of the instantaneous phases
φi = arctan(yi/xi), i = 1,2, . . . ,N , and the spatiotemporal
evolution of the oscillators are depicted in Fig. 1 for different
values of the strength of the nonlocal coupling ε. The
oscillators evolve in asynchrony for ε = 0.02 [see Figs. 1(a)
and 1(b)], while their time-averaged frequencies are entrained
[see inset in Fig. 1(a)]. Rössler oscillators being identical
in the periodic regime, the frequencies of all the oscillators
are always entrained (see the insets of Fig. 1) in the entire
parameter regimes we have traced. Nonlocal coupling leads
to the splitting of the ensemble into coexisting coherent and
incoherent domains as depicted in Figs. 1(c) and 1(d) for
ε = 0.08, thereby confirming the existence of a chimera state.
Further increase in the strength of the nonlocal coupling results
in the synchronous evolution of the ensemble of Rössler
oscillators. Phase and complete synchronous evolution of
the oscillators are clearly evident in Figs. 1(e) and 1(f),
respectively, for ε = 0.5. The phase-flip chimera emerges
after the complete synchronized state, which is illustrated
in Figs. 1(g) and 1(h) for ε = 1.5. Phase-flip chimeras with
two adjacent out-of-phase synchronized spatially coherent
domains interspersed by a spatially incoherent domain are
clearly evident in the spatiotemporal plot in Fig. 1(h), while
their frequencies remain entrained. However, for ease of
visualization the phase-flip chimera characterized by coexist-
ing out-of-phase synchronized coherent domains (where the
nearby oscillators exhibit in-phase synchronized oscillations
among them in each of the synchronized domains) along with
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FIG. 1. Snapshots of the instantaneous phases φi (top row) and the space-time evolution (bottom row) of the ensemble of Rössler oscillators
in the periodic regime for the coupling radius r = 0.3 of the nonlocal coupling and for different values of the strength of the nonlocal coupling,
exhibiting (a, b) a desynchronized state for ε = 0.02, (c, d) a chimera state for ε = 0.08, (e, f) a synchronized state for ε = 0.5, and (g, h)
a phase-flip chimera for ε = 1.5. Insets: Time-averaged frequencies of all the oscillators. Other parameter values are a = 0.165, b = 0.4,
c = 8.5, and α = 1.
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FIG. 2. Enlarged regions of Fig. 1(g) to clearly show the phase-
flip chimera characterized by coexisting coherent and incoherent
domains, where the nearby oscillators exhibit in-phase oscillations
in the coherent domain, while the adjacent oscillators exhibit out-of-
phase oscillations in the incoherent domain.

an asynchronous incoherent domain (where nearby oscillators
exhibit out-of-phase synchronized oscillations) interspersing
the coherent domains at the phase-flip transition is enlarged
and depicted in Fig. 2 . It is noteworthy that the chimera states
investigated so far have emerged as an intermediate state in the
transition from completely incoherent to completely coherent
states, in general. In contrast, the phase-flip chimera emerges
after the completely synchronized state. Note that these are not
steady states as in the case of chimera death states [19,20] but
evolve dynamically, and they are also not two-cluster states,
as the oscillator index cannot be reordered.

III. PHASE-FLIP CHIMERA IN AN ENSEMBLE OF
RÖSSLER OSCILLATORS IN THE CHAOTIC REGIME

For the parameters a = 0.1, b = 0.1, and c = 18.0, the
uncoupled Rössler oscillators evolve in (1) chaotically.

Snapshots of the instantaneous phases and the spatiotemporal
evolution of the oscillators are depicted in Fig. 3 for different
values of coupling, ε. The time-averaged frequencies of all
the oscillators are shown in the insets in Fig. 3. One can
observe that the frequencies of the oscillators are entrained
to the same frequency as indicated by the straight line for wi .
For lower values of ε, coupled oscillators evolve in asynchrony
(not shown here), whereas the ensemble of oscillators splits
into coexisting coherent and incoherent domains, confirming
the existence of a chimera, as shown in Figs. 3(a) and 3(b)
for ε = 0.5. Increasing ε further, the ensemble of oscillators
evolves in complete synchrony [see Figs. 3(c) and 3(d) for
ε = 1.0]. The synchronized oscillators become desynchro-
nized for even larger ε, the dynamics of which is illustrated
in the snapshot of the instantaneous phases and the spatiotem-
poral plots in Figs. 3(e) and 3(f), respectively, for ε = 1.2.
A phase-flip chimera emerges from the desynchronized state
upon increasing the strength of the nonlocal coupling further
as depicted in Figs. 3(g) and 3(h) for ε = 2.5.

The dynamics of the individual Rössler oscillators changes
and plays a crucial role in the emergence of the observed
collective dynamical behaviors of the ensemble of Rössler
oscillators in Fig. 3 as a function of ε. The Rössler oscillators
always exhibit periodic oscillations throughout the entire
dynamical transition regimes of the ensemble discussed in
Fig. 1, whereas in the case of chaotic oscillations of the
individual oscillators the dynamical nature of the oscillators
changes as discussed below. In the absence of the couplings
k = 0 and ε = 0, the uncoupled individual Rössler oscillators
exhibit chaotic oscillations as pointed above. A couple of
uncoupled representative Rössler oscillators (namely, N = 9
and 13) exhibiting chaotic oscillations are depicted in Fig. 4(a).
Filled circles and triangles in Fig. 4 are the Poincaré points.
The value of k in the other figures [Figs. 4(b)–4(d)] is fixed at
k = 10 as in Fig. 3. The ensemble of Rössler oscillators
displays a chimera state for ε = 0.5 [see Fig. 3(a)]. A rep-
resentative oscillator from each of the coherent and incoherent
domains is displayed in Fig. 4(b). The synchronized oscillators
in the coherent domain are entrained to periodic oscillations as
indicated by the blue line in Fig. 4(b), while the asynchronous

FIG. 3. Snapshots of the instantaneous phases φi (top row) and the space-time evolution (bottom row) of the ensemble of Rössler oscillators
in the chaotic regime for the coupling radius r = 0.3 of the nonlocal coupling and for different values of the strength of the nonlocal coupling
exhibiting (a, b) a chimera state for ε = 0.5, (c, d) a synchronized state for ε = 1.0, (e, f) a desynchronized state for ε = 1.2, and (g, h)
phase-flip chimera for ε = 2.5. Insets: Time-averaged frequencies of all the oscillators. Other parameter values are a = 0.1, b = 0.1, c = 18,
and α = 1.
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FIG. 4. Representative class of attractors along with their
Poincaré points throughout the dynamical transition of the ensemble
of Rössler oscillators shown in Fig. 3 as a function of the strength
of the nonlocal coupling ε. (a) Desynchronized state for ε = 0.0, (b)
chimera state for ε = 0.5, (c) synchronized state for ε = 1.0, and (d)
desynchronized state for ε = 1.2. In (a) k = 0; in (c) and (d) k is fixed
at 10.

oscillators in the incoherent domain exhibit chaotic oscillations
as indicated by the black line in Fig. 4(b). The ensemble of
oscillators is synchronized for the strength of the nonlocal
coupling ε = 1.0 [see Fig. 3(c)], where the dynamics of the
ensemble of oscillators become periodic as indicated by the
representative oscillators in Fig. 4(c). The ensemble of Rössler
oscillators is desynchronized as shown in Fig. 3(e) for ε = 1.2,
rendering the oscillators to exhibit chaotic oscillations as
displayed in Fig. 4(d), and the dynamics of the individual
Rössler oscillators remain chaotic for further larger values
of ε.

Attractors and the corresponding time-series plots of the
representative oscillators in the out-of-phase synchronized
coherent domains of the phase-flip chimera are depicted in
Fig. 5. The top row represents the Rössler oscillators in
the periodic regime and the bottom row corresponds to the
Rössler oscillators exhibiting chaotic oscillations. Attractors
exhibiting both in-phase and antiphase oscillations for the
periodic case and chaotic case, along with their Poincaré
points, are shown in Figs. 5(a) and 5(c), respectively. Time-
series plots in Figs. 5(b) and 5(d) clearly display the out-of-
phase oscillations of the two adjacent coherent domains of the
phase-flip chimera.

IV. QUANTIFICATION MEASURES TO CHARACTERIZE
THE CHIMERA STATES

The notion of the strength of incoherence S [17] was
recently introduced by Gopal et al. to characterize and to
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FIG. 5. Representative class of attractors along with their
Poincaré points and time evolution plots of the out-of-phase synchro-
nized coherent domains of the phase-flip chimera shown in Figs. 1(g)
and 3(g). Top row: Rössler oscillators in the periodic regime. Bottom
row: Rössler oscillators exhibiting chaotic oscillations.

distinguish various collective dynamical states, defined as

S = 1 −
∑M

m=1 sm

M
, sm = �(δ − σl(m)), (2)

where �(·) is the Heaviside step function, and δ is a predefined
threshold. Normally, δ is chosen as a certain percentage value
of the difference between the upper/lower bounds, xl,imax/xl,imin ,
of the allowed values of xl,i . M is the number of bins of
equal size n = N/M . The local standard deviation σl(m) is
introduced as

σl(m) =
〈√√√√1

n

mn∑
j=n(m−1)+1

[zl,j − 〈zl,m〉]2

〉
t

,

m = 1,2, . . . ,M, (3)

where zl,i = xl,i − xl,i+1, l = 1,2, . . . ,d, d is the dimension of
the individual unit in the ensemble, i = 1,2, . . . ,N , 〈zl,m〉 =
1
n

∑mn
j=n(m−1)+1 zl,j (t), and 〈. . . 〉t denotes the time average.

When σl(m) is less than δ, sm = 1; otherwise, sm = 0 (m in
the present case is chosen as m = 20). The local standard
deviation σl(m) has some finite value in the incoherent domain
∀m, which is always greater than δ and hence sm = 0,∀m,
thereby resulting in unit value for the strength of incoherence
S in the incoherent domain. On the other hand, the standard
deviation σl(m) is always 0 in the coherent domain and hence
sm = 1,∀m, thereby resulting in the null value of S. Since
chimera states are characterized by coexisting coherent and
incoherent domains, the strength of incoherence S will have
values intermediate between 0 and 1, 0 < S < 1.

The strength of incoherence is shown in Figs. 6(a) and 6(b)
as a function of the strength of the nonlocal coupling ε char-
acterizing the dynamical transition discussed in Figs. 1 and 3,
respectively. The unit value of S in the range of ε ∈ (0,0.08)
in Fig. 6(a) corroborates the asynchronous evolution of the
Rössler oscillators with periodic oscillations. A value of S in-
termediate between 0 and unity confirms the existence of a con-
ventional chimera in the range of ε ∈ (0.08,0.18). A null value
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FIG. 6. Strength of the incoherence S as a function of the strength
of the nonlocal coupling ε in (a) the periodic case and (b) the chaotic
case. Probability distribution pr(ρ) of the correlation coefficient: (c)
conventional chimera in the periodic case, (d) phase-flip chimera in
the periodic case, (e) conventional chimera in the chaotic case, and
(f) phase-flip chimera in the chaotic case.

of S in the range of ε ∈ (0.18,1.02) indicates synchronous evo-
lution of the ensemble of Rössler oscillators. Fluctuations in
the value of S close to unity elucidate the existence of a phase-
flip chimera state. As the phase-flip chimera is characterized by
out-of-phase synchronized coherent domains interspersed by
an incoherent domain, most of the bins during this state have a
mixture of in-phase and antiphase oscillations, while a few bins
may have completely coherent (either in-phase or antiphase)
oscillations leading to fluctuating values of S close to unity.
Now we discuss the dynamical transition shown in Fig. 3
for chaotic oscillations of the individual Rössler oscillators in
terms of the strength of incoherence S displayed in Fig. 6(b).
Asynchronous evolution of the oscillators is indicated by
the unit value of S in the range of ε ∈ (0,0.48), whereas
the intermediate value of 0 < S < 1 confirms the existence
of a conventional chimera in the range of ε ∈ (0.48,0.96).
The narrow range of the synchronized state is confirmed by
S = 0 in the range of ε ∈ (0.96,1.04). The oscillators get
desynchronized in the range of ε ∈ (1.04,1.66) as indicated
by the unit value of S. Fluctuations in S close to unity beyond
ε = 1.66 corroborate the existence of a phase-flip chimera.

We have also estimated the probability distribution of the
correlation coefficient defined as

ρi = 〈(x1(t) − 〈x1(t)〉)(xi(t + 
t) − 〈xi(t)〉)〉√
〈(x1(t) − 〈x1(t)〉)2〉t 〈(xi(t) − 〈xi(t)〉)2〉t

, (4)

where i = 1,2, . . . ,N , to characterize the conventional
chimera and phase-flip chimera. In Eq. (4), 〈·〉t represents
the time average and 
t is the time shift. The correlation
coefficient is estimated by using each oscillator in the ensemble
as a reference oscillator and averaging it over the number of
oscillators N . The probability distribution of the correlation
coefficient is depicted in Figs. 6(c)–6(f) for different values

of ε in both the periodic [Figs. 6(c) and 6(d)] and the chaotic
[Figs. 6(e) and 6(f)] regimes. The correlation coefficient for
completely synchronized oscillators acquires unit value and,
for the antisynchronous state, reaches −1, whereas for the
desynchronous state it is characterized by intermediate values
between ±1. Since the conventional chimera is characterized
by the coexistence of synchronized and asynchronous do-
mains, the probability distribution of the correlation coefficient
is large near unit value and small at other values of the
correlation coefficient as shown in Figs. 6(c) and 6(e). On
the other hand, the phase-flip chimera is characterized by
only two inhomogeneous states, namely, the in-phase and
antiphase synchronized states, the correlation coefficient of
the phase-flip chimera attains only +1 and −1 as its values.
Consequently, the probability distribution of the correlation
coefficient for the phase-flip chimera has only two values, +1
and −1, as is evident in Figs. 6(d) and 6(f).

V. TWO-PARAMETER PHASE DIAGRAMS

A two-parameter phase diagram as a function of the
strength of the nonlocal coupling ε ∈ (0,2) and the coupling
radius r ∈ (0,0.5) is depicted in Fig. 7(a) to gain a global

FIG. 7. Two-parameter phase diagram depicting the collective
dynamical states of the ensemble of Rössler oscillators with a
common dynamic environment as a function of the strength of the
nonlocal coupling ε and the coupling radius r . (a) Periodic state;
(b) chaotic state. Parameter spaces: DSYC, desynchronized state;
CH, conventional chimera; PFCH, phase-flip chimera; CO, coherent
state; and CS, complete synchronized state. Dotted lines represent
the stability curves estimated from the eigenvalues of the variational
equation, (8).
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perspective of the collective dynamics emerging from the
ensemble of Rössler oscillators exhibiting periodic oscillations
in a dynamic environment with nonlocal coupling. We have
used the above quantification measures discussed in Sec. IV to
demarcate the different dynamical regimes of the ensemble of
Rössler oscillators. The dynamical regimes delineated in Fig. 1
are indicated as DSYC, CH, SYC, and PFCH, corresponding
to desynchronized states, chimera states, synchronized states,
and phase-flip chimeras, respectively. In addition to the above
regimes, we have found coherent states, labeled CO, where all
the oscillators evolve in coherence in the range of the coupling
radius r ∈ (0.05,0.2) and ε ∈ (0.2,0.8).

Using the well-known MSF formalism [33,34], the entire
parameter space in Fig. 7 can be demarcated into a desyn-
chronized state (DSYC) and a synchronous state (SYC). The
stability of the synchronized manifold (xi = x, yi = y, zi=z,
and wi = w; ∀i) is determined by the variational equations

η̇1j = −η2j − η3j , (5a)

η̇2j = η1j + aη2j , (5b)

η̇3j = η3j (x(t) − c) + kη4j + z(t)η1j , (5c)

η̇4j = −αη4j + η3j

2
+ ελjη4j , (5d)

where x(t) and z(t) are the solution of the uncoupled
equation, (1). ηik = ζ iQk , where ζi = (ζi1,ζi2, . . . ,ζiN ), and
(ζ1,ζ2,ζ3,ζ4) are the deviation of (x,y,z,w) from the synchro-
nized solution (x,y,z,w). Qk is the eigenvector of the coupling
matrix G, and λj are the eigenvalues, where

G =

⎡
⎢⎢⎣

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

...
. . .

...
ad1 ad2 ad3 . . . adn

⎤
⎥⎥⎦, (6)

with aii = −1 and ai(i+j ) = ai(i−j ) = 1
2P

for i = 1,2, . . . ,N

and j = 1,2, . . . ,P . Here ai(N+k) = aik and ai(1−k) =
ai(N−k+1) for k = 1,2, . . . ,P . The eigenvalues are given by

λj = −1 + 1

P

P∑
k=1

cos

(
2πk

N
j

)
, j = 0,1,2, . . . ,N − 1.

(7)

The eigenvalue λ0 corresponds to the perturbation parallel
to the synchronization manifold, while the other N − 1
eigenvalues correspond to the perturbation transverse to the
synchronization manifold. The transverse eigenmodes should
be damped out to have a stable synchronization manifold.
The stability of the synchronization manifold depends only on
the largest eigenvalue λ1 = −1 + 1

P

∑P
k=1 cos( 2πk

N
), and the

corresponding variational equation becomes

η̇11 = − η21 − η31, η̇21 = η11 + aη21,

η̇31 = η31(x(t) − c) + kη41 + z(t)η11,

η̇41 = − αη41 + η31

2
− ε

(
1 − 1

P

P∑
k=1

cos

(
2πk

N

))
η41.

(8)
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FIG. 8. Basin of attraction depicting the coexisting phase-flip
chimera (red circles) and complete synchronized states (green
triangles) in (a) periodic and (b) chaotic cases of the coupled Rössler
oscillators.

Now, the value of the largest Lyapunov exponent of the
variational equation, (8), for each value of the parameters in
the two-parameter phase diagram (Fig. 7) is used to demarcate
the two-parameter phase diagram into a desynchronized state
(DSYC) and a synchronous state (SYC) as indicated by
the dotted lines in Fig. 7(a). Before the dotted lines the
largest Lyapunov exponent acquires positive values, while
for the parameters above the dotted lines it acquires negative
values, indicating the stability of the synchronization manifold.
Figure 7 elucidates that the simulation results are in agreement
with the results obtained using the semianalytic approach,
namely, the MSF formalism, in demarcating the synchronized
and desynchronized regimes. It should be noted that the
synchronous state is a multistable state with coexisting chimera
states, coherent states, and phase-flip chimeras, depending on
the distribution of the initial conditions (for a given choice of
ε and r or ε and k). The multistable nature of the synchronized
parameter space coexisting with the phase-flip chimera is
shown in Fig. 8.

A similar two-parameter phase diagram in the range of
ε ∈ (0,3) and r ∈ (0,0.5] of the ensemble of Rössler oscillators
exhibiting chaotic oscillations is shown in Fig. 7(b). The main
difference in the emergent dynamics from the ensemble of
Rössler oscillators with periodic oscillations [see Fig. 7(a)]
versus that with chaotic oscillations [see Fig. 7(b)] is that
in the latter case the phase-flip chimera (labeled PFCH) is
immediately preceded by asynchronous oscillations (labeled
DSYC) of the ensemble. That is, the dynamical transition
occurs in the sequence desynchronized state (DSYC), chimera
state (CH), coherent state (CO) or completely synchronized
state (SYC), depending on the value of r , again DSYC, and,
finally, phase-flip chimera (PFCH) as a function of ε, which
is evident from the two-parameter phase diagram in Fig. 7(b).
The synchronized and desynchronized parameter space is also
demarcated by solving the variational equation, Eq. (8), as in-
dicated by the dotted lines in Fig. 7. There, the parameter space
within the dotted lines is characterized by negative values of the
largest Lyapunov exponent of the variational equations, indi-
cating a stable synchronized state. It is noteworthy that in both
the two-parameter phase diagrams, the discussed transition
occurs for r > 0.05, below which the ensemble of oscillators
remains in the asynchronous state, elucidating that the phase-
flip chimera may not emerge in the nearest-neighbor coupling
between the agents. It also reveals that an appropriate coupling
radius is necessary for emergence of the phase-flip chimera.

In order to demonstrate the stability of the phase-flip
chimera, we have depicted the basin of attraction of the
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FIG. 9. Two-parameter phase diagram depicting the collective
dynamical states of the ensemble of Rössler oscillators with a
common dynamic environment as a function of k and ε. Parameter
spaces: DSYC, desynchronized state; CH, conventional chimera;
PFCH; phase-flip chimera, and CS, complete synchronized state.
Dotted lines represent the stability curves estimated from the
eigenvalues of the variational equation, (8).

ensemble, Eq. (1), in Fig. 8 as a function of p and q,
which correspond to the initial conditions of the x and y

variables. The initial conditions for the variables z and w

are uniform random numbers distributed between −1 and 1,
whereas those for the x and y variables are uniform random
numbers distributed between ±p and ±q, respectively. It is
clear that both the phase-flip chimeras (indicated by circles)
and the completely synchronized states (indicated by triangles)
coexist for a wide choice of initial conditions, corroborating
the stability and robustness of the phase-flip chimera.

To explore the effect of environmental coupling on the
observed dynamical transition in detail, we have plotted the
two-parameter phase diagram as a function of the strength
of the nonlocal coupling ε and the strength k with which
the local agents interact with their respective oscillators in
Figs. 9(a) and 9(b) for periodic and chaotic oscillations of
individual uncoupled Rössler oscillators, respectively. The
parameter spaces leading to the desynchronous state (DSYC),
conventional chimera (CH), phase-flip chimera (PFCH), and
complete synchronous (CS) state are labeled in both figures.
Asynchronous and completely synchronous parameter spaces
are also demaracted (indicated by dotted lines) using the
value of the largest Lyapunov exponent of the variational
equation, (8). In the periodic regime of the Rössler oscillators,
the coupled oscillators remain asynchronous in the entire range
of ε for small values of k as shown in Fig. 9(a). In the
range of k ∈ (2.1,5.6), the desynchronized state is followed
by a conventional chimera and a phase-flip chimera as ε

is increased. Increasing k further, the conventional chimera
and phase-flip chimera regimes are separated by a complete
synchronized regime up to k = 12.6. A transition from an
asynchronous to a complete synchronized state occurs for
k > 12.6 as a function of ε. Thus the emergence of the phase-
flip chimera is spread over a wide range of k ∈ (2.1,12.6) and
ε. For chaotic oscillations of individual Rössler oscillators,
we have observed transitions similar to those in Fig. 9(a) as a
function of k and ε, except for the fact that the range of the
phase-flip chimera extends to a much wider range of k and ε

[see Fig. 9(b)], while the desynchronized state precedes the
phase-flip chimera.

The existence of phase-flip transition in two coupled
oscillators induced by the environmental coupling in Eq. (1)
was shown in [27] and [28]. We find that environmental
coupling among the agents and the oscillators induces a
phase-flip transition and bifurcation, while nonlocal coupling
among the agents in the common environment facilitates the
onset of an incoherent domain at the phase-flip transition. In
the absence (or for low values of the strength) of environmental
coupling one cannot observe a phase-flip chimera as is evident
from the two-phase diagram in Fig. 9. We have also found
that the emergence of the phase-flip chimera depends on the
relaxation time of the environmental coupling in Eq. 1(d) and
the phase-flip chimera emerges for the parameter α � 1, which
determines the relaxation time of the external agent wi (see
Appendix A for more details).

VI. PHASE-FLIP CHIMERA WITH GLOBALLY
COUPLED AGENTS

It is also noteworthy that we have identified the emergence
of a phase-flip chimera in the case of globally coupled
agents. Snapshots of the instantaneous phases φi and the
space-time evolution of the ensemble of Rössler oscillators
in the chaotic regime but with global coupling between the
agents for the value of the strength of the global coupling
ε = 2.5 are shown in Fig. 10. The value of the other parameters
and the distribution of the initial conditions are the same
as in Fig. 3. It is clear from the figure that the phase-flip
chimera characterized by two adjacent out-of-phase syn-
chronized coherent domains, where nearby oscillators are
exhibiting in-phase synchronized oscillations, interspersed
by an incoherent domain, where nearby oscillators exhibit
out-of-phase oscillations (see the inset in Fig. 10), exists
even with global coupling between the agents in the common
environment. We have also confirmed the emergence of a
phase-flip chimera from the ensemble for periodic oscillations

0

π

1 101

φ i

i

(a)

0

π

12 23

FIG. 10. (a) Snapshots of the instantaneous phases φi and (b) the
space-time evolution of the ensemble of Rössler oscillators in the
chaotic regime with global coupling between the agents for the value
of the strength of the global coupling ε = 2.5.
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of individual Rössler oscillators with global coupling between
the agents. It is known that in an ensemble of globally coupled
oscillators one can reorder the spatial index of the oscillators
such that the spatial inhomogeneity with coexisting in-phase
and out-of-phase synchronized oscillators in the phase-flip
chimera state (see Fig. 2) can be recast as a two-cluster
state [35–37]. However, we would like to point out that once
the spatial ordering of the globally coupled oscillators is
fixed by indexing them from 1 to N , then the distribution
of initial conditions as stated above among the oscillators
results in spatially inhomogeneous states with coherent out-
of-phase synchronized domains interspersed by an incoherent
domain comprised of nearby oscillators exhibiting in-phase
and antiphase oscillations. This confirms the emergence of
a phase-flip chimera even with global coupling among the
agents. Indeed, several recent investigations have reported the
existence of chimera states in an ensemble of globally coupled
oscillators [17,18,29–32].

Finally, we have also checked whether phase-flip chimeras
occur when the coupling is additionally given to the x or y

variables, that is, to Eq. (1a) or Eq. (1b). In these cases only
the transition from a desynchronized state to a synchronized
state occurs (see Appendix B for more details).

VII. CONCLUSIONS

To summarize, we have identified an interesting type of
collective dynamical regime, called phase-flip chimeras, in an
ensemble of identical Rössler oscillators coupled indirectly
via the agents from a common dynamic environment, where
the agents are coupled nonlocally with coupling radius r . Such
interactions are found in the diffusion of biomolecules between
cells and their environment [26]. The phase-flip chimera
is characterized by two out-of-phase synchronized spatially
coherent domains interspersed with a spatially incoherent do-
main comprised of nearby oscillators exhibiting out-of-phase
oscillations. The oscillators in each of the coherent domains
exhibit phase-synchronized oscillations among themselves,
whereas the two adjacent coherent domains in the phase-flip
chimera exhibit out-of-phase synchronized oscillations. The
robustness of the phase-flip chimera is also confirmed by
depicting its occurrence over a wide range of parameters using
the two-parameter phase diagram. Further, it is also shown
that the phase-flip chimera is preceded by the conventional
chimera and it emerges only after the completely synchronized
state emerges. In the chaotic regime the phase-flip chimera
is immediately preceded by an asynchronous state, which in
turn emerges as a desynchronized state from the synchronous
evolution of the ensemble of oscillators. We have used
the strength of incoherence, probability distribution of the
correlation coeffecient, and MSF to characterize the observed
dynamical transition of the ensemble of Rössler oscillators.
It is also confirmed that the phase-flip chimera emerges
even with global coupling among the agents, whereas with
nearest-neighbor coupling such a state does not emerge.
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APPENDIX A: RELAXATION TIME OF THE
ENVIRONMENTAL COUPLING, EQ. (1d)

The dependence of the dynamics of the oscillators on the
relaxation time is depicted in Fig. 11. The dynamics of the
agent w1 (as an example) is shown in Fig. 11(a) for ε = 0 and
in Fig. 11(b) for ε = 1.5. The dynamics of randomly chosen

FIG. 11. Dynamics of the agent w1 (a) for ε = 0 and (b) for
ε = 1.5, with k = 10. (c, d) Dynamics of random oscillators for
different values of the relaxation parameter α.
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oscillators is shown in Figs. 11(c) and 11(d) for different values
of the relaxation parameter α occurring in Eq. (1d).

As the value of the parameter α is increased the relaxation
time (pointed out by filled circles in the insets) decreases both
in the absence (Fig. 11(a)) and in the presence (Fig. 11(b)) of
coupling between agents wi in Eq. (1d). It should be noted
that the relaxation time is very much lower in the presence of
coupling between the oscillators [see Fig. 11(b)] compared to
uncoupled oscillators [see Fig. 11(a)]. Further, the value of the
parameter α, which determines the relaxation time, dictates the
collective behavior of the ensemble of oscillators. Phase-flip
chimeras are observed for α � 1. For α = 1 the phase-flip
chimera is shown in Figs. 1 and 3. For α > 1.2, the out-of-
phase oscillations of the adjacent out-of-phase synchronized
coherent domains of the phase-flip chimera are represented
by a couple of representative oscillators in Fig. 11(c). On the
other hand, for α < 1.0, we observe only a synchronized state
for any choice of initial conditions and coupling strength as
shown by the representative oscillators in Fig. 11(d). Thus we
find that the emergence of the phase-flip chimera depends on
the relaxation time of the environmental coupling in Eq. (1d)
and that it emerges for parameter α � 1, which determines the
relaxation time of the wi’s.

APPENDIX B: DYNAMICS OF COUPLING WITH
OTHER VARIABLES

We have also examined the typical transition from a
desynchronized state to a synchronized states by coupling the
agent wi to other variables, xi or yi , in the same fashion as
in Eq. (1d). Snapshots of the instantaneous phases φi of the
ensemble of Rössler oscillators coupled via the y variable are
shown in Fig. 12. The left column corresponds to the case
of periodic oscillations when the oscillators are uncoupled,
while the right column corresponds to the case of chaotic
oscillations of uncoupled oscillators. A desynchronized state is
observed for ε = 0.005 [see Fig. 12(a)] for the case of periodic
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φ i

i
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0

π
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φ i

i
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FIG. 12. Snapshots of the instantaneous phases φi of the ensem-
ble of Rössler oscillators coupled via the y variable displaying (a) a
desynchronized state for ε = 0.005, (b) a completely synchronized
state for ε = 0.02, (c) a desynchronized state for ε = 0.005, and (d)
a completely synchronized state for ε = 0.04. Left column: Periodic
oscillations of Rössler oscillators. Right column: Chaotic oscillations
of Rössler oscillators. Insets in (b) and (d): Snapshots of xi .

oscillations. With an increase in the coupling strength the
oscillators are completely synchronized as shown in Fig. 12(b)
for ε = 0.02 and remain synchronized for any high coupling
strength. For the case of chaotic oscillations of uncoupled
Rössler oscillators, the oscillators are desynchronized for low
values of the coupling strength as shown in Fig. 12(c) for ε =
0.005 and remain completely synchronized above a threshold
value of ε as illustrated in Fig. 12(d) for ε = 0.04. Hence,
only the existence of a completely synchronized state from the
desynchronized state is found and we are not able to find a
phase-flip chimera for any value of k and ε. A similar scenario
arises for x coupling as well (which we do not present here).
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