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Tilted excitation implies odd periodic resonances
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Our aim is to unveil how resonances of parametric systems are affected when symmetry is broken. We showed
numerically and experimentally that odd resonances indeed come about when the pendulum is excited along a
tilted direction. Applying the Melnikov subharmonic function, we not only determined analytically the loci of
saddle-node bifurcations delimiting resonance regions in parameter space but also explained these observations
by demonstrating that, under the Melnikov method point of view, odd resonances arise due to an extra torque
that appears in the asymmetric case.
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I. INTRODUCTION

Resonance is a ubiquitous phenomenon. It provides an
ideal landscape for efficient functioning of many natural and
technological systems, such as the amplification of speech in
body cavities [1], the motion of a child on a swing [2], imaging
by magnetic resonance, and electronic signal amplification
[3–5]. Parametric resonance, in particular, arises from time-
dependent modulation of system parameters and has important
implications in phenomena ranging from boat capsizing in
naval engineering [6], encoding of tactile information in rodent
whisking behavior [7], and energy harvesting from mechanical
oscillatory motion [8]. The parametric pendulum, described by

θ̈ + βθ̇ + (1 + P cos �pt) sin θ = 0, (1)

is a paradigmatic model in nonlinear dynamics [9–11]. It
consists of a planar simple pendulum whose pivot oscillates
harmonically along the vertical direction with amplitude P and
frequency �p, and β is the friction parameter. This system has
attracted great attention [12–17]. It presents a wide range of
dynamical behavior, such as the stabilization of the hilltop sad-
dle [18–23], the occurrence of chaotic behavior [24–29], the
observation of period-doubling cascades [30,31], and the exis-
tence of resonance regions [11,32]. Moreover, it can be used as
a qualitative analog for more complex systems [31,33,34]. In-
deed, mechanical analogs of physical systems provide a direct
visualization of motion, allowing an intuitive understanding
of the system being studied, as is done for the analysis of
power grid [35] and applications of telecommunications [36].
Rotating motion in the parametric pendulum has also been
widely considered in the literature [37], due to the possibility
of energy harvesting from sea waves, which would consist
in transforming the vertical motion of sea waves in rotating
motion of systems composed by parametric pendula [8,38–41].

The study of stable periodic orbits of Eq. (1) has a long
academic history, in particular regarding those whose period
is an even or odd multiple of the excitation period [42].
Previous works show the existence of both even [30,43] and
odd [31,44,45] oscillations in the frequency region �p < 2.
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Odd resonances, however, are very rarely reported, supposedly
due to its nontypical nature (only observed for narrow ranges
of parameter values, according to Ref. [44]). To describe
theoretically the mechanisms that could lead to subharmonic
solutions, Koch and Leven [46] applied the Melnikov theorem
for subharmonic bifurcations [47,48] to this system. They
succeeded in calculating parameter ranges for the existence
of even oscillations but concluded that the Melnikov theorem
could not be applied to unravel parameter ranges for odd oscil-
lations. This is also true when the Melnikov method is applied
to other similar parametric systems [49–51]. In Ref. [52], it is
shown that for nonlinear perturbed systems, even oscillations
are due to parametric excitation along the gravitational field,
while odd oscillations can exist as consequence of external
torques. Looking at Eq. (1), one notices that this system
is symmetric with respect to the transformation θ → −θ .
External torques are absent. However, breaking the symmetry
of Eq. (1) by a tilt in the pendulum pivot motion should
introduce an additional torque in the equations of motion, as
we shall see. A question then arises: Does symmetry breaking
affect somehow the behavior of odd oscillations?

We have demonstrated numerically and experimentally,
for the tilted parametric pendulum, the existence of odd
resonances in the frequency region �p > 2. Also, applying
the Melnikov subharmonic function, we obtained analytically
the loci of saddle-node bifurcations that are the parameter
thresholds for the existence of odd stable oscillations. Surpris-
ingly, these loci coincide with the curves that limit resonance
regions found numerically. Moreover, we show that according
to the Melnikov method approach, whereas even resonances
are a consequence of the vertical excitation, odd ones comes
about due to the tilt in the orientation of the excitation with
respect to the vertical position. This work therefore paves the
way to a better understanding of how resonances of any type
can appear in complex oscillating systems and how they can
be related to symmetry.

II. EXPERIMENTAL APPARATUS

A diagram of the experimental apparatus is shown in Fig. 1.
The pendulum consists of a single arm with mass m and center-
of-mass position at a distance l from the pivot axis. The natural
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FIG. 1. Diagram of the experimental apparatus of a planar simple
pendulum parametrically excited along an arbitrary direction. The
pendulum pivot axis is attached to a sliding car that is forced to
oscillate with amplitude A and frequency fp , with the help of a crank
and a servo motor. We can measure simultaneously the absolute value
of the pivot speed vp , with a linear encoder system in the laboratory
reference frame, and the absolute value of the pendulum angular
velocity |ω|, with a rotary encoder system attached to the pendulum.

frequency of oscillation is f0 and the friction parameter is
b [53]. The angle between the pendulum arm and the vertical
direction is θ . The pivot of the pendulum is attached to a sliding
car, which is periodically excited according to s = A cos ωpt ,
along a tilted axis making an angle φ = π/8 with the vertical
direction. The rail over which the pivot oscillates is attached to
the wall; therefore φ is not a dynamic parameter. To measure
the absolute value of the pivot velocity vp = |ṡ|, we attached
a linear optical encoder, of resolution 2.54

500 cm, to the sliding
car. From the time series vp(t), we can obtain the frequency
fp = 2πωp and the amplitude A of the external excitation,
which are the control parameters of the system.

To measure the absolute value of the angular velocity ω = θ̇

of the pendulum arm, we attached an optical rotary encoder,
of resolution 2π

2500 rad, to the pendulum arm, concentric to the
pivot point. The light sensor of the rotary encoder is attached
to the sliding car, concentrically to the pivot, while the sensor
of the linear encoder is attached to the laboratory reference
frame. The induced inputs from both encoders were detected
by using an Analog Digital Converter (ADC) board of 16
bits at the rate of 200 Ksamples/s. For fixed values of A,
the excitation frequency fp was spanned in the forward and
backward directions with a servo motor in steps of 0.01 Hz.

III. EQUATIONS OF MOTION

The equations of motion of the undamped parametric
pendulum can be obtained via Lagrangian formulation. Adding
a linear damping term −bθ̇ , we arrive at

θ̇ = ω,

ω̇ = − sin θ − [P cos(�pt̄) sin(θ − φ) + βω], (2)

where the dot indicates derivative with respect to the normal-
ized time t̄ = ω0t , and

�p = ωp

ω0
, P = ω2

pA

g
, β = b

ω0
, (3)

are the dimensionless parameters of the system. The period of
the perturbation is Tp = 2π/�p. Notice the symmetry θ →
−θ is now broken, and comparing with Eq. (1) we have an
extra torque given by τ = P sin φ cos (�pt̄) cos θ , non-null for
φ �= 0.

IV. DATA ANALYSIS

The periodicity of each trajectory, both in numerical and ex-
perimental analysis, was computed from the stroboscopic map
for the absolute value of the angular velocity of the pendulum
|ω[(k + 1)Tp]| × |ω(kTp)|, k ∈ N. The stroboscopic map is
obtained by observing the (absolute) values of the pendulum
velocity |ω(t)| every time the perturbation completes a full
cycle, i.e., every second maximum of vp. In Fig. 2, sampled
experimental time series for period-2, -3, -4, and -5 oscillations
are displayed, as well as the respective stroboscopic maps. The
number of points m in the stroboscopic map is related to the
ratio between the period of oscillation and the period of the
excitation, being that T/Tp = m/n, with m and n coprime
integers.

V. NUMERICAL RESULTS

In Fig. 3 parameter spaces for the symmetric (a) and
asymmetric (b) cases are shown. They are constructed using
direct integration. For each pair of parameters (�p, P ) we
integrate Eqs. (2) for a time span t̄ = 1000, with initial
conditions θi = 0.55 and ωi = 0 and, after discarding initial
data up to t̄ = 900 (transient behavior), we compute the
periodicity of the stationary solution as explained in Sec. IV.
Rotations and oscillations of different periods, as well as
irregular motion, are observed.

In Fig. 3(a), we display the parameter space for the vertical
excitation case. Notice that off the resonance regions, the
pendulum does not oscillate but stays at the fixed point
(FP) θ = ω = 0. From the right to the left, full line SN4
is the loci of saddle-node bifurcations for which a period-4
stable oscillations (P4) come about, and full line PK is
the loci of pitchfork bifurcations at which stable period-2
(P2) oscillations appear. Then we have period-1 (R1) and
period-2 (R2) rotations and persistent tumbling chaos (CH). In
Fig. 3(b) we have the parameter space for the nonsymmetric
perturbation case. Regions P1 represent parameters generating
nonresonant regions, when the pendulum oscillates with the
same period of the perturbation. From the right to the left,
we see with the full lines SN4, SN3, and SN5/2, respectively,
the loci of saddle-node bifurcations from which period-4 (P4),
period-3 (P3), and period-5/2 stable oscillations come about.
Full line PD is the loci of period-doubling bifurcations in which
the period-1 oscillations lose stability and stable period-2
resonant stable oscillations (P2) appear. We observe period-1
(R1) and period-2 (R2) rotations, and then persistent tumbling
chaos (CH). Multistability is present for some parameter
values, but since the integration has only been performed for a
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FIG. 2. On the left column, from the top to the bottom, we display
sampled experimental time series for fixed amplitude A = 2.02 cm il-
lustrating period-2 (fp = 4.05 Hz), period-3 (fp = 5.35 Hz), period-
4 (fp = 7.5 Hz), and period-5 (fp = 8.55 Hz) oscillations. Full red
lines represent the modulus of the pendulum angular velocity, |ω|,
and full black lines the time series for the modulus of perturbation
velocity normalized with respect to the maximum value of |ω|, vpn.
Full red circles are the values of the pendulum velocity each time the
perturbation completes a full cycle. On the right column we have the
corresponding stroboscopic maps for each time series.

single initial condition, this cannot be seen here. In the vertical
case we observed only even resonances and in the tilted case,
both even and odd resonances. However, we must have in
mind that the parameter space depends on the choice of initial
conditions.

For the parametrically excited double pendulum, regions of
nonoscillation and the pitchfork bifurcations in the vertical
case are substituted for period-1 oscillations and period-
doubling bifurcations when excitation is tilted [57,58]. This
is due to the extra torque introduced by symmetry breaking,
as seen in Sec. III.

VI. EXPERIMENTAL RESULTS

We confirm experimentally the behaviors in Fig. 3(b)
through bifurcation diagrams by fixing the amplitude of
excitation at A = 2.02 cm and performing both forward and
backward frequency sweeps. Results are shown on Fig. 4(a).
The occurrence of odd primary resonances P1, P3, and P5

FIG. 3. Parameter spaces for (a) vertical (φ = 0) and (b) tilted
(φ = π/8) excitations. FP denotes fixed point; Pm and Rm, period-
m [42] oscillation and rotation, respectively; IO periodic inverted
oscillations; and CH persistent tumbling chaos [27]. Full lines
represent the loci of saddle-node (SN), pitchfork (PK), and period-
doubling (PD) bifurcations and were obtained with the software
AUTO 07p [54,55]. See the Supplemental Material for the numerical
code [56].

for large parameter ranges is remarkable. It is important to
observe that the control parameter in the laboratory are the
amplitude A and the frequency fp of the excitation, while
the parameter space is computed in terms of the normalized

parameters P and �p. Since P = ω2
0

g
A�2

p, by keeping A

constant, we have a parabola in the parameter space of Fig. 3.
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FIG. 4. Bifurcation diagrams at A = 2.02 cm obtained (a) ex-
perimentally and (b) numerically. Frequency of the excitation was
spanned both forward (line with empty circles) and backwards (full
line). Periodic oscillations P3, P4, and P5 are excited by manually
setting up initial conditions of the pendulum and are displayed
in triangles, squares, and stars, respectively, for forward frequency
sweeping and in full lines for backward sweeping.
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Also, all points in parameter space are generated by integrating
the equations of motion with the same initial conditions.
When the experiment is being performed, the initial conditions
are automatically updated from point to point. To show the
remarkable agreement between numeric and experimental
results, in Fig. 4(b) we show the equivalent bifurcation diagram
computed numerically.

Along the line with empty circles (increasing fp), from
the left to the right, the pendulum starts realizing small
oscillations with the same period and phase of the excitation.
At fp = f0

2 = 0.8 Hz, we have a bifurcation at which it

oscillates with period Tp

2 and out of phase with perturbation.
Another bifurcation happens at around fp = f0 = 1.61 Hz,
causing it to oscillate with the same period of the pertur-
bation but with a different phase. For larger frequencies,
at around fp = 2 Hz, the pendulum slowly gets in phase
with the excitation. For around fp = 2.8 Hz irregular motion
is observed and we needed to prevent the pendulum from
rotating, because the energy gain is so large that it can
destroy the apparatus [57]. Around fp = 2f0 = 3.22 Hz the
pendulum oscillates with twice the period of excitation, and
for a slight increase in frequency it goes back to oscillating
with the same period and phase of the perturbation until the
end of data acquisition. Following the full line (decreasing
fp), we observe basically the same phenomena, except for
when there is hysteresis. In this process, we observe no
oscillation with period higher than 2Tp, but this is because
in the frequency region where we expect to observe those
solutions, the pendulum is oscillating in the regime of small os-
cillations, outside the basins of attraction of these long-period
attractors.

To detect those solutions, we need to manually adjust
the initial conditions of the pendulum in the parameter
region in which we expect to observe them. Then, once the
wanted attractor is found, we perform forward and backward
frequency sweeps. If we adjust θ0 ≈ 0.5 in the region fp ≈
3f0 = 4.83 Hz, then we find the period-3 resonant oscillatory
attractor P3. The triangles represent those solutions with
increasing frequency, and the full line above them the same
solutions with decreasing frequency. Also, if we adjust θ0 ≈
0.36 in the region fp ≈ 4f0 = 6.44 Hz, we find the period-4
oscillatory attractor P4. The squares represent those solutions
with increasing frequency and, as before, the full line above
them, the same solutions with decreasing frequency. We also
found period-5 oscillations we did not foresee numerically
from Fig. 3, because the initial conditions we chose were out
of its basin of attraction. If we adjust θ0 ≈ 0.9 in the region
fp ≈ 5f0 = 8.05 Hz, then we will find attractor P5, which
is represented by stars in the case of increasing frequency
and by a full line above them in the case of decreasing
frequency. In Fig. 4(a) all full lines represent pendulum
behavior that for a decreasing frequency go into rotating
motion, resulting in an abrupt increase in |ω|. In Fig. 4(b)
this is not always the case; for P5, at fp = 7.7 Hz, it ends
up going back to period-1 oscillations. This difference can
be explained by the coexistence of periodic rotations and
oscillations. The coexistence of period-1, period-4, and period-
5 oscillatory attractors in the small range 7.8 < fp < 8.05
Hz is noteworthy. See the Supplemental Material for videos
illustrating this triple coexistence [56].

VII. MELNIKOV SUBHARMONIC FUNCTION

Parameter thresholds for the occurrence of resonant peri-
odic oscillations are derived by applying the Melnikov method
for subharmonic solutions. The planar simple pendulum is
described by the (Hamiltonian) vector field f (θ,ω) = [ω −
sin (θ )]ᵀ. The phase space has a pair of homoclinic orbits
biasymptotic to the saddle points (θ,ω) = (±π,0), and their
interior is filled by a continuous family of periodic oscillations
qα(t) = (θα(t),ωα(t)), with α being a label, described by

cos

(
θα

2

)
= ksn(t,k), sin

(
θα

2

)
= dn(t,k),

ωα = θ̇ α = 2kcn(t,k),

(4)

where sn(t,k), cn(t,k), and dn(t,k) are the Jacobi elliptic
functions and k ∈ [0,1] is the elliptic modulus [59]. The period
of these solutions is Tα = 4K(k), where K(k) is the complete
elliptic integral of first kind. Now we perturb this system with
the time-dependent and periodic (of period Tp = 2π/�p) vec-
tor field g(θ,ω,P,�p,β) = [0 − εP cos (�pτ ) sin (θ − φ) −
βω]ᵀ, with 0 < ε � 1 and consider the quantity

Mm(t0) =
∫ mTp

0
−ωα(t)[P cos �pt sin (θα − φ) − βωα]dt,

(5)
which is a path integral computed along the periodic oscillation
qα(t) of period Tα = mTp, that is, a solution satisfying the
resonance condition

4K(k) = m
2π

�p

. (6)

Theorem 4.6.2 of Ref. [47] states that if Mm(t0) has simple
zeros, meaning M

m/n(t0) = 0, but ∂M
m/n

∂t0
(t0) �= 0, then the

perturbed system has a solution that is a periodic subhar-
monic oscillation of period mTp, arising from a saddle-node
bifurcation.

Substituting Eqs. (4), subject to the resonance condition (6),
into Eq. (5), we have

Mm(t0) = −4k2βI1 − 4k2P cos φI2

+ 2kP sin φI3 − 4k3P sin φI4, (7)

where

I1 =
∫ mTp

0
cn2(t,k)dt,

I2 =
∫ mTp

0
cos[�p(t + t0)]cn(t,k)sn(t,k)dn(t,k)dt,

I3 =
∫ mTp

0
cos[�p(t + t0)]cn(t,k)dt,

I4 =
∫ mTp

0
cos[�p(t + t0)]cn(t,k)sn2(t,k)dt.

Imposing Mm(t0) has simple zeros and we obtain the loci of the
saddle-node bifurcations generating a subharmonic resonant
periodic orbit, i.e., the minimum values Rm such that for P >

Rm we might observe stable oscillatory motion of period mTp

in the parameter space.
If m is even, then I3 = I4 = 0, and Mm(t0) can only have

simple zeros if I2, which comes from the vertical excitation

012202-4



TILTED EXCITATION IMPLIES ODD PERIODIC RESONANCES PHYSICAL REVIEW E 94, 012202 (2016)

FIG. 5. A zoom into the parameter space of the tilted parametric
pendulum, representing the red dashed rectangle region indicated
in Fig. 3. Melnikov thresholds R3

odd and R4
even (empty circles) agree

finely with the borders of resonance regions SN3 and SN4 (full lines),
respectively.

component, is nonidentically null. In this case, Rm
even is given

by

Rm
even(�p) = 4β[E(k) − k′2K(k)]

π cos φ�2
p

sinh[�pK ′(k)], (8)

where k′2 = 1 − k2 is the complementary elliptic modulus and
K ′(k) = K(k′). On the other hand, if m is odd, I2 = 0, and
Mm(t0) can only have simple zeros if I3 or/and I4, which are
both due to the additional torque τ caused by the tilt in the
pivot motion, are nonidentically null. Then, Rm

odd is given by

Rm
odd(�p) = 4β[E(k) − k′2K(k)]

π sin φ
{[ 2E(k)

K(k) − 1
]
sech(�pK ′(k)) + π2S

K2(k)

} ,

(9)
where

S =
∞∑
l=0

a+(l)

2
csch

[
a+(l)

m
�pK ′(k)

]
sech

[
b(l)

m
�pK ′(k)

]

+
∞∑

l = 0
l �= m−1

2

a−(l)

2
csch

[
a−(l)

m
�pK ′(k)

]
sech

[
b(l)

m
�pK ′(k)

]
,

with a+(l) = 2l + 1 + m, a−(l) = 2l + 1 − m, and b(l) =
2l + 1.

The elliptic modulus k is determined from �p through the
resonance condition, and it is worth noticing that for �p > m

there is no k such that Eq. (6) is satisfied. It is remarkable that
for the vertically excited pendulum we have sin φ = 0, and no
Melnikov condition for the existence of odd oscillations can
be determined, that is, Mm(t0) does not have simple zeros in
this case.

In Fig. 5 we see remarkable agreement between numeric
and analytic predictions for the loci of the saddle-node
bifurcations where the oscillatory resonant stable periodic
attractors P3 and P4 appear in the region P < 0.5. Full lines
SN3 and SN4 were obtained with AUTO [54,55] (see Fig. 3),
and circles indicated by R3

odd and R4
even represent {R3

odd × �p}
and {R4

even × �p} respectively. Therefore, the minimal value
of P analytically calculated by the Melnikov method provides
the parameter values for the onset of these resonances.

VIII. CONCLUSIONS

The novelty was to show that odd resonant oscillations
are likely to be observed in the tilted parametric pendulum,
enlarging the spectra of possible resonances in the system.
The occurrence of odd resonances when excitation is along a
tilted direction was explained by the Melnikov subharmonic
function. We not only demonstrated that the loci of saddle-node
bifurcations that is the threshold obtained by application of this
method excellently agrees with those computed using numeric
continuation technique, which implies that primary resonances
are indeed described by this method, but also showed that,
according to this approach, whereas even resonances are due
to the vertical excitation component, odd resonances are a
result of an extra torque that appears only in the tilted case, as
a consequence of the symmetry breaking of the equations of
motion.
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