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Virial and high-density expansions for the Lee-Yang lattice gas
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On the basis of the recently established “hole-particle” symmetry of the lattice-gas Hamiltonian, the high-
density equation of state has been derived in a form of pressure and density expansions in powers of activity.
This equation is proposed as an alternative and complementary to the previously obtained pressure expansion
in powers of density. For the well-known Lee-Yang lattice-gas model (a two-dimensional square lattice with a
square-well interaction potential), the power coefficients (i.e., cluster and irreducible cluster integrals) up to the
seventh order have been evaluated as accurate functions of temperature. The convergence of the expansions in
powers of both density and activity to the exact Lee-Yang solution is investigated.
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I. INTRODUCTION

The lattice gas is a widely known statistical model, where
the particles are restricted to occupy individual sites of a regu-
lar space lattice. This restriction makes the configuration phase
space of a system discrete while the momentum phase space
stays continuous. Therefore, all important statistical integrals
over the configuration phase space turn into corresponding
exact sums, and this feature simplifies their evaluation for
some specific examples.

On the basis of the lattice-gas model, essential success
has been achieved in the theoretical description of phase
transitions. Namely, Lee and Yang [1,2] have proved a strong
mathematical relation of the lattice-gas model to the well-
known Ising model of ferromagnetism [3–5]. Using Onsager’s
solution for a two-dimensional ferromagnetic at a zero external
field [6,7], they obtained the exact pressure and densities of the
gas-liquid phase transition for a square-lattice gas [2], where
any particle has a hard core and attracts other particles only in
the four closest neighbor sites. The corresponding interaction
model may be formally expressed in terms of the following
square-well potential,

u(r) =
⎧⎨
⎩

∞ (r = 0),
−ε (0 < r � 1),
0 (r > 1),

(1)

where ε is the attractive-well depth, and the distance r is a
dimensionless integer (relative to a space period of the lattice).

Unfortunately, even for this simple two-dimensional model,
there is still no accurate solution at lower or higher densities,
and, for more complex lattice models, an exact solution is
absent. Except for an extremely limited number of analytical
studies, the problems concerning lattice gases are usually
resolved numerically.

Some of those analytical approaches use the mean-field [4]
or other [8–11] approximations. In addition, there are a number
of accurate methods based on finite-size lattice statistics [12–
15]. A group of other theoretical treatments are based on a
general rigorously grounded expansion for pressure known as
the virial equation of state [16], which can be applied to a lattice
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gas as well as any other model of matter at low-density states.
The symmetrical high-density expansions were also derived
for some specific lattice-gas models [2,17–19]. Recently, a
similar but more general expansion in powers of density has
been proposed [20] for lattice gases of various interaction
models, arbitrary geometry, and dimensions.

In the present paper, the corresponding high-density ex-
pansion in powers of activity is derived on the basis of the
“hole-particle” symmetry of the lattice-gas model, and the
convergence to the Lee-Yang solution (the phase-transition
parameters) is investigated for the low- and high-density
expansions in powers of activity and density. In Sec. II, the
existing expansions in powers of density are considered and
the regions of their adequacy are discussed. The derivation of
the high-density expansion in powers of activity is presented in
Sec. III. Section IV includes the tasks related to the application
of the expansions to the Lee-Yang lattice-gas model, e.g.,
the calculation of the power coefficients. The last section is
devoted to discussing results and drawing conclusions.

II. EXPANSIONS IN POWERS OF DENSITY

The conventional form of the virial equation of state [21] is
an expansion in powers of density ρ = N/V ,

P

kBT
= ρ

⎛
⎝1 −

∑
k�1

k

k + 1
βkρ

k

⎞
⎠, (2)

where the power coefficients βk’s are the so-called irreducible
cluster integrals. Equation (2) has a number of rigorous
statistical derivations [16,22–25] based on the assumption of
low density. Some studies [26–29] have demonstrated a strong
theoretical restriction, ∑

k�1

kβkρ
k < 1, (3)

for the virial equation at subcritical temperatures. In addition,
those studies indicated that the boundary of condition (3),
i.e., the minimum density violating the condition, should
be interpreted as a condensation point (in the sense of the
saturated vapor point).

Recently, Ushcats [20] has stated the “hole-particle” sym-
metry of the intermolecular interactions in the lattice-gas
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system. In accordance with his conclusions, the total inter-
action energy U of the system particles at any configuration is
directly related to the interaction energy U ′ of the lattice holes,

U = Nu0 − N ′u0 + U ′, (4)

where u0 is the potential energy of a particle in the close-
packing state (ρ = ρ0), when all its neighbor sites are occupied
by other particles; N ′ = N0 − N is the number of holes; N0 is
the total number of sites in the lattice.

Mathematically, the energy U ′ is identical to U except
that it is evaluated for the holes instead of particles, and
thus the lattice holes can be treated as some pseudoparticles
interacting similarly to the real particles. Relation (4) is
especially convenient at dense states (ρ → ρ0), when the “hole
density” (ρ ′ = ρ0 − ρ) is low. Using the Mayer expansion
[16] for the “hole partition function” at low values of the hole
density, Ushcats derived the equation of state,

P

kBT
= ρ0

⎡
⎣ u0

kBT
+ ln

(
ρ0

ρ0 − ρ

)
+

∑
k�1

βk(ρ0 − ρ)k

⎤
⎦

+ (ρ0 − ρ)

⎡
⎣1 −

∑
k�1

k

k + 1
βk(ρ0 − ρ)k

⎤
⎦, (5)

symmetrical to Eq. (2) and applicable at dense states of a lattice
gas. Its adequacy is theoretically limited by the condition∑

k�1

kβk(ρ0 − ρ)k < 1, (6)

which is symmetrical to condition (3). As the boundary of
condition (3) defines the saturated vapor point, the boundary
of condition (6) defines the saturated liquid point. It should be
noted that Eq. (5) contains the same irreducible integrals βk’s
as those in Eq. (2).

Formally, both expansions (2) and (5) are exact at densities
satisfying conditions (3) and (6), respectively, though, to be
really accurate, they must contain an infinite set of irreducible
integrals that is technically almost impossible at present. The
evaluation of high-order irreducible integrals is usually a
difficult computational problem even for the simplest models
of molecular interaction, and, in practice, we may only
use truncated (and hence approximated) expansions. Strictly
saying, when the virial expansion is truncated at some finite
order, we can never be sure of its accuracy even if this order is
very high.

III. EXPANSIONS IN POWERS OF ACTIVITY

To improve our confidence in the results, experimental
data or another solution of the same problem may be used
for comparison. In particular, we can consider the pressure
expansion in powers of activity [16] instead of Eq. (2) at
low-density regimes.

In the classical Gibbs statistics, the pressure is related to
the grand partition function �,

PV = kBT ln �, (7)

and the particle number density is defined by the derivative of
pressure with respect to the chemical potential

ρ =
(

∂P

∂μ

)
T

. (8)

Performing the integration over the momentum phase space
separately, we can write the grand partition function as follows,

� =
N0∑

N=0

QN

N !
zN, (9)

where z = λ−3 exp ( μ

kBT
) is the activity, and

QN =
∫

V (N)
exp

(
− U

kBT

)
dr(N) (10)

is the so-called configuration integral.
In the first half of the last century, Mayer and Goeppert

Mayer [16] introduced the cluster expansion of the configura-
tion integral

QN = N !
∑
{mn}

N∏
n=1

(V bn)mn

mn!
, (11)

where the summation is for all possible sets {mj } of N positive
integers, such as

∑N
n=1 nmn = N , and bn is called the nth-order

cluster integral. Any cluster integral bn is expressed in terms
of the irreducible integrals [see Eqs. (2) and (5)],

bn = n−2
∑
{jk}

n−1∏
k=1

(nβk)jk

jk!
, (12)

where all possible integer sets {jk} must satisfy the condition∑n−1
k=1 kjk = n − 1.
The cluster expansion (11) allows us to rewrite the grand

partition function (9) at the thermodynamic limit (N0 → ∞),

� = exp

(
V

∞∑
n=1

bnz
n

)
,

and Eqs. (7) and (8) yield the expansions for pressure and
density in powers of activity:

P

kBT
=

∑
n�1

bnz
n

(13)
ρ =

∑
n�1

nbnz
n,

which may be considered as a parametric equation of state
alternative to the virial expansion in powers of density
[Eq. (2)]. It is also known as the virial expansion in powers
of activity (fugacity) but rarely used in comparison to Eq. (2)
because of its relative complexity.

In accordance with the conclusions of Ref. [16] and
the results of some recent studies [29], the infinite activity
expansion (13) diverges at the density violating condition (3),
and thus this condition should theoretically limit the adequacy
of Eq. (13) as well as Eq. (2).

In order to obtain the symmetrical high-density expansion
in powers of activity, the configuration integral (10) may be
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transformed to the integral over the configuration phase space
of holes on the basis of relation (4),

QN

N !
ρN

0 = Q′
N ′

N ′!
ρN ′

0 exp

[
− u0

kBT
(N − N ′)

]
.

Therefore, the grand partition function in Eq. (9) acquires
the form

� =
[
ρ0

x
exp

(
u0

kBT

)]N0 N0∑
N ′=0

Q′
N ′

N ′!
xN ′

, (14)

where

x = ρ2
0

z
exp

(
2

u0

kBT

)
(15)

is reciprocal of activity, and

Q′
N ′ =

∫
exp

(
− U ′

kBT

)
dr(N ′)

is the “hole configuration integral.”
On the basis of the cluster expansion (11) for that configu-

ration integral at low values of the hole density ρ ′ = ρ0 − ρ,
we may rewrite the grand partition function in Eq. (14) at
the thermodynamic limit in terms of the cluster integrals and
powers of the variable x defined in Eq. (15),

� =
(ρ0

x

)N0

exp

(
N0u0

kBT

)
exp

(
V

∞∑
n=1

bnx
n

)
.

Using Eq. (7) and evaluating the derivative in Eq. (8),

ρ =
(

∂P

∂μ

)
T

=
[
∂(P/kBT )

∂(ln z)

]
T

= −x

[
∂(P/kBT )

∂x

]
T

,

we finally establish the high-density equation of state

P

kBT
= ρ0

(
u0

kBT
+ ln

ρ0

x

)
+

∑
n�1

bnx
n

(16)
ρ = ρ0 −

∑
n�1

nbnx
n

as an expansion in powers of activity [or inverse activity—see
the relation of z to x in Eq. (15)].

Equation (16) contains the infinite set of the cluster integrals
bn’s completely identical to those in the low-density virial
equation (13), and its adequacy must symmetrically be limited
at high-density regimes by condition (6), guaranteeing the
convergence of the corresponding series in powers of x.

IV. EVALUATION OF THE POWER COEFFICIENTS

The problem of calculating the irreducible integrals (or
virial coefficients) has a long history. The multidimensional
numerical integration involves great technical difficulties for
the high-order integrals. The quadrature methods have allowed
the computation of the virial coefficients to the fifth order
[30,31]. The modern Mayer sampling Monte Carlo integration
[32] and its modifications [33,34] have essentially improved
the situation [35].

In case of a lattice gas, the numerical integration turns into
the exact but laborious summation over a huge (for high-order

TABLE I. Irreducible cluster integrals βk of various orders k’s for
the two-dimensional square-well potential (1).

k kβkρ
k
0

1 4f − 1

2 −12f 2 − 1

3 12f 4 + 40f 3 + 12f 2 − 1

4 −160f 5 − 220f 4 − 80f 3 − 1

5 60f 7 + 1380f 6 + 1704f 5 + 600f 4 + 40f 3 − 1

6 −1428f 8 − 10584f 7 − 13440f 6 − 5376f 5 − 588f 4 − 1

integrals) number of discrete configurations. An additional
problem arises, when the need for generating the correct
set of irreducible graphs makes the integration algorithm too
complex. The number of different irreducible graphs increases
approximately as 2N(N−1)/2/N! for the integral order N .

An effective algorithm to evaluate the whole irreducible
integral has been recently proposed by Wheatley [36]. The
algorithm is actually based on Mayer’s cluster expansion, i.e.,
Eqs. (11) and (12). At its first stage, the cluster integrand
of bN is evaluated by the direct calculation of the QN

integrand and the other lower-order integrands (bn<N ) in
a recursive procedure equivalent to Eq. (11). At the final,
more laborious, stage of Wheatley’s algorithm, the searched
irreducible integrand βk=N−1 is calculated on the basis of
another recursive procedure equivalent to Eq. (12), which uses
the bN and lower-order irreducible integrands (βk<N−1).

In fact, there is no need to perform the last step of
Wheatley’s algorithm at each configuration point. Only the
N th-order cluster integrand should be calculated [the first stage
of the algorithm based on Eq. (11)] at all the points of the
configuration phase space of N particles (in the present study,
we actually used an even more simple procedure, calculating
the QN and all possible Qn<N instead of bn<N at each point).
The summation of the data over the entire configuration
phase space yields the proper cluster integral bN , and then
the corresponding irreducible integral βN−1 can be directly
evaluated on the basis of Eq. (12) by using the precalculated
integrals of lower orders. This reinterpretation of Wheatley’s
algorithm essentially simplifies the calculations (at least in
cases of a discrete exact summation).

TABLE II. Cluster integrals bn of various orders n’s for the two-
dimensional square-well potential (1).

n n!bnρ
n−1
0

1 1

2 4f − 1

3 36f 2 − 24f + 2

4 24f 4 + 528f 3 − 600f 2 + 144f − 6

5 960f 5 + 9960f 4 − 17760f 3 + 7680f 2 − 960f + 24

6 1440f 7 + 38880f 6 + 224640f 5 − 598320f 4 + 402240f 3

−93600f 2 + 7200f − 120

7 110880f 8 + 1572480f 7 + 5453280f 6 − 22639680f 5

+21666960f 4 − 7922880f 3 + 1159200f 2 − 60480f + 720
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FIG. 1. The isotherms (kBT /ε = 0.54) of Eq. (2) (left) and Eq. (5)
(right) numbered in correspondence to the equation order. The
horizontal line shows the Lee-Yang phase-transition region.

In addition, the simplicity of the square-well interaction
potential in Eq. (1) removes the need for independent
calculations for different temperatures. The two-particle inte-
grand may only have the following three different values: −1
(the absolute repulsion); f = exp ( ε

kBT
) − 1 (Mayer’s function

for the attractive well); 0 (there is no interaction at larger
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FIG. 2. The isotherms (kBT /ε = 0.54) of Eq. (13) (left) and
Eq. (16) (right) numbered in correspondence to the equation order.
The horizontal line shows the Lee-Yang phase-transition region.

distances). This feature allows the explicit evaluation of the
integrals in the functional form, bn(f ) and βk(f ).

As a result, accurate temperature dependences (as a power
series of Mayer’s function f ) have been obtained for the
irreducible integrals to the sixth order (Table I) and cluster
integrals to the corresponding seventh order (Table II) in the
case of the two-dimensional square-well interaction model
[see Eq. (1)].

In Fig. 1, the calculated isotherms are shown for the virial
(2) and high-density (5) equations of state (expansions in
powers of density) truncated at various orders. In turn, Fig. 2
demonstrates the isotherms of Eqs. (13) and (16) (expansions
in powers of activity).

V. DISCUSSION AND SUMMARY

In the previous study [20], the high-density equation of state
(5) was derived, and its combination with the low-density virial
equation (2) was proposed as a general solution for the lattice
gas (and therefore the Ising) problem. Formally, this solution
is exact, but, in practice, its accuracy is limited because the
set of power coefficients that can actually be evaluated is also
very limited. In the present study, we propose another general
high-density expansion in Eq. (16) that can be used together
with the low-density expansion in Eq. (13) as an alternative
and complementary solution.

Unfortunately, using any finite-order series, we cannot
surely state the convergence or divergence for the expansions
in powers of density as well as activity. Qualitatively, both
types of expansions seem to converge to the exact Lee-Yang
solution, but the nature and rates of their convergence differ
fundamentally. As the order of Eqs. (13) and (16) increases,
the activity expansions converge gradually and monotonically
(Fig. 2). In contrast to the cluster integrals, the irreducible
integrals oscillate in sign (see Table I), and the behavior of
the corresponding alternating series in powers of density is
more complex (Fig. 1). At first sight, the density expansions
may even seem to be diverging, but, actually, their behavior is
typical for other converging alternating series. For example, a
finite-order expansion for the exponent of a negative argument
behaves very similarly though it definitely converges for the
infinite order. To roughly check the convergence, we should
look at the middle region of the isotherms rather than their
ends. There, the higher-order isotherms become closer to each
other (see Fig. 1), and when the order increases, this region of
convergence moves toward the Lee-Yang solution.

Another important issue concerns such a great difference
between the expansions. In fact, the finite-order expansions in
powers of density and activity would never be equivalent. They
must coincide only for the infinite order. In accordance with
Eq. (12), any cluster integral bn consists of the irreducible
ones of all lower orders (βk<n). When we use the density
expansions in Eqs. (2) and (5) truncated at some finite order k,
we thus assume all the irreducible integrals of higher orders to
vanish, but, for the corresponding activity series in Eqs. (13)
and (16), it means that all the cluster integrals (even to infinite
order) do not vanish. In this case, any higher-order cluster
integral (n > k + 1) is just evaluated incorrectly because it
includes the truncated set of irreducible integrals instead of
the full set, but it does not vanish. Therefore, any truncated
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density expansion is always equivalent to the infinite activity
expansion, where the set of cluster integrals is evaluated
somewhat incorrectly. This infinite set may really be correct
only for the infinite density expansion (the difference between
the infinite expansions disappears).

It is hard to state surely which expansion is more accurate—
the infinite but partially incorrect activity series (corresponding
to the truncated density series) or the correct but truncated
activity series (when the cluster integrals of higher orders are
simply supposed to vanish). However, we may expect the exact
solution somewhere between those two edge (and approximate
in practice) solutions. We may also regard both solutions to
be earnestly accurate in the regions where they coincide or
differ slightly enough. Figure 3 indicates that these regions of
accuracy expand for the low-density equations (2) and (13) as
well as high-density equations (5) and (16) with the increasing
of the equation order—their boundaries move toward the Lee-
Yang solution at low temperatures and toward each other at
high temperatures. It is also obvious that the accuracy of the
seventh-order equations is still very limited.

Although the last sections of the paper concern only a
particular example of the Lee-Yang model, the theoretical basis
of the presented approach [i.e., the combinations of Eqs. (2)
and (5) and Eqs. (13) and (16)] is general for lattice gases
of arbitrary geometry and dimensions. The interaction model
can also be much more complex than that in Eq. (1). It may
include any finite attraction or repulsion at nonzero distances,
and u(rij ) can even be anisotropic.

Further studies and additional information on the high-order
cluster integrals for various lattice-gas models may help us
to establish a certain regularity and evaluate the infinite virial

0ρ ρ
0.00 0.05 0.10 

0.4 

0.8 

1.2 

0.90 0.95 1.00 

2 4 

7 

2 4 

7 

Bk T
ε

FIG. 3. The Lee-Yang coexistence curve (solid line) and loci of
the 1% deviation between the expansions in powers of density and
activity (dashed lines numbered in correspondence to the activity
expansion order).

series as it has recently been done for some continuous realistic
models [37–39] that, in turn, would make the solutions really
accurate in the future.
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