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We investigate the phase transition of the quantum spin-1 anisotropic antiferromagnet on a square lattice. The
model is described by the Heisenberg Hamiltonian with the nearest-neighbor coupling strengths J1a and J1b

along the x and y directions, respectively, and next-nearest-neighbor coupling J2. This model allows Néel state
(AF1) and collinear state (AF2). The effects of the spatial and single-ion anisotropy on phase transformation
between these two states are explored. Our results show that the two states can exist and have the same critical
temperature at D > 0 as long as J2 = J1b/2. Under such parameters, a first-order phase transformation between
these two states below the Néel point can occur when J1b value is not very small and D value is within a narrow
range. For J2 �= J1b/2, although both states may exist, their Néel temperatures differ. If the Néel point of the AF1
(AF2) state is larger, then at very low temperature, the AF1 (AF2) state is more stable. Thus, in an intermediate
temperature, a first-order phase transition between these two states may occur.
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I. INTRODUCTION

Over the past two decades, much attention has been
paid to study the magnetic properties of frustration in the
two-dimensional (2D) quantum Heisenberg model (known
as the J1-J2 model) with competing nearest-neighbor (NN)
antiferromagnetic exchange interaction J1 and next-nearest-
neighbor (NNN) J2 [1]. This is because some real materials
can be described by such a model [2–7]. Examples are the
undoped precursors to the high temperature superconducting
cuprates for small J2/J1 values [2], VOMoO4 for intermediate
J2/J1 values [3], and Li2VOSiO4 for large J2/J1 values [4].
For Li2VOSiO4, nuclear magnetic resonance, magnetization,
specific heat, and muon spin-rotation measurements revealed
significant coupling between NN and NNN neighbors [5–7].
Experimental investigations indicated that its ground-state
phase diagram could be explored from low J2/J1 to high by
applying high pressures [5]. x-Ray diffraction measurements
on this compound showed that the value of J2/J1 decreased by
about 40% when pressure increased from zero to 7.6 GPa [5].
In addition, these experiments on Li2VOSiO4 showed that it
underwent a phase transition at a low temperature (2.8 K) to
a collinear antiferromagnetic order with magnetic moments
lying in the a-b plane with J2 + J1 ∼ 8.2 K and J2/J1 ∼
1.1 [3,6,7].

The J1-J2 model is also of theoretical interest. The
investigations indicated that at zero temperature, three cases
could appear depending on the parameter α = J2/J1 [8–13].
For α < α1 ∼ 0.38 the system was the Néel state with wave
vector Q = (π,π ) (AF1) and for α > α2 ∼ 0.6 the system was
the collinear state degenerate with pitch vectors Q = (π,0)
and (0,π ) (AF2). These two degenerate collinear states were
characterized respectively by a parallel spin orientation of NN
in the vertical (or horizontal) direction and an antiparallel spin
orientation of NN in the horizontal (or vertical) direction. For
α1 < α < α2, there was a nonmagnetic gapped phase [14,15].
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The nature of the ground state of this model turned out to be
one of the most challenging problems for physics of frustrated
spin systems [8–13]. One may think that the spin-liquid state
was the most promising candidate [16].

For finite temperature, when an Ising type anisotropy is
considered, there will be Chandra-Coleman-Larkin transition
and Berezinskii-Kosterlitz-Thouless transition [17], where the
anisotropy plays a role.

Some discussions were represented about the quantum
phase transition for this model by Bishop et al. [18].
They thought that “frustrated models often exhibit accidental
degeneracy, and the degeneracy degree could vary enormously,
has been widely viewed as a measure of the frustration. Among
the effects that can act to lift any such degeneracy are quantum
and thermal fluctuations” [18].

A generalization of the frustrated J1-J2 model is the
J1a-J1b-J2 model [19–24]. It possesses more degrees of
freedom to tune the fluctuation of system compared to the J1-J2

model, since the NN exchange interactions J1a and J1b along
the x and y directions in this model are of different strengths.
This feature leads naturally to an increased sensitivity of the
underlying Hamiltonian to the presence of small perturbations.

Our primary purpose of this work is to study the phase
transition of the J1a-J1b-J2 model at finite temperature by
using the double-time Green’s function method. The effect
of anisotropy on the stabilization of Néel and collinear states
are discussed in detail. We study two cases separately as J1a

is fixed. One is that as J2 = J1b/2, both the Néel state and
collinear state can exist and have the same Néel temperature.
The other is that as J2 �= J1b/2, the two states can also exist,
but their Néel points are not the same. For these two cases, a
phase transformation between Néel and collinear states below
the Néel point may occur. Which of the states is more stable
depends on the spatially and single-ion anisotropies of the
system.

Here we would like to mention that the ground state of
the 2D antiferromagntic system has been studied by many
researchers. For instance, the exact ground-state phase diagram
of the Potts model was given by Takasaki et al. [25]. In the
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present work, we care the cases of finite temperature, and the
ground state will not be touched.

This paper is organized as follows. In Sec. II, we introduce
the theoretical model and present the formulism of Green’s
function to derive the self-consistent equation for evaluation of
magnetizations. In Sec. III, the numerical results are presented
and discussed. Section IV is our concluding remarks.

II. MODEL AND METHOD

We consider a 2D spatial anisotropy J1a-J1b-J2 model with
easy-axis single-ion anisotropy. The model is described by the
following Hamiltonian:

H = J1a

∑
〈i,j〉

[(
Sx

i Sx
j + S

y

i S
y

j

) + Sz
i S

z
j

]

+ J1b

∑
〈i,j〉
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∑

i
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where Sx
i , S

y

i , and Sz
i represent the three components of the

spin-S operator for a spin at site i. The sums 〈i,j 〉 and [i,j ]
run over the NN and NNN lattice sites, respectively. J1a and
J1b represent the NN exchange parameters along the x and y

directions, respectively. J2 is the NNN exchange parameter. D
denotes the single-ion anisotropic parameter. In this paper, our
primary attention is focused on studying the phase transition
of the 2D square lattice frustrated Heisenberg antiferromagnet
at finite temperature. If this system has no anisotropy, there is
no long-range order at finite temperature [26]. Therefore, an
anisotropy is necessary.

For the sake of convenience, we let Boltzmann constant
kB = 1 so all the quantities, including Hamiltonian parame-
ters, temperature T , and sublattice magnetization m = 〈Sz〉,
become dimensionless. 〈Sz〉 is the assembly statistical average
of spin operator Sz. We fix J1a = 1 and change the J1b and J2

values in computation.
We apply the double-time Green’s function method to deal

with the Hamiltonian (1). The Green’s function is defined as
follows:

G±
ij = 〈〈

S±
i ; euSz

j S−
j

〉〉
. (2)

Here, u is a parameter [27]. After solving the Green’s
function by means of the method of equation of motion,
u will be ultimately set as zero to give the expression of
magnetization [27]. We derive the equation of the motion of
the Green’s function by standard procedure [27]. In this course,
the higher-order Green’s functions have to be decoupled.
For the terms concerning exchange interaction in Eq. (1),
we use a Tyablikov or random-phase approximation decou-
pling [27]:

〈〈
Sz

l S
±
i ; euSz

j S−
j

〉〉 = 〈
Sz

l

〉 〈〈
S±

i ; euSz
j S−

j

〉〉
; l �= i. (3)

For the terms concerning the single-ion anisotropy, we
adopt the Anderson-Callen’s decoupling [28]:

〈〈
Sz

i S
+
i + S+

i Sz
i ; euSz

j S−
j

〉〉 = 2C1
〈
Sz

i

〉 〈〈
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, (4)

where

C1 = 1 − 1

2S2

[
S(S + 1) − 〈(

Sz
i

)2〉]
. (5)

This decoupling form has been widely used, and it is
applicable to any spin quantum number [29]. Because of the
decoupling approximations Eqs. (4) and (5), the partition func-
tion with respect to temperature may not be well represented.
We adopt them because they have been generally accepted.
These approximations are applicable at finite temperature,
but not good enough for zero temperature, so we will not
investigate the ground state.

The Green’s function is Fourier transformed into wave
vector space, and the correlation function 〈euSz

i S−
i S+

i 〉(k) is
calculated via the spectral theorem [27,29]. Let us define

2

N

∑
k

〈
euSz

i S−
i S+

i

〉
(k) = θ (u)φF , F = AF1,AF2, (6)

where the summation of wave vector k runs over the first
Brillouin zone. N is the number of lattice sites and

θ (u) = 〈[
S+

i ,euSz
j S−

j

]〉
. (7)

Now we let u = 0, as has been mentioned above. This leads
to θ (0) = 2m and

φF = 2

N

∑
k

E1F

2
√

E2
1F − E2

2F

coth

√
E2

1F − E2
2F

2T
− 1

2
. (8)

Here for the AF1 state,

E1AF1 = 2m

{
2J2(cos kx cos ky − 1) + (J1a + J1b)

+D

[
1 − m(1 + 2φAF1)

2S2

]}
,

E2AF1 = 2m(J1a cos kx + J1b cos ky), (9)

and for the AF2 state,

E1AF2 = 2m

{
J1b(cos ky − 1) + (J1a + 2J2)

+D

[
1 − m(1 + 2φAF2)

2S2

]}
,

E2AF2 = 2m(J1a cos kx + 2J2 cos kx cos ky). (10)

Using Eqs. (7) and (8) and the relation 〈S−
i S+

i 〉 = S(S +
1) − 〈Sz

i 〉 − 〈(Sz
i )2〉, the sublattice magnetization is expressed

by following formula [27,29]:

m = (φF + 1 + S)φ2S+1
F − (φF − S)(φF + 1)2S+1

(φF + 1)2S+1 − φ2S+1
F

. (11)

III. RESULTS AND DISCUSSIONS

In this paper, the properties of the J1a-J1b-J2 model at finite
temperature are investigated. Therefore, when we say “zero
temperature,” we actually mean that the temperature is very
close to zero, which is denoted by T = 0+.
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FIG. 1. The sublattice magnetization m as a function of temper-
ature T for different J2 values when D = 0.01. (a) J1b = 0.5 and
(b) J1b = 0.8.

A. Magnetic properties

Figure 1 plots the magnetization m as a function of tempera-
ture for different J1b and J2 values. In Fig. 1(a), J1b = 0.5. The
m decreases as J2 approaches 0.25 from either side. This is the
result of the competition between J2/J1a and J1b/J1a . Since
we have fixed J1a = 1, this competition is actually between
J2 and J1b. As J2 = 0, the Hamiltonian is a two-dimensional
antiferromagnetic model with only NN exchange interactions.
When J2 increases from 0, the frustration is increased. The
competition between J2 and J1b emerges, and it will increase
with increasing J2 for fixed J1b. Therefore, the magnetization

and critical temperature drop with increasing J2. At J2 = 0.25,
the competition reaches the strongest. It is an AF1 state in the
range of 0 � J2 � 0.25. As J2 further increases from 0.25,
the competition becomes gradually weaker. The role of J2

becomes more important. As a result, both magnetization and
critical temperature increase. It is an AF2 state in the range
of J2 � 0.25. In one word, J2 = J1b/2 is a boundary value
of AF1 and AF2 configurations. Figure 1(b) gives another
example for J1b = 0.8, where the boundary value is J2 = 0.4.

The description above is the case of finite temperature. For
temperature closing to zero, it is seen that the value of mAF1(0+)
is less than mAF2(0+). This can be easily explained. For AF1
configuration, each spin is antiparallel to all of its four NN
spins, while in the AF2 configuration each spin has two parallel
and two antiparallel NN spins. Therefore, the AF1 state has
stronger quantum fluctuation than the AF2 state. This leads
to mAF1(0+) < mAF2(0+) near zero temperature. Similarly,
we can understand that the difference between mAF1(0+) and
mAF2(0+) increases with the increase of J1b at J2 = J1b/2, see
Figs. 1(a) and 1(b). A bigger J1b value is corresponding to a
stronger quantum fluctuation for AF1 and a weaker quantum
fluctuation for AF2. It is noted that, for AF1, the frustration is
the least at J2 = 0. For AF2, although the frustration is weaker,
it actually exists. The NNN spins may also play a role in caus-
ing frustration, but, intuitively, not so important as the NN ones.

Comparing Figs. 1(a) and 1(b), two points need to be
stressed. (1) The critical temperature increases with decreasing
J1b. (2) The two states with the same parameters have the
same critical temperature as long as J2 = J1b/2. In order to
show these two points more explicitly, Fig. 2 plots the phase
diagrams.

FIG. 2. The Néel temperature TN as a function of J2 for D = 0.05 when the J1b increases from 0 to 1. (a) J1b = 0, 0.05, and 0.15; (b)
J1b = 0.2, 0.4, 0.6, 0.8 and 1. The left and right arrows represent the J1b from smaller to larger values for AF1 and AF2, respectively. (c) The
enlargement of the region of J2 in the vicinity of J2 = 0.025 when J1b = 0.05; (d) the Néel temperature TN as a function of J2 for J1b = 0.4
when D = 0.01,0.1 and 0.4. The left and right arrows represent the D from smaller to larger for AF1 and AF2, respectively.
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FIG. 3. The internal energies E(T ) (ascending lines) and free energies F (T ) (descending lines) as a function of temperature T at D = 0.01.
(a) J1b = 0.001, (b) J1b = 0.157, (c) J1b = 0.8, and (d) J1b = 1.

Figure 2(a) plots the critical temperature as a function
of J2 for a number of J1b values. As J1b = 0 and J2 = 0,
both AF1 and AF2 recover an ordinary one-dimensional
single-ion anisotropic Heisenberg antiferromagnetic model.
As a consequence, they have the same critical temperature. For
AF1 state, as J1b increases from 0, the competition between
J1b and J2 becomes weaker, which leads to rise of the TN .
The AF2 state is just a contrary case, i.e., the competition
between J1b and J2 becomes stronger with increasing J1b,
which results in the drop of TN . Due to these two reasons, the
cross point of the critical temperature curves of the two states
shifts rightwards with increasing J1b, see Figs. 2(a) and 2(b).
Nevertheless, the slops of the critical temperatures of the two
states becomes more and more slower with increasing J1b

except near J2 = J1b/2, see Figs. 2(a) and 2(b). It leads to the
drop of cross point of the critical temperature between AF1 and
AF2. Accordingly, the temperature corresponding to the cross
point decreases with the increase of J1b, agreeing with Fig. 1.
This is actually caused by the competition between J1b and J2.

In Fig. 2, the critical temperature curves of the two states
cross. To be explicit, Fig. 2(c) is the enlargement of Fig. 2(a)
when J2 is in the vicinity of 0.025 for J1b = 0.5. In this panel,
the J2 values of points A and B are the same, although in
different states. The two curves in Fig. 2(c) divide the region
into four regions: The upper region is paramagnetic state (P);
the left and right regions are AF1 and AF2 state, respectively;
the lower region can be the coexistence of AF1 and AF2.

Figure 2(d) plots the critical temperature as a function of
J2 for different D values when J1b = 0.4 and J2 = J1b/2.
The two states have the same critical temperature at D > 0
as long as J2 = J1b/2. For larger D values, the two critical
temperature curves cross. This is because the anisotropy
suppresses the frustration of the system. The stronger the

anisotropy, the weaker the frustration. The corresponding
crossing range becomes larger and vice versa. Consequently,
the critical temperature increases with increasing D, and the
temperature corresponding the intersection point rises. As D

becomes faint, the crossing area disappears.
It is noted in Fig. 2 that, no matter what the value of

other parameters are, AF1 and AF2 have the same critical
temperature for D > 0 as long as J2 = J1b/2. Since both
configurations are possible, one may ask which one is more
stable. In the following, this problem will be discussed in
detail. Before that we note that at J1b = 0 and J2 = 0, the sys-
tem actually becomes the array of uncoupled one-dimensional
chains. Therefore, the case of J1b = 0 shall be not discussed.

For two states under the same volume and entropy, the
one with lower internal energy is more stable. However, their
entropies differ at a fixed temperature. Therefore, the internal
energy cannot be used to determine which one is more stable
at a temperature. Under the same volume and temperature, the
state with lower free energy is more stable.

The free energy can be evaluated numerically by means
of the internal energy via F (T ) = E(0) − T

∫ T

0
E(T ′)−E(0)

T ′2 dT ′,
where E(T ) represents the internal energy of the system, which
is defined as the thermostatistical average of Hamiltonian, E =
〈H 〉
N

[29]. Computing internal energy involves the calculation
of the transverse (

∑
i,j 〈S+

i S−
j 〉) and longitudinal (

∑
i,j 〈Sz

i S
z
j 〉)

correlation functions. We do not present the lengthy deriva-
tion of their expressions recently developed. Please refer
to Ref. [30]. As mentioned above, the used decoupling
approximation lead to the fact that the partition function with
respect to temperature may not be well represented. We are
aware of this shortcoming. Better approximations are still
being explored. In this paper, we mainly compare the free
energies of the two states. Since they are computed under the
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FIG. 4. The free energies F (T ) as a function of temperature T

for different J1b values when D = 0.1.

same approximation, it is believed that the relative values are
meaningful. Please note that in this paper, we calculate the free
energy below the Néel point TN .

B. Possible phase transition at J2 = J1b/2

Figure 3 plots the energies as a function of temperature
for different J1b values when J2 = J1b/2 and D = 0.01.
For E(T ), it increases with temperature monotonically, as
it should be, while the free energies F (T ) decrease with
temperature monotonically. As J1b increases from 0 to 0.157,
the energy differences between the two states are negligible.
Figures 3(a) and 3(b) show two examples with J1b = 0.001

and 0.157, respectively. This means that the system can be
in either the AF1 or AF2 state or a coexistence of them.
For convenience, we denote J c

1b = 0.157. When J1b further
increases from J c

1b, FAF1 deviates gradually from FAF2. The
difference between them increases with increasing J1b, see
Figs. 3(c) and 3(d). Meanwhile, the curve of FAF2 drops faster
than FAF1. Moreover, FAF2 is always lower than FAF1 within
the whole temperature range below the Néel point. Hence, in
this case, the AF2 state is more stable.

Figure 3 discusses the case of a weaker anisotropy. Figure 4
plots the free energy as a function of temperature for a stronger
anisotropy. There is also a J c

1b value. When 0 < J1b � J c
1b, the

energies of the two configurations are believed to be the same.
The J c

1b decreases with the increase of anisotropy. When J1b =
0.7, it is seen that FAF1(0+) < FAF2(0+), indicating that AF1
is more stable near zero temperature. Since FAF2 drops faster
than FAF1, the two curves have a cross point when temperature
increases to a certain value. It means that there can occur an
AF1-AF2 phase transition at the cross point. However, their
internal energies differ. Therefore, it is a first-order transition.
Above the transition point, the AF2 is more stable until the
Néel point TN . As J1b further increases, FAF2 is always lower
than FAF1. In this case, the AF2 is more stable and there is no
phase transition.

In the following, the stability of the two states will be
discussed for fixed J1b while D changes. Figure 5(a) plots
the F (T ) curves for different D values when J1b = 0.5. To
be explicit, Fig. 5(b) plots the enlargements for D = 0.001
and 0.01 and Fig. 5(c) for D = 0.08, respectively. As D

increases from 0.001 to 0.01, FAF2 is always less than FAF1

below the Néel point, indicating that the AF2 is more stable.
However, the difference between FAF1(0+) and FAF2(0+)

FIG. 5. (a) The free energies F (T ) as a function of temperature T for different D values when J1b = 0.5. (b) The enlargement of (a) in the
case of D = 0.001 and 0.01. (c) The enlargement of the region of the free-energy curves near cross point when D = 0.08. (d) The free energies
F (T ) as a function of temperature T for different D values when J1b = 0.8.
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FIG. 6. The comparison of the free energies of the two states
below the TN in the J1b and D parameter space.

decreases with increasing D. When D is greater than 0.08,
FAF1(0+) < FAF2(0+), which means that the AF1 is more
stable. Moreover, the curves of the free energies of the AF1 and
AF2 have a cross point, at which a phase transition can occur
between the two states. This is a first-order transition. Above
the transition point, the AF2 is more stable until TN . When D

further increases, FAF1 is always lower than FAF2 within the
whole range of temperatures below the critical point. In this
case, the AF1 is more stable. As a comparison, Fig. 5(d) plots
the free energy as a function of temperature at J1b = 0.8. The
results are similar to those in Fig. 5(a).

Now, we present a comprehensive recognition of the effect
of parameters J1b and D on the free energies of the two states

below the TN . Figure 6 shows the comparison of the free
energies between the two states in the whole temperature range
below the TN . It is seen that there are four regions. In region
I, the free energy of the AF1 state is always greater than
that of the AF2. The examples are the curves in Figs. 3(c)
and 3(d). This region is denoted as FAF1 > FAF2. In region II,
at temperatures close to zero, FAF1(0+) < FAF2(0+), and near
the TN FAF1(T ) > FAF2(T ). Therefore, there is a first-order
transition below the TN . The examples are the curve with
J1b = 0.7 in Fig. 4 and that with D = 0.1 in Fig. 5(d). In
region III, which is denoted by FAF1 < FAF2, the free energy
of the AF1 state is always lower than that of the AF2. The
examples at the curve in Fig. 5(a) with D = 0.2 and that in
Fig. 5(d) with D = 0.28. In region IV, the difference of the
free energies of the two states is negligible. So it is denoted
as FAF1 = FAF2. The examples are the curves in Figs. 3(a)
and 3(b).

Roughly speaking, when J1b value is very small, in region
IV, the free energies of the two states are very close to each
other and one cannot tell which is more stable. When the J1b

value is not very small, with the increase of the D value,
the case of FAF1 > FAF2 gradually transits to the case FAF1 <

FAF2.

C. Possible phase transition at J2 �= J1b/2

Figure 7 plots the free energy as a function of temperature
for D = 0.05. For J1b = 0.05 [i.e., Figs. 7(a) and 7(b)],
we distinguish two cases where J2 < 0.025 and J2 > 0.025,
respectively. Figure 7(a) plots the curves of J2 = 0.022 and
0.024, and Fig. 7(b) the curves of J2 = 0.026 and 0.028. For
the former case, the critical temperature of AF1 is higher than
AF2, while it is contrary for the latter case, which is also
reflected in Fig. 2(c). In the former case, FAF1(0+) is always

FIG. 7. The free energies F (T ) as a function of the temperature T at D = 0.05. (a) J1b = 0.05 and J2 = 0.022, 0.024; (b) J1b = 0.05 and
J2 = 0.026, 0.028; (c) J1b = 0.8 and J2 = 0.398, 0.399; and (d) J1b = 0.8 and J2 = 0.401, 0.402.
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less than FAF2(0+). It indicates that AF1 is more stable near
zero temperature. The free-energy curves of the two states
cross at a temperature. At the cross point, an AF1-AF2 phase
transformation may occur. It is a first-order transition, as the
internal energy has a jump. Above the cross point, FAF1 > FAF2

so the AF2 is more stable. The latter case is contrary to the
former, i.e., AF2 is more stable near zero temperature, and
above the cross point, the AF1 is more stable. For J1b = 0.8,
the case where J2 < 0.4 shown in Fig. 7(c) is similar to that
in Fig. 7(a), and the case where J2 > 0.4 is similar to that in
Fig. 7(d). The boundary of the two cases is always J2 = J1b/2.

Figure 7 indicates that, for the case of J2 �= J1b/2, the
higher the TN , the lower the FAF2(0+), and the decreasing of
the F (T ) curve becomes slower. From the discussion above,
three conclusions can be drawn. (1) The free-energy curves
of the two states cross, i.e., a transition transformation between
the two states may occur. (2) At low temperature, the state
with the higher critical temperature is more stable, and at high
temperature, the state with the lower critical temperature is
more stable. (3) Under the same parameters, the larger the
difference between the TN ’s of the AF1 and AF2 states, the
larger the difference between FAF1(0+) and FAF2(0+).

IV. CONCLUDING REMARKS

In this paper, the phase transition of the quantum spin-1
anisotropic Heisenberg antiferromagnet on a square lattice has

been studied by the double-time Green’s function method.
The stability of AF1 and AF2 has been discussed in detail by
comparing their free energies. Two cases of J2 = J1b/2 and
J2 �= J1b/2 are discussed separately.

For the case of J2 = J1b/2, our comprehensive results are
shown in Fig. 6. When J1b value is very small, as in region IV in
Fig. 4, one could not tell which of AF1 and AF2 is more stable,
so their coexistence is possible. When J1b value is not very
small and the D value is within a narrow range, a first-order
transition below the Néel point could occur. Otherwise, the free
energy of one of the two states is always lower than another in
the whole temperature range below the TN .

When J2 �= J1b/2, although both states may also exist,
their critical temperatures differ. For J2 < J1b/2 (J2 > J1b/2),
the critical temperature of the AF1 (AF2) state is higher
than that of AF2 (AF1). Meanwhile, the AF1 (AF2) is
more stable near zero temperature, and AF2 (AF1) is more
stable near TN . Therefore, at an intermediate temperature,
a first-order phase transition between these two states may
occur.
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