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Rings of oscillators with delayed pulse coupling are studied analytically, numerically, and experimentally. The
basic regimes observed in such rings are rotating waves with constant interspike intervals and phase lags between
the neighbors. We show that these rotating waves may destabilize leading to the so-called jittering waves. For
these regimes, the interspike intervals are no more equal but form a periodic sequence in time. Analytic criterion
for the emergence of jittering waves is derived and confirmed by the numerical and experimental data. The
obtained results contribute to the hypothesis that the multijitter instability is universal in systems with pulse
coupling.
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I. INTRODUCTION

Interaction by pulses is typical for dynamical networks of
various nature, including neuronal populations, cardiac tissues,
and many others [1–3]. Pulses are signals characterized by
temporal duration much smaller than the oscillation period.
This property allows to consider pulse emission and arrival as
discrete instantaneous events. A popular model utilizing this
idea is pulse-coupled oscillators. In this model, the effect of a
pulse depends on the dynamical state of the oscillator at the
time of the pulse arrival. Under weak coupling, the oscillators
are usually described by their phases, and the influence of
a pulse is determined by the so-called phase resetting curve
(PRC) [4].

The PRC tabulates the effect of an incoming pulse de-
pending on the phase at which it arrives. For an oscillatory
system, the PRC can be computed numerically or measured
experimentally [5–10]. Thus, pulse-coupled phase oscillators
can be considered either as stand-alone models, or as approxi-
mations of more complex systems. The main advantage of such
models is their simplicity for numerical implementation and
theoretical analysis [6,11–15]. A number of important results
on collective behavior of networks have been obtained within
the framework of pulse-coupled oscillators. In particular, the
synchronous [16] and asynchronous [17] regimes have been
studied, as well as cluster states [18–20] and splay states [21].

In realistic networks, pulses propagate with finite speed
leading to nonzero coupling time delays. The influence of de-
lays has been proven significant in many cases and may result
in new dynamical phenomena, such as multistability [22–25],
oscillations death [26], strong and weak chaos [27], and other
complicated regimes [28–32].

Recently we have reported a surprising dynamical phe-
nomenon in spiking oscillators subject to delayed feed-
back [33,34]. In such systems, if the PRC is steep enough,
regular spiking may destabilize and give birth to the so-
called “jittering” regimes with nonequal interspike intervals
(ISIs). The number of different coexisting jittering regimes
grows exponentially with the delay, which makes the system
highly multistable. The corresponding transition was called
“a multijitter bifurcation.” Moreover, it is shown that in a
system of two oscillators with pulse delayed coupling [35],

the in-phase and antiphase regimes may destabilize through
multijitter bifurcations. These findings indicate that the jitter-
ing instability is common for systems with pulse interactions,
and it is important to understand its role in networks of
pulse-coupled oscillators. The current study provides a step
in this direction.

The paper investigates unidirectional rings of phase os-
cillators with pulse delayed coupling. A feed-forward ring
is one of the fundamental network motif and often appears
in nature [36–40]. We start with an analytical study of
rotating waves and demonstrate that they may destabilize
through the multijitter bifurcation. Subsequent numerical and
experimental study shows that jittering waves with distinct
ISIs are born at the bifurcation points. The period of these
regimes is proportional to the delay, and their number grows
exponentially. The most interesting distinctive feature is that
in rings the jittering regimes appear at much shorter delays
than in a single oscillator with delayed feedback.

II. THE MODEL

The basic model of our study is a ring of N oscillators with
pulse delayed coupling as depicted in Fig. 1(a). Its dynamics
is governed by the equations

dϕj

dt
= ωj + Z(ϕj )

∑
t
j−1
s

δ
(
t − t j−1

s − τj

)
. (1)

Here j = 1, . . . ,N is the oscillator number, and each oscillator
is described by its phase ϕj ∈ S1. Without coupling, the phase
grows uniformly with dϕj/dt = ωj . When the phase reaches
unity, it resets to zero and the oscillator emits a spike. The in-
stants when this happens are denoted by t

j
s , s ∈ Z. Each j th os-

cillator receives input from its previous neighbor, the (j − 1)-st
oscillator (the first one receives input from the last one, so we
identify 0 and N ). This means that each spike produced by the
(j − 1)-st oscillator at t j−1

s results in a pulse arriving to the j th
one after the delay τj . When the oscillator receives a pulse, its
phase instantly changes to the new value: ϕj �→ ϕj + Z(ϕj ),
where the function Z(ϕ) is the phase resetting curve (PRC) [4].

In the analytical part of our paper, we consider identical
oscillators with ωj = 1. However, in the numerical part we
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FIG. 1. (a) A feed-forward ring of N oscillators with pulse
delayed coupling. (b) Dynamics of the ring demonstrating a rotating
wave with a period T and lag �. Symbols denote the time instants
when the oscillators produce spikes. A spike emitted at a certain
moment of time by an oscillator arrives to the next oscillator after the
delay τ .

study the influence of frequency mismatch. They are also
inevitable in the experimental study. We also set all delays
equal to τj = τ , which can be easily generalized to an arbitrary
delay distribution [41].

III. ROTATING WAVES AND THEIR STABILITY

The basic dynamical regimes observed in rings of unidirec-
tionally coupled oscillators are rotating waves [42–44]. Such
waves are characterized by the same dynamical profile of all
oscillators that is shifted by a constant time lag between the
neighbors, i.e., ϕj (t) = ϕj−1(t + �). Suppose that system (1)
demonstrates such a regime with the period T and the lag
�, as depicted in Fig. 1(b). Then each oscillator receives one
pulse per period at phase ψ = (τ − �) mod T , which allows
to determine the period as T = 1 − Z(ψ), which is the time
between the consecutive spikes of one oscillator. The total
time lag over the whole ring must be a multiple of the period,
i.e., � = RT/N , where R = 0, . . . ,N − 1 is the wave number
which characterizes the type of the rotation wave. Taking this
into account, the equations for the rotating waves can be written
as

T = 1 − Z(ψ), � = RT/N, τ = PT + � + ψ. (2)

Here ψ ∈ [0,1] is the phase at which oscillators receive
input The wave number R = 0 corresponds to a complete
synchronization, R = 1 to the splay state, etc. P is the integer
number controlling the value of the delay or, more exactly, the
number of full periods in the delay τ .

Equation (2) can be understood as follows: for any given
PRC function Z(·), wave number R, and the number of
oscillators N , the three equations (2) provide the three
parameters of the rotating wave: period T , phase of the spike

arrival ψ , and the lag �. An integer value of P can be
considered as an additional parameter tuned in such a way
that (2) admits a solution. Alternatively, (2) can be considered
as a countable set of equations for all integer values of P . Any
solution 0 � ψ � 1, T > 0, 0 � � < T of any such equation
corresponds to a rotating wave. From (2) we can obtain the
following explicit parametric representation of the period and
lag of the rotating waves as a function of the delay:

T (ψ) = 1 − Z(ψ),

τ (ψ) =
(

P + R

N

)
T (ψ) + ψ, (3)

�(ψ) = RT (ψ)/N,

where ψ plays the role of a free parameter.
Further we study the local stability of the rotating waves.

For this we consider a perturbed solution with spiking times
t
j
s = sT + j� + δ

j
s , where δ

j
s � T are deviations from the

periodic regime. Then the interspike interval T
j
s = t

j

s+1 − t
j
s

can be determined as T
j
s = 1 − Z(ψj

s ), where ψ
j
s is the phase

at which the pulse arrives. It is influenced by the timing of a
spike emitted by the (j − 1)-st oscillator P periods earlier:
ψ

j
s = t

j−1
s−P + τ − t

j
s = ψ + δ

j−1
s−P − δ

j
s . Thus, we obtain an

equation, which determines the dynamics of the perturbation:

δ
j

s+1 = δj
s + 1 − T − Z

(
ψ + δ

j−1
s−P − δj

s

)
. (4)

Note that the deviations in the period (s + 1) depend on the
deviations in the previous period s as well as on the deviations
P periods ago. Thus, the map has dimension N (P + 1), which
agrees with the results from Ref. [45]. For small deviations, (4)
can be linearized,

δ
j

s+1 = (1 + α)δj
s − αδ

j−1
s−P , (5)

where α = Z′(ψ). System (5) is a linear discrete map, the
stability of which determines the local stability of the rotating
wave. Let k be the wave number of the perturbation (not to
be confused with R) δ

j
s ∼ exp(ikj ), then the stability of this

kth mode can be found from the ansatz δ
j
s = λ(k)s exp(ikj ),

where λ is the multiplier of the rotating wave corresponding
to the spatial perturbation mode exp(ikj ). In particular, the
bifurcation condition is given by λ(k) = exp(iω), where ω is
the frequency. We obtain the characteristic equation

λP+1(k) − (1 + α)λP (k) + αe−ik = 0. (6)

Note that the periodic boundary conditions on the ring allow
only a limited set of wave numbers k = 2πn/N , where n =
0, . . . ,N − 1.

Let us consider first homogeneous perturbations k = 0.
Then Eq. (6) possesses the trivial multiplier λ(0) = 1 cor-
responding to the phase shift (Goldstone mode). Further,
dividing Eq. (6) by λ − 1 we obtain the equation

λP (0) − α

P−1∑
j=0

λj (0) = 0, (7)

which possesses the critical root λ(0) = 1 for α = 1/P

and P + 1 critical roots λm(0) = exp[i2πm/(P + 1)], m =
0, . . . ,P for α = −1 [33,34]. In fact, Eq. (7) for the ho-
mogeneous perturbations is the same as the characteristic
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equation for one oscillator with delayed feedback [33,34].
Hence, we have the same conclusions for the stability of the
homogeneous mode as for just one oscillator: the mode is
stable for α ∈ (−1,1/P ), there is a saddle node bifurcation
at α = 1/P , and the multijitter bifurcation α = −1, when all
multipliers λ(0) become unstable at once.

Now let us consider all other spatial modes k �= 0. The
critical case corresponds to λ(k) = eiω(k), and we obtain

eiω(k)(P+1) − (1 + α)eiω(k)P + αe−ik = 0. (8)

This equation has no solutions with k �= 0 for α /∈ {0, − 1}.
Indeed, it can be written in a general form

eiϕ1 + αeiϕ3 = (1 + α)eiϕ1 ,

and it is straightforward to see (e.g., a geometric considerations
in the complex plane) that for α /∈ {0, − 1} it can be fulfilled
only if ϕ1 = ϕ2 = ϕ3 modulo 2π . Hence, we obtain

(P + 1)ω(k) = Pω(k) = −k mod 2π,

which implies k = ω = 0. Thus, for α /∈ {0, − 1} the only
critical multiplier λ(0) = 1 exists.

Other critical multipliers may emerge only in the two cases:
α = 0 or α = −1. For α = 0, Eq. (6) implies λ(k) = 1 for
any k. For α = −1, (8) implies ω(k) = (−k + 2πm)/(P + 1),
where m = 0, . . . ,P .

Let us summarize the results for the characteristic equa-
tion (6). Its spectrum has the form � ∪ {1}, where λ(0) = 1
is the trivial multiplier corresponding to the neutral stability
along the phase shift. Stability of the limit cycle is defined
by the set �, which includes critical multipliers only in the
following cases:

(i) α = 1/P : one critical multiplier λ(0) = 1 for k = 0.
(ii) α = 0: (N − 1) critical multipliers λ(k) = 1 for k =

2πn/N , n = 1, . . . ,N − 1.
(iii) α = −1: N (P + 1) − 1 critical multipliers λm(k) =

exp[−ik + i2πm/(P + 1)], where m = 0, . . . ,P for k �= 0
and m = 1, . . . ,P for k = 0.

Thus, the rotating wave may change its stability only at
the parameter values α ∈ {−1,0,1/P }. It is easy to check that
it is stable in the parameter interval −1 < α < 0 and loses
its stability on the boundaries of this interval. At α = 0, the
emergence of N − 1 critical multipliers λ(k) = 1 indicates
the occurrence of pitchfork bifurcations for each spatial mode
k �= 0, where N − 1 nonsymmetric spiking regimes are born
simultaneously. In this paper, do not focus of these regimes.

A more remarkable scenario is observed at α = −1 where
all multipliers become critical at once. The rotating wave loses
its stability, and the so-called jittering waves or regimes with
distinct interspike intervals emerge. Because of the coexistence
of a big number of these solutions, the corresponding scenario
is called a “multijitter bifurcation”; see also Refs. [33,34]. A
more detailed study of this bifurcation and the jittering waves
is carried out in the following sections.

IV. NUMERICAL STUDY OF THE JITTERING WAVES

As shown in the previous section, the stability criterion for
the rotating waves relies on the steepness of the PRC. The
multijitter bifurcation occurs when the slope of the PRC is
less than minus one. For our numerical illustrations, we chose
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FIG. 2. (a) The PRC (9) for κ = 0.185. (b) The PRC of the
electronic oscillator used in the experiments. In both panels the
intervals with the slope < −1 are marked by red line.

the PRC in the form [20]

Z(ϕ) = κ

2
[1 − cos(2πϕ2)]. (9)

Here κ is the coupling strength and controls both the magnitude
and slope of the PRC. We used κ = 0.185 for which the PRC
is shown in Fig. 2(a). For this value, two points ϕ exist with
Z′(ϕ) = −1, and an interval with Z′(ϕ) < 1 is between them
[red line in Fig. 2(a)].

We varied the delay and simulated system (1) directly for
N = 6 starting from 20 different initial conditions for each
value of τ . For each trial, the initial phases of the oscillators
at t = 0 were chosen randomly with a uniform distribution,
and it was assumed that no spikes were produced by any of
the oscillators for t < 0. The obtained numerical results are
depicted in Fig. 3(a) by dots. The color of each dot corresponds
to the wave number of the established regime (see the legend).
Gray dots correspond to asymmetric regimes. The branches
obtained theoretically according to (3) are plotted by thin
dashed lines. The points of the stability loss are marked by
circles (for α = 0) and stars (for α = −1). One can see that
the numerically obtained dots coincide with the stable parts
of the theoretical branches. There are also several branches
of asymmetric regimes, but, most importantly, the jittering
wave regimes are observed, which emerge from the multijitter
bifurcations (stars).

Jittering waves are characterized by distinct interspike
intervals, and they emerge from the rotating wave at the

012206-3



KLINSHOV, SHCHAPIN, YANCHUK, AND NEKORKIN PHYSICAL REVIEW E 94, 012206 (2016)

0 0.4 0.8 1.2 1.6 2
0.8

1

delay

IS
I

= 1.03

(a)

(e)

1
2

3
4

5
6

1
2

3
4

5
6

1
2
3

4
5

6

1
2

34
5 6

0.9

0
1
2
3
4
5

= 0.42

485               490               495

(b)

485               490               495

= 0.57

490               494               498

(c)

480                 490             498

= 1.03(d)

480                 490             498

490               494               498

480                 490             498

490                 495             499

FIG. 3. Periodic rotating waves and jittering wave regimes in a
ring of N = 6 oscillators. (a) The bifurcation diagram, the observed
interspike intervals versus the delay. Different colors correspond to
the different wave numbers; see the legend. Thin dashed and thick
lines correspond to unstable and stable rotating waves, respectively.
Both are given by Eq. (3), and thick lines are checked numerically.
Circles denote pitchfork bifurcations, stars the multijitter bifurcations.
Jittering regimes are characterized by several distinct ISIs for the same
value of delay. (b–e) Examples of jittering regimes. In the top of each
panel the ISI demonstrated by each oscillator is plotted versus time.
The plots are shifted along the vertical axis for the convenience. In
the bottom of each panel, the time instants of the spikes emission are
depicted by dots. Note that the firing patterns are close to the rotating
waves, and the deviations are visible only after a careful examination
or a zoom.

multijitter bifurcation; see Figs. 3(b)–3(e). Each such solution
is close to the rotating wave from which it is born. However,
the intervals between the consecutive spikes of each oscillator
are not constant anymore but constitute a periodic sequence of
two distinct ISIs. We use this property to encode the jittering
regimes by binary sequences, where 0 corresponds to the
shorter, and 1 to the longer interval. For example, a regime
when oscillators produce two long and then one short ISIs
periodically is encoded as 110; see Fig. 3(b). The other regimes
shown are 1100 (c), 1110000 (d), and 1110010 (e). Note that

in Fig. 3 the plots of the ISIs for different oscillators are shifted
along the vertical axis.

All the jittering regimes that emerge at the same bifurcation
point are characterized by the same period of the binary
sequences. This period is longer for larger delays. We found
that the period of the emergent jittering solutions equals

 = R + (P + 1)N. (10)

Moreover, we discovered that for each periodic binary
sequence the parameter interval can be found where the
corresponding jittering regime is observed. The regimes
consisting of the same number of zeros and ones exist in
the same parameter intervals and possess absolutely the same
values of the ISIs. This implies that such the regimes are
plotted by the same set of points in the bifurcation diagram.
An example of such regimes can be seen in Figs. 3(d) and 3(e).

V. EXPERIMENTAL STUDY

We have also experimentally studied jittering waves in a
pair of electronic FitzHugh-Nagumo oscillators with mutual
pulse delay coupling [9]. This system is the simplest example
of a “ring” consisting of just two oscillators. Two basic regimes
exist in the system: the in-phase and the antiphase ones. Below
we show that each of these regimes may give birth to jittering
regimes.

The circuitry of the electronic system used in the experiment
is the same as in Ref. [9]. In the absence of coupling
each oscillator spikes periodically with period 2.95 ms. The
parameters of the oscillators are set as in Ref. [34]. The
coupling is organized as follows: When the output voltage of
one oscillator exceeds the threshold value, a spike is produced
and sent to the delay line. The delay lines are realized on
FPGA Xilinx Virtex-5 LX50 as shift registers consisting of
2000 elements with time of the shift 10 μs. When the spike
passes the delay line, a pulse of amplitude 5 V and duration 42
μs is sent to the target oscillator. The phase resetting curve
corresponding to such a pulse is depicted in Fig. 2(b). It
exhibits an interval with the slope less than −1, indicated
by red.

The system can demonstrate only two different rotation
waves, with R = 0 and 1. We call the first regime in-phase,
the second antiphase. During the experiment, we gradually
selected different values of the feedback delay time τ and
recorded the observed dynamical regimes. The results are
depicted in the experimental bifurcation diagram in Fig. 4(a).
Here for each delay τ the observed ISIs are plotted analogously
to the presentation in Fig. 3(a). The experimental data points
are plotted by gray, and the color of solid lines marks the
type of the regime: black for in-phase, red for antiphase. The
corresponding theoretical curves are plotted by thin dashed
lines. One may see that both in-phase and antiphase regimes
may destabilize, giving rise to the jittering regimes. The
examples of the in-phase and antiphase jittering regimes are
given in Figs. 4(b)–4(c). Figure 4(b) depicts the antiphase
jittering regime 1101000 observed at τ = 7.3 ms, and Fig. 4(c)
the in-phase regime 111100 observed at τ = 6.18 ms.
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FIG. 4. Experimental study of a ring of two electronic oscillators
with pulse delayed coupling. (a) Experimental bifurcation diagram.
Gray dots represent data points, approximated by thick lines, black
for in-phase regimes, and red for antiphase. Thin dashed lines plot
theoretical branches. (b–c) Examples of jittering regimes. In each
panel, on the top the output voltages of both oscillators are plotted
versus time. On the bottom, the interspike intervals are plotted. On
the right are the Lissajous figures.

VI. DISCUSSION AND CONCLUSIONS

We have studied the dynamics of rings of pulse oscillators
with delayed coupling. In such systems, the base dynamical
regimes are rotating waves. We have shown that each rotating
wave may destabilize in the multijitter bifurcation. This bifur-
cation was previously introduced for a single delayed oscillator
in Refs. [33,34]. In such a scenario, all the multipliers of
the corresponding limit cycle become critical simultaneously.
When the rotating wave destabilizes, it gives rise to the
so-called jittering wave regimes with distinct ISIs. In the
jittering regime, each oscillator produces a periodic sequence
of long and short ISIs. These sequences are the same for all
oscillators although shifted in phase.

Many common features are shared by the multijitter bifur-
cations observed in a single oscillator with delayed feedback
and in a ring of oscillators considered here. In both cases, the
regular regime destabilizes and the irregular, jittering regimes
are born. In the case of one oscillator the regular regime is the
periodic spiking; in the case of the ring of oscillators it is the

rotating wave. First, the condition for the bifurcation is exactly
the same for the both systems. Namely, the slope of the PRC
at the phase at which the oscillator is simulated must be equal
to −1. In generic situations, if the PRC is smooth, the points
with slope −1 appear in pairs. In this case, the regular regime
is unstable in the interval between the two of these points.

Second, the properties of the emergent jittering regimes
are quite similar. These regimes are bipartite, i.e., the ISIs
constituting them have one of two distinct values. As a result,
the corresponding bifurcation diagram has a typical form with
multiple two-branch loops [Fig. 3(a)]. Bipartite regimes can
be encoded by binary sequences, which we did in the case
of both one oscillator and the ring. In both cases the period
of the observed sequences is proportional to the delay. The
most surprising feature also observed in both cases is the
following: for an arbitrary binary sequence of a given period,
the parameter interval does exist where the corresponding
jittering regime is present and stable. The regimes with the
same number of long and short ISIs are stable in the same
parameter interval. This feature leads to high multistability of
the system, which develops exponentially as the delay grows.

In spite of similarity between the two systems, multijitter
bifurcation in rings has an important distinction from that in
one oscillator with feedback. For one oscillator, the value of
the delay must be large compared to the oscillator’s natural
period. Specifically, the multijitter bifurcation giving birth to
jittering regimes of period  takes place at the delay

τ = ( − 1)[1 − Z(ψ∗)] + ψ∗,

where ψ∗ is the phase with Z′(ψ∗) = −1. Since the PRCZ(ϕ)
is typically small, the period of jittering regimes is roughly the
delay divided over the natural period. Thus, to obtain jittering
regimes with long periods one needs delays several times larger
than the natural period.

For rings the situation is different. As follows
from (2), multijitter bifurcations take place at delays τ =
(P + R/N)[1 − Z(ψ∗)] + ψ∗. According to (10), this implies
that jittering regimes with period  emerge at the delay

τ = (/N − 1)[1 − Z(ψ∗)] + ψ∗.

Thus, the period of the emergent jittering solutions is
roughly proportional to the delay times the number of
oscillators, or the total delay along the ring. As a conse-
quence, even short coupling delays may result in higher-
periodical jittering regimes if the number of oscillators is large
enough.

The permissibility of short delays may be important for
application of the obtained results to real-world networks,
for example, neural populations. Coupling delays in neural
networks related to signal propagation along axons and the
inertness of synapses are typically of the order of millisec-
onds [46]. Since the typical oscillations frequency in neural
network is below 100 Hz, such delays are too small to induce
jittering instability by the delayed feedback. However, in
closed loop configurations the delays may accumulate and
constitute a value larger than the oscillations period. According
to recent estimates, the number of synapses to connect any two
neurons in the nervous system is from three to seven [47,48].
This suggests that ring motifs of six to 14 neurons are
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not uncommon. Thus, the emergence of multistable jittering
regimes may be expected in such configurations, as well as
other types of multistability described previously [49].

The obtained results show that the multijitter instability may
appear in networks with pulse delayed interactions. However,
since the feed-forward loops are known to possess similar
properties to single delay-coupled systems [50], a further

objective is a search for similar effects in a wider class of
network configurations.
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