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Thermodynamic geometry and critical aspects of bifurcations
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This work presents an exploratory study of the critical aspects of some well-known bifurcations in the context
of thermodynamic geometry. For each bifurcation its normal form is regarded as a geodesic equation of some
model analogous to a thermodynamic system. From this hypothesis it is possible to calculate the corresponding
metric and curvature and analyze the critical behavior of the bifurcation.
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I. INTRODUCTION

The mean-field approximation is widely used in the study
of complex systems. In such an approach the time evolution
of the variable(s) �x ∈ RD is described by a system of coupled
differential equations [1]. For D = 1

ẋ ≡ d

dτ
x = φ(x,μ), (1)

where μ is a control parameter.
Systems described by Eq. (1) may have bifurcations when

μ reaches a critical value μc. Bifurcation is a qualitative
change that occurs in the behavior of a dynamic system
when the value of a control parameter (μ) undergoes a small
and smooth change. In complex systems bifurcations are in
general associated with critical transitions in many different
contexts: from ecosystems to models of information traffic on
the Internet, and from epidemic to social models [1].

But if a complex system undergoes a transition when
μ ∼ μc, it could be interesting to further investigate the
critical aspects of such a transition. Inspired by thermodynamic
geometry (TG), we develop in this paper an exploratory study
of critical aspects of bifurcations.

TG is an approach based on Riemannian geometry for the
study of thermodynamical and statistical mechanical systems
in equilibrium. The main idea is that the space (manifold) of
equilibrium states of a system is described by a metric, which
in turn is proportional to the Hessian matrix of entropy (or
other thermodynamic potential) of the system with respect to
the thermodynamic parameters. In this context, the notion of
“distance” between two states is associated with probability
of fluctuation between them: the less likely the fluctuation
between the states, the more distant they are.

From the metric one can obtain the curvature scalar R,
which is proportional to the correlation volume ξd and
therefore closely related to phase transitions.

Our main objective here is to study the critical aspects of
bifurcations using, with some adaptations, the tools provided
by thermodynamic geometry. For this purpose we consider
the normal form of a bifurcation as a geodesic equation of
some hypothetical model. Eventually the curvature scalar of
the bifurcation can be obtained by an analysis of the inferred
metric tensor. For illustrating the approach proposed, we
analyze three well-known bifurcations: transcritical, saddle
node, and pitchfork. For each case it was observed that the
corresponding curvature diverges, according to a power law,
for μ → μc. From the point of view of TG, that is a typical

behavior of continuous phase transition, and it is possible to
obtain a critical exponent from the curvature.

The paper is organized as follows. A brief summary of
the formalism of TG and how it is applied to the study of
phase transitions are presented in next section. In Sec. III
a strategy is proposed of how to apply TG for the study
of bifurcations. In Sec. IV the strategy is applied for three
bifurcations; the corresponding curvatures are computed and
analyzed. Conclusions are presented in Sec. V.

II. THERMODYNAMIC GEOMETRY
AND PHASE TRANSITIONS

Thermodynamic geometry (TG) is an approach based on
Riemannian geometry for studying equilibrium thermodynam-
ics, with a relevant role in the study of phase transitions.
The main idea is that all physical properties of the system
under consideration are encoded in the metric that describes
its thermodynamic state space.

The line element between two equilibrium states is given
by (following the Einstein summation notation1)

d�2 = gij (X)dXidXj ≡
∑
i,j

gij (X)dXidXj , (2)

where Xi are the “coordinates” of the thermodynamic state
space (which can be the parameters such as temperature,
density, chemical potential, etc.) and the metric tensor gij is
proportional to the Hessian of entropy or of free energy [2]. For
a single-component fluid system, the metric tensor is given by

gij = − 1

kB

∂2s(u,ρ)

∂Xi∂Xj
, i,j = 1,2 (3)

where kB is the Boltzmann constant, s is entropy density, and
the “coordinates” X1 = u,X2 = ρ are internal energy and
particle number per unit volume, respectively.

By appropriate changes of coordinates and using the
Maxwell relations one can obtain other forms for the met-
ric [2]. For example, the following line element (again for a
single–component fluid system) has a diagonal metric:

d�2 = 1

kBT

[
∂2f

∂ρ2
dρ2 − ∂2f

∂T 2
dT 2

]
, (4)

1Einstein summation notation: when an index variable appears twice
in a single term (and not otherwise defined), it implies summation of
that term over all the values of the index.
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where f (ρ,T ) = u − T · s is the Helmholtz free energy per
unit volume. By a formal analogy between magnetic and fluid
systems, Eqs. (3) and (4) above can also be used for magnetic
systems by replacing ρ with m, the magnetization per spin [2].

The main purpose in TG is to obtain the curvature scalar (or
thermodynamic curvature) R from the metric that describes
the thermodynamic state space. Several studies suggest the
physical interpretation of thermodynamic curvature R: in
models with phase transitions [3,4] one can observe that
R is proportional to the correlation volume ξd (where ξ

is the correlation length and d the spatial dimensionality),
mainly in the critical region. The sign of R appears to be
related with the character of interparticle interactions: R > 0
if repulsive interactions dominate and R < 0 if attractive
interactions dominate. See [5] and references therein. And for
a single-component classical ideal gas the curvature is zero,
indicating the absence of interactions and phase transitions.

With the thermodynamic curvature one can study all the
phase diagrams of a system. Several examples of application
for fluid and magnetic systems can be found, for instance,
in [4,6,7].

In summary, given a thermodynamic potential of the system
under consideration, one can compute the metric of the
corresponding state space, by taking the second derivatives of
the potential with respect to the coordinates (thermodynamic
parameters). Eventually from the metric one can obtain the
thermodynamic curvature R. On the other hand, once the
metric is given, in general it is not a trivial task to obtain
R. The usual steps in Riemannian geometry are as follows: (i)
calculate the Christoffel symbols

�n
ij = 1

2gnk(gki,j + gkj,i − gij,k), (5)

where gij (with upper indices) is the inverse of the metric,
gijgjk = δi

k , and with the following notation: gki,j = ∂jgki =
∂gki/∂Xj ; (ii) compute the fourth-rank (Riemann) curvature
tensor

R�
ijk = ∂j�

�
ik − ∂k�

�
ij + ��

jn�
n
ik − ��

kn�
n
ij ; (6)

and finally (iii) the curvature scalar R is given by2

R = gijg�mRi�jm, (7)

For more details, see [2] and references therein.
One can also study the phases of a system with

geodesics [8,9], curves between two points (in this case two
thermodynamic states) that extremize the line element. In
curved spaces geodesics play the same role of straight lines
in flat spaces. The geodesic curves are solutions of a set of
coupled nonlinear differential equations

Ẍ� + ��
jkẊ

j Ẋk = 0 , (8)

where each dot over X denotes a derivative with respect to τ ,
a variable that parametrizes the curve joining the two points
and can be thought of as “time.” If one considers the diagonal
metric of Eq. (4) it is not difficult to note that in the inverse
metric (gij ) will appear the inverse of second derivatives

2By contraction with the metric it is possible to lower indices, e.g.,
g�nR

n
ijk = R�ijk .

of the free energy, and as a consequence the corresponding
geodesic equations and (Riemannian) curvature scalar will be
singular in the spinodal curve. Nearby the critical point the
thermodynamic curvature follows a power law [2]

R ∼ tα−2, t = (T − Tc)/Tc, (9)

where α is the critical exponent related to heat capacity. In
a classical thermodynamical model (e.g., van der Waals) R

is singular in the spinodal line and nearby the critical point
it behaves as R ∼ t−2, indicating that α = 0, as one would
expect for mean-field theories.

In Refs. [8,9] the geodesic equations of the van der Waals
model are studied. A natural question one could ask is
whether given an arbitrary set of initial conditions [in this
case, X0 ≡ (T0,ρ0) and Ẋ0 ≡ (Ṫ0,ρ̇0)] in the liquid phase, for
instance, the geodesic reaches the other phase or terminates at
the coexistence curve. After numerical analysis they conclude
that (i) a geodesic beginning in a gas or liquid phase (with
temperature below the critical temperature) does not reach
the other phase; it either terminates at the spinodal curve
or continues in the (thermodynamical) supercritical region;
(ii) the geodesics do not show any special behavior at the
coexistence (or binodal) curve, which is not so surprising since
metric and curvature are both regular in that curve. A similar
behavior for the geodesics is observed for the Curie-Weiss
ferromagnetic model in Ref. [9].

III. TG AND BIFURCATIONS

For the study of critical aspects of bifurcations, the normal
form of a bifurcation was regarded as a geodesic equation of a
hypothetical model (M) analogous to some thermodynamical
system. In Ref. [10] a mathematical model for phase transitions
is discussed in the framework of bifurcation theory. There
the time evolution of the order parameter x is described by
a nonlinear first-order differential equation [see Eq. (1) of
Ref. [10]]

ẋ ≡ dx

dτ
= f (x; α1, . . . ,αn) , (10)

where α1, . . . ,αn are the control parameters. We follow
a similar approach here: Eq. (10) is the normal form of
a bifurcation, with only one control parameter (α1 = μ),
equivalent to Eq. (1), with x and μ playing, respectively,
the analogous role of the magnetization and the (reduced)
temperature in a model of magnetic system, for example. But
it is necessary to transform the above equation in order to make
it similar to Eq. (8); such a transformation will be shown later.

The bifurcations analyzed here are described by one-
dimensional (1D) differential equations such as Eq. (1). In
general, one considers that μ is constant. However, in the
framework of TG it is interesting to consider x and μ as vari-
ables, in order to establish an analogy with thermodynamics.
Moreover, the system

ẋ = φ(x,μ), μ̇ ≈ 0 (11)

is equivalent to Eq. (1). It is considered here a state space
described by the pair of coordinates (x,μ).
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With X1 = x and X2 = μ, we considered that the metric is
diagonal [analogous to Eq. (4) above] with the ansatz

g11 = F(x,μ), g22 = G(x,μ), g12 = 0 = g21. (12)

For such a metric the Christoffel symbols are given by partial
derivatives of F and G, and the geodesic equations are

ẍ = −
(

1

F
∂F
∂μ

)
ẋμ̇ − 1

2

(
1

F
∂F
∂x

)
ẋ2 + 1

2

(
1

F
∂G
∂x

)
μ̇2, (13)

μ̈ = −
(

1

G
∂G
∂μ

)
ẋμ̇ + 1

2

(
1

G
∂F
∂μ

)
ẋ2 − 1

2

(
1

G
∂G
∂μ

)
μ̇2. (14)

One should notice that μ also depends on “time” and the
curvature scalar depends on the partial derivatives of F and G.
The idea here is to obtain the metric, i.e., writeF andG in terms
of φ, by comparing the (transformed) normal form of some
bifurcation with Eq. (13) and thus compute the corresponding
curvature scalar. Now Eq. (1) must be transformed into a form
similar to Eq. (13) above. We use here the same procedure used
in Ref. [11] to rewrite Eq. (1) as a second order differential
equation: (i) derive Eq. (1) with respect to time, but also
considering μ as a function of time and (ii) divide the resulting
equation by Eq. (1). Therefore, Eq. (1) becomes

ẍ = 1

φ

∂φ

∂x
ẋ2 + 1

φ

∂φ

∂μ
ẋμ̇, (15)

and by comparing it with Eq. (13) one can observe that(
1

F
∂F
∂x

)
= (−2)

(
1

φ

∂φ

∂x

)
,

(
1

F
∂F
∂μ

)
= −

(
1

φ

∂φ

∂μ

)
, (16)

and G is not a function of x. On the other hand, in the study
of dynamical systems one usually considers μ as a constant,
and there is no equation describing the time evolution of μ.
In order to simplify the calculations it is considered here that
G = C = const.

Solutions of Eqs. (16) can be obtained for (multiplicatively)
separable functions: F(x,μ) = F1(x)F2(μ) and φ(x,μ) =
ξ (x)η(μ). One can easily observe that

F(x,μ) = A

[ξ (x)]2η(μ)
, (17)

with A = const, satisfies Eqs. (16).
Our approach presented above is not a new idea. In Ref. [11]

ordinary differential equations are considered as geodesic
equations in order to obtain their invariants. However, one
should note that we do not use the Riemann extension of
Ref. [11] for computing invariants of a system of equations.

Brief summary of the approach

It is assumed here that there is some hypothetical model M ,
whose dynamical behavior is described by ẋ = φ(x,μ). The
space of states of M has a line element d�2 = F(x,μ)dx2 +
C dμ2, with F given by Eq. (17), and C is a constant. M is
analogous to some thermodynamic model in such a way that
x and μ are analogous to the order parameter and to (reduced)
temperature, respectively.

Following the usual steps of Riemannian geometry, one can
compute the geodesic equations

ẍ =
(

1

ξ

dξ

dx

)
ẋ2 +

(
1

η

dη

dμ

)
ẋμ̇, (18)

μ̈ = − A

2C

dη

dμ

1

[ξ (x)η(μ)]2
ẋ2. (19)

It is not difficult to see that Eq. (18) is exactly Eq. (15) with
the condition φ(x,μ) ≡ ξ (x)η(μ). Equation (19) in turn has
actually a simple form:

μ̈ = − A

2C

dη

dμ
. (20)

And the curvature scalar is given by

R =
[

1

Cη

d2η

dμ2
− 3

2C

(
1

η

dη

dμ

)2]
. (21)

Usually in complex (or dynamical) systems one does not
take into account the time dependence of the control parameter,
just by assuming it is a constant. On the other hand, A and C

are arbitrary constants, so one can consider A � C in such a
way that μ̈ ≈ 0 and μ is nearly constant.

Some illustrative examples of the proposed approach
are provided in the next section. However, in general the
right-hand side of normal forms [Eq. (1)] are not separable
functions of x and μ, i.e., φ(x,μ) 	= ξ (x)η(μ). But it is
possible to change variables in such a way to obtain a
separable function of x and μ.

IV. ANALYZING THE BIFURCATIONS

For the examples below, the normal forms of bifurcations
are written in terms of the variables y = y(τ ) and σ (= control
parameter), with the dynamics governed by a differential
equation of the form ẏ = f (y,σ ). In general f (y,σ ) is
not a separable function, so a change of variables shall be
performed: (y(τ ),σ ) → (x(τ ),μ) obtaining ẋ = φ(x,μ) but
with φ(x,μ) = ξ (x)η(μ). The curvature scalar R(x,μ) shall
be performed using Eq. (21). Finally the variables (x,μ) are
changed to the original ones in order to obtain R(y,σ ).

A. Transcritical bifurcation

The normal form for a transcritical bifurcation is given by
the equation

ẏ ≡ dy

dτ
= σy − y2, (22)

with the fixed points ȳ0 = 0 and ȳ1 = σ . The stability of the
fixed points [12] depends on the value of σ : (i) for σ < 0, ȳ0

is stable and ȳ1 is unstable; (ii) for σ = 0 the origin is a
half-stable fixed point; and (iii) for σ > 0,ȳ1 is stable and ȳ0

is unstable. The fixed points are presented in the first diagram
of Fig. 1.

As mentioned above the right-hand side (RHS) of Eq. (22)
is not a separable function of y and σ . Thus the following
change of variable is performed: y → μ(x + 1/2), with
μ = const. Equation (22) becomes

ẋ = (σ − μ)x − μx2 + (σ/2 − μ/4). (23)
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FIG. 1. Bifurcation diagrams: dependence of the fixed points ȳ

with the control parameter σ . The stable points are represented by
thick solid lines and the unstable points by dashed lines.

The purpose of this change of variable is to obtain a separable
function of x and μ in RHS of the equation above; then the last
term can vanish, so that σ = μ/2. Now Eq. (22) is written as

ẋ = −μx(x + 1/2), (24)

with the following relations among the variables:
y = μ(x + 1/2) and σ = μ/2.

Equation (24) has the same dynamical properties of
Eq. (22). It has also two fixed points: x̄0 = 0 (corresponding
to ȳ1) and x̄1 = −1/2 (corresponding to ȳ0). But now the
RHS of Eq. (24) is a separable function of x and μ. One can
easily observe that η(μ) = −μ and ξ (x) = x(x + 1/2); then
the curvature is

R(x,μ) = − 3

2C

1

μ2
, (25)

and in terms of the original variables:

R(y,σ ) = − 3

8C

1

σ 2
. (26)

Following the analogy with a thermodynamical model (now
with y playing the same role of an order parameter and σ

playing the role of reduced temperature), one can observe
that the curvature and thus the correlation length diverge
for σ → σc = 0, a typical behavior of second-order phase
transition. By comparing the equation above with Eq. (9) one

could conclude (naively) that the transcritical bifurcation has
the critical exponent α = 0.

On the other hand, Eq. (22) is not difficult to be integrated
in order to obtain y(τ ) and one can observe that y → σ = σ 1

asymptotically. Continuing the analogy with thermodynamics,
this behavior corresponds to a critical exponent β = 1.

B. Saddle-node bifurcation

For the saddle-node bifurcation, the following equation is
considered:

ẏ ≡ dy

dτ
= σ − y2, (27)

which has two fixed points: ȳ0 = −√
σ (unstable) and ȳ1 =

+√
σ (stable), for σ � 0. See the second diagram of Fig. 1.

This time the change of variables (y(τ ),σ ) → (x(τ ),μ) is
given by y → μ(x − 1/2) and Eq. (27) takes the form of the
logistic equation

ẋ = μx(1 − x), with μ = 2
√

σ � 0. (28)

By proceeding with the same analysis of the previous
subsection, one can compute the curvature of the saddle-node
bifurcation

R(x,μ) = − 3

2C

1

μ2
⇒ R(y,σ ) = − 3

8C

1

σ
, (29)

with critical exponent α = 1. On the other hand, from the
asymptotic behavior of the solution of Eq. (27) one can infer
that β = 1/2.

C. Pitchfork bifurcation

The normal form is given by

ẏ = (σ − y2)y. (30)

For σ < 0, ȳ = 0 is the only fixed point, and it is stable. For
σ > 0 the system has three fixed points: ȳ0 = 0 (unstable) and
ȳ1 = ±√

σ (stable). See the third diagram of Fig. 1.
By using the change of variables y → μ · x, Eq. (30)

becomes

ẋ = μ2(x − x3), with μ2 = σ. (31)

The curvature is

R(x,μ) = − 4

C

1

μ2
⇒ R(y,σ ) = − 4

C

1

σ
, (32)

and one can observe for this bifurcation the same critical
exponents of the previous case: α = 1 and β = 1/2.

V. FINAL REMARKS

In this work we presented an exploratory study of the
critical aspects (in the sense of phase transitions) of some
bifurcations from the perspective of thermodynamic geometry
(TG). The normal forms of some well-known bifurcations
were considered as geodesic equations of some hypothetical
models analogous to thermodynamical models. From the
geodesic equation it is possible to obtain an estimate of the
corresponding metric and eventually the (thermodynamic)
curvature R.
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In all cases studied here it was observed that the curva-
ture diverges (according to a power law) when the control
parameter approaches its critical value (in which the system
bifurcates). In the context of TG this is a clear indication
of continuous phase transition. Following the analogy with
thermodynamics it is possible to obtain naively the critical
exponent α.

The thermodynamic curvature has dimensions of (length)d ,
where d is the spatial dimensionality of the system. In lattice
models, curvature and correlation length appear as dimension-
less quantities, but it is understood that these quantities are
given in units of the lattice spacing. In complex systems (e.g.,
epidemic models, population dynamics) one can, in general,
nondimensionalize the first-order differential equation, in such
a way that x, μ, and τ are dimensionless variables. Therefore,
the curvature of each bifurcation shown in the manuscript
is dimensionless. On the other hand, if applicable one could
consider that R (and correlation length) is given in units of Ld

(and L, respectively), where L is a typical distance between
“particles” of the system.

In TG the sign of R is related to the character of the
interactions among the particles of the thermodynamic system.
For complex systems, and specifically for the bifurcations
studied in this paper, it is reasonable to expect that the
curvature (and its sign) is also determined by the details of
interactions among the particles of the complex system. It
could be interesting to analyze the character of the interactions;
however, depending on the model, it may not make any
sense to say if the dominant interaction is attractive or
repulsive.
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