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Ergodicity breaking and localization
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We study the joint action of the non-Poisson renewal events (NPR) yielding Continuous-time random walk
(CTRW) with index o < 1 and two different generators of Hurst coefficient H # 0.5, one generating fractional
Brownian motion (FBM) and another scaled Brownian motion (SBM). We discuss the ergodicity breaking
emerging from these joint actions and we find that in both cases the adoption of time averages leads to localization.
In the case of the joint action of NPR and SBM, localization occurs when SBM would produce subdiffusion. The
joint action of NPR and FBM, on the contrary, may lead to localization when FBM is a source of superdiffusion.
The joint action of NPR and FBM is equivalent to extending the CTRW to the case where the jumps of the runner
are correlated and we argue that the the memory-induced localization requires a refinement of the theoretical

perspective about determinism and randomness.
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I. INTRODUCTION

The proper evaluation of averages in statistical physics
requires use of the Gibbs idealization of infinitely many copies
of the same system, namely the Gibbs ensemble that is of
fundamental importance for the theoretical predictions. In
practice, when only the observation of a single system is
possible, this ideal ensemble average is assumed to be identical
to the more accessible average in time on the same system.
This is the ergodic assumption [1] that the tracking of single
molecules proves to be frequently violated [2], a phenomenon
called ergodicity breaking. Establishing a good theoretical
command of ergodicity breaking is of fundamental importance
when we move from physics to biology, to physiology, and to
sociology, since ergodicity breaking seems to be a general
property of these complex systems.

A. Continuous time random walk

It has to be stressed, however, that one of the origins
of the ergodicity breaking observed in molecular diffusion
in biological cells is the occurrence of non-Poisson renewal
(NPR) events, which generate nonstationary correlation func-
tions, characterized by aging [2] in a form that is not to be
confused with the nonstationarity of the slow approach to
thermodynamical equilibrium.

This form of ergodicity breaking was very clearly illustrated
in Refs. [3,4]. The diffusion process of a molecule that
as a result of ensemble average would yield (x2(1)) o t*
with @ < 1, namely the subdiffusional scaling n = «/2, was
studied by the authors of Refs. [3,4], making averages in time
rather than on infinitely many copies of the same system.
These authors showed that the second moment evaluated in
time does not yield the scaling «/2. They got instead the
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result [5]
L—A ,
A ([x(®) — x(t + A)]7)dt x

(82(n) =
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where L is the length of the time series analyzed. This impres-
sive result indicates that the adoption of a time average turns a
subdiffusion into a normal diffusion process with the surprising
property, however, that the intensity of the second moment be-
comes weaker and weaker on increasing the length of the time
series. The same kind of dependence on the length of the time
series holds true for the power spectrum P(f) of the renewal
generators of subdiffusion, very well described [6,7] by
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Notice that we use the condition & < 1 throughout the whole
paper and that we adopt the notation (O) and O to denote
ensemble and time average, respectively. We shall adopt the
notation (O) to denote ensemble averages of time averages.
The result of Eq. (1) found in Refs. [3,4] is based on
the model of anomalous diffusion, called continuous-time
random walk (CTRW) [8]. The runner makes a sequence
of jumps £(1),£(2),...,£(n),.... These are uncorrelated
Gaussian fluctuations, with vanishing mean value (£) =0
and a finite second moment (£%). The number of events n
is interpreted [9] as operational time. In the clock time the
time interval between two operational events is described by
the distribution density

. 1
Tlglg@ ¥(t) x g 3)

with 0 < @ < 1. The authors of Ref. [10] derived this
distribution density for neurophysiological events assuming a
logarithmic relation between the clock time and the subjective
or psychological time of the individuals. To make our picture
as general as possible, including other possible sources of
complexity, we use the term operational time, to denote the
number of renewal events, rather than psychological time
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as it would be natural in the case of neurophysiological
processes [10]. We shall focus on the condition n >> 1 and
for this reason we shall interpret n as being the continuous
time, hereby denoted by the symbol 7,. The clock time is
continuous, but the numerical calculations convert it into a
discrete time that can be interpreted again as continuous in the
long-time limit. The theoretical interpretation of the clock-time
region very close to the origin t = 0 forces us to consider
again the discrete nature of operational time. This will be done
hereby by introducing the parameter L, of the order of the
numerical time step At, below which no event occurs.

B. Extension of continuous-time random walk

We extend CTRW to the condition where in the operational
time scale the fluctuation perceived by the runner is not random
but correlated, and the decay of the correlation function of the
fluctuation £ is extremely slow. Let us consider the stationary
and normalized correlation function

(E(1)5 (1))
ety — o) = ———. 4)
e (£2)
with (§) =0. We assign to the correlation function the
analytical form
D(t = |t; — 1) ) (5)
T = —_ = .
5 ! 2 T+ TB

The correlation time 7. of the correlation function is estab-
lished by evaluating the Laplace transform of ®;(7),

de(u) = /0 exp (—ut)® (1), (6)

which, after setting u = 0, yields

T—"l v>1
Te=13""

oo O<v<l. )
We focus on the case of the very slow approach to equilibrium
with 0 < v < 1. This correlation function is not integrable,
thereby making the correlation time infinite. This generalized
form of CTRW, with the random fluctuation & of CTRW
replaced by a correlated fluctuation, is equivalent to making
the random walker run in the operational time regime, the
well-known fractional Brownian motion (FBM), as discussed
in Refs. [11,12], rather than the ordinary Brownian motion.

It is important to stress that FBM is ergodic in the sense
that both the ensemble average and the time average yields
(x2(1)) oc 27 and (82(A)) o« A* withO < H < 1.However,
the authors of Ref. [13] found that this ergodic regime is
realized after a very extended nonergodic regime that becomes
perennial in the limit H — 1. Itis possible that the main result
of this article, see Sec. I C, may have a connection with this
extremely slow convergence to the ergodic regime.

To make it possible for the readers to appreciate the role
of FBM memory, we find it convenient to discuss also the
joint effect of NPR events and another form of an ergodicity-
breaking process called scaled Brownian motion (SBM) [14].
This form of anomalous diffusion is attracting increasing
interest due to the researchers working on anomalous diffusion
in biological cells [2,15-17] and granular gases [18]. The
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SBM [15] generates the fluctuation £(¢) according to the
prescription

() = Vkt*H- 1&g, ®)

where k is a constant with the proper dimension and &g a
random Gaussian noise, thereby yielding the time-dependent
diffusion coefficient D(¢) given by

D(t) = kt*H 1 )

and leading the second moment of the diffusing variable x(¢),
defined by x = £, to increase in time as

(x()?) o / dt'D(t'y oc 1?7 (10)
0

C. Main result of this paper

The main result of this paper is the theoretical and numerical
discovery that the joint action of FBM memory and NPR
events yields the localization of single trajectories. When
the correlation function of Eq. (5) is sufficiently slow, the
fluctuations of single trajectories generated by the extended
form of CTRW described in Sec. I B tend to vanish, thereby
making the position x(¢) virtually time independent in the time
asymptotic limit. This is equivalent, to some extent, which
is explained in the text, to replacing the factor 1/L!'~% in
Eq. (1) with 1/LY where y = 2H(1 — «), with the effect of
generating a form of ergodicity breaking similar to that of
Eq. (1), in the sense that the intensity of §2(A) is a decreasing
function of the total length L of the time series analyzed.
The parameter y is not confined to y < 1 and for @ < 0.5
a critical value of v, v, exists yielding y > 1 for v < v,
and making the intensity of §2(A) vanish. We refer to this
phenomenon as memory-induced localization. It is important
to stress that this form of localization, being a property of
single trajectories, is compatible with the spreading of different
trajectories generating the nonvanishing scaling n = ¢ H.

Using the same theoretical approach, this article sheds light
also on the formal result of the negative scaling coefficient n
found in the earlier work of Ref. [19]. In this paper we see
that this earlier result is explained by the joint action of NPR
and SBM, with the effect of making §2(A) vanish. However,
this form of joint action is less surprising than the main result
of this article, because the joint action of SBM fluctuations
and NPR events yields localization when both processes yield
subdiffusion.

The outline of this paper is as follows. In Sec. II we
review the connection between NPR processes and the out-
of-equilibrium cascade of events produced by the preparation
of these systems, with an event occurring at t = 0. Section I1I
is devoted to the discussion of the joint action of NPR events
and FBM fluctuations. In Sec. IV we discuss the joint action of
NPR events and SBM fluctuations. Finally, we devote Sec. V
to concluding remarks.

II. RENEWAL

To generate the cascade of renewal events in this paper we
adopt an algorithm based on the idealized Manneville map [20]
prescription. In this case, the survival probability, namely, the
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probability that a new event occurs at a time interval larger than
t from an earlier event is given by the function W(z) defined
by

T o
‘I'(t)=(T+t> ; (1)

where the parameter 7 defines the short-time scale, not show-
ing yet the asymptotic complexity. The survival probability
W (¢) fits the normalization condition

v0) =1, (12)

which implies that an event certainly occurs at a given ¢ > 0.
The corresponding waiting time distribution density is given
by

aT®
- (t + T)1+e’
which in the asymptotic time limit clearly shows its inverse
power-law complexity with the analytical form

Y() (13)

A 14
Y(t) = e (14)

where
A =ao'/oT. (15)

Let us consider the case of infinitely many realizations with
the condition that all of them have an event at time r = 0. The
rate of events at time 7 is given by

Rty =) Yal), (16)

n=1

where v, (¢) is the probability density that an event occurring at
time ¢ is the last of a series of n — 1 earlier events. The renewal
condition leads to the mathematical definition of i, (¢) through
the iterative relation

%(I):/O Va1 (WY1 (8 — 1), a7

where ¥ (t) = Y () with ¥ (¢) given by Eq. (13). The time
convolution of Eq. (17) makes it possible to derive the Laplace
transform of the right-hand side of Eq. (16) and so of R(¢). By
inverse-Laplace transforming this result, see, e.g., Ref. [4], we
are led to

A
R(t) = el (18)
with
[07
Az ——m——— (19)

AT ()1 —a)

The expression of Eq. (18) is the well-known cascade of Feller
events [21], which is the clear sign of the of the fact that there
is no characteristic time scale for the dynamics of the system,
when o < 1.

It is important to notice that, as mentioned earlier, n can
be interpreted as a discrete time, usually called operational
time. In the asymptotic limit the operational time n — oo
becomes identical to a continuous time that we denote as
7y. The numerical simulation of this article is based on the
adoption of the finite time step At = 1. The evaluation of
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82(A) according to the prescription of Eq. (1) is done with
moving windows of size A. In Eq. (1) the left side of the
window closest to the preparation of system is located att = 0.
To make it easier for the reader to understand the phenomenon
of memory-induced localization, we modify this definition,
adopting as the bottom limit of integration Ly > 0 rather than
t = 0. This definition rests on the interpretation of discrete
operational time as counting the occurrence of events and on
the fact that, in addition to the preparation event, no event can
occur at time shorter than Ly. The order of magnitude of L
is, of course, At = 1.

III. JOINT ACTION OF NPR EVENTS
AND FBM FLUCTUATION

The first form of joint action of two different sources of
anomalous diffusion discussed in this article is an extension
of CTRW. In the ordinary CTRW, when the runner jumps, she
makes jumps in the positive or negative direction according
to the sign of the fluctuation & and this fluctuation is random.
In the extended CTRW of this article, the runner sees in her
operational time a correlated fluctuation &, as a consequence
of the infinite memory of the FBM generating fluctuations. In
other words, we assume that the runner in her operational time
7y, makes a diffusion described by FBM. In the clock time,
in the extended time region between two events, the runner
does not move. This has the effect of producing the time scale
dilatation

t=1," (20)

thereby favoring subdiffusion. This problem has been already
studied in the earlier work of Refs. [22-24].

However, we focus on the case H > 0.5, which in the
operational time scale yields super-diffusion. For this reason
we think that the localization effect revealed by the theoretical
and numerical analysis of this article is a surprising property.

A. Review of the dynamical origin of FBM

To make this paper as self-contained as possible, let us
review the derivation of FBM done in the earlier work of
Refs. [11,12]. We move from the equation of motion

. _dx

In this paper, to generate the trajectory x(¢) yielding the
fluctuation £(¢), we use the algorithm of Ref. [25]. This
not only allows us to establish an approach equivalent to
the dynamical approach to FBM of the earlier work of
Refs. [11,12] but it also makes it possible for us to make a
comparison with SBM of Eq. (8). After recording £(r) we
evaluate its correlation function using the time average and,
resting on the ergodicity property, we establish numerically
the parameter T of Eq. (4) and the mean quadratic value (¢ 2y,

Notice that although the prescriptions of this subsection will
be applied to the operational time Ty, for notational simplicity
we adopt the conventional symbol ¢ for time. The fluctuation
&(¢) is characterized by the stationary correlation function of
Egs. (4) and (5). We integrate Eq. (21), square the result,
make the ensemble average, and we use the property that the
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correlation function depends on |f; — ;| [see Eq. (4)] to get

(x*(1)) = 2(&2) /0 dr’ /0 dt" de(t"). (22)

Thus we obtain that for t — oo

(x2()) = ™, (23)
where
H=1- % 24)
and
cz{% H#0.5 (25)
(£2) H =05

B. Time averages

The evaluation of the second moment through time averages
is given by

52(A) =

L—-A
2
I—A /LO [x(t) — x( + A)]dt, (26)
where L is the total length of the time series of the diffusional
variable x(¢). Note that, as stated earlier, to take into account
the discrete nature of the operational time the bottom limit of
time integration is given by Lo, which is of the order of 1.

We adopt the approximation of keeping the length A of the
mobile window much smaller than the total length L, thereby
replacing Eq. (26) with

L
82(A) = % / [x(t) — x(t + A)]*dr. (27)
Ly

After evaluating the time average over a single trajectory,
we make the time average over another trajectory, and so on.
Then we evaluate an ensemble average over the time averages
and we rewrite Eq. (27) as

— 1 L
(82(A)) = Z/ ([x(1) — x(t + A))dt. (28)
Lo
Note that x(7) changes only when an event occurs in the
operational time. As a consequence,

([x(t) — x(t + M) = en(t + A,1)*F, (29)

where c is given by Eq. (25) and n(z + A,f) is the number of
events occurring between ¢ + A and ¢.

This number is evaluated by adopting the Feller prescrip-
tion [4,21]. We assume that the system is prepared at time
t =0, we use for R(t) Eq. (18), and, as a consequence, the
total number of events produced moving from 0 to v > 0,
m(1), is

A A,
m(t) = e dt' = Pl 30)
The number n(t + A ,t) is given by
A
n(t+ A,t) = ;[(t+A)“ —t“]. 3D

We make the assumption A < ¢. With this assumption we are
allowed to use a Taylor series expansion and to neglect the
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higher-order terms, thereby getting
nt+ A,t) ~ At 1AL (32)

By plugging Eq. (32) into Eq. (28) we get, after a straightfor-
ward time integration,

Fan= o -
where
y =2H(l — a). (34)
Note that
B =cA*. (35)

We introduce this factor to recover the key result of Eq. (28)
when H = 0.5.
When y < 1and L > Lj Eq. (33) yields

1
L2HO=0 1 —2H(1 — )

This equation is a generalization of the important result of
Eq. (1). In fact, when H = 0.5 Eq. (36) becomes identical to
Eq. (1), which is the main result of the theoretical proposal of
Ref. [4]. Another interesting property of Eq. (36) is that for
a = 1 the second moment §2(A) becomes independent of the
length L of the time series and identical to the second moment
evaluated with the conventional ensemble average, thereby
showing that FBM is ergodic. If o < 1, then the cascade of
Feller events makes the intensity of §2(A), namely the factor
of 62 in Eq. (36), depend on the time length of the sequence.
This form of ergodicity breaking does not affect the FBM
scaling.

Note also that, as mentioned in Sec. I, to maintain the
structure of Eq. (1) we have to assign to the slowness index v
of Eq. (5) a value larger than a critical value v.. We are now
in a position to define this critical value of v. First, we notice
that y > 1 is possible for @ < 0.5. In fact, the critical value of
H, H., at which y = 1, is given by

1
T 2(1—w)

To realize the condition y > 1, we need to make H larger
than H, and this is impossible to do with « = 0.5, a value of
o assigning to H its maximal value H = 1. Larger values of
o would make H exceed this maximal value. The adoption
of o < 0.5 generates H, < 1, and, consequently, according to
Eq. (34), y < 1. The violation of the condition y < 1 requires
H > H, and a slowness parameter v small enough. Using
Eq. (24), we are led to define v, as

1 -2«
Ve =

(52(A)) = A (36)

H, (37

. (38)
l -«

The condition y < 1 corresponds to v > v.. Adopting a
correlation function with a slower decay, v < v, is equivalent
to setting ¥ > 1, and this has the dramatic effect of making

8_2(A) vanish. In fact, with y > 1 Eq. (33) becomes

BA2H [ 1 1 }
- . (39)

52 —
A =T Lyt
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FIG. 1. The red triangles denote (87(A)) of Eq. (36) as a function
of y given by Eq. (34). The ensemble average is done on 10
single trajectory realizations. We set H = 0.75, A = 103, L = 10°.
To define Eq. (36) we use Egs. (24), (25), (19), (35), and (15).
Equation (24) with H =0.75 yields v =0.5. For Eq. (25) we
use (£2) = 0.0657, T = 0.129, yielding ¢ = 0.0627. Equation (19)
depends on Eq. (15) with « changing with y and T = 0.091. The
black squares show the result of numerical treatment and for y > 1
they agree with the vanishing value predicted by Eq. (40).

It is convenient to write this expression in the form

Fay=to BAT 1, (ﬁyl (40)
L Liy-1 L ’

which shows that for Ly/L — 0 the second moment §2(A)
vanishes, yielding a perfect localization, in the same way as
Eq. (1) does for « — 0, as the readers can easily realize from
Ref. [5] and from the property lim,_,¢ '(«¢) = o0. In the case
of ordinary CTRW this localization is a natural consequence
of the fact that with « — 0 for the entire time interval L no
new event may occur in addition to the preparation event.
The same effect emerges from the joint action of NPR events
and FBM fluctuation, and this is the reason why we use the
term localization to define it. However, the localization of
this paper is not a consequence of lack of events, since, as
shown in Sec. III C, the ensemble average approach yields a
second moment of the diffusion process increasing in time,
although with a very small scaling. The localization effect of
this paper, produced by the joint action of NPR events and
FBM fluctuation, is determined by the FBM infinite memory
transmitted to the NPR events. The rare occurrence of NPR
events makes the slow decay of the correlation function of
Eq. (5) become infinitely slow and the single trajectories
become equivalent to deterministic and ballistic trajectories,
with the effect of annihilating 82(A). This is the reason
why we refer to this effect as memory-induced localization.
The theoretical prediction of memory-induced localization is
satisfactorily supported by the numerical calculations of Fig. 1.

It is important to point out that the theoretical prediction of
this section can be interpreted as being based on the assumption

([x(t) — x(t + M) o (n(t + A1), (41)

As pointed out by the authors of Ref. [23] the number of
events between ¢ + A and ¢ is not fixed and can be evaluated
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FIG. 2. The single trajectory time average evaluation of the
second moment of Eq. (26) as a function of L. H = 0.75, « = 0.35,
A = 100. The black dots denote the numerical results and the dashed
red line is the fitting yielding the slope 1.0057. According to Eq. (36),
the theoretical slope of the straight line is 2H (1 — o) = 0.975.

by adopting the following prescription:

A
(@t + &) = n@0)*") = f dry(on@ + o7, (42)
0
where v,(t) is the waiting time distribution density when
we begin waiting at time ¢ far from the occurrence of the
preparation event. Following the calculations done in Ref. [23]

we get

(52(A)) ﬁAH’”H“. (43)

As we see, with the adoption of the prescription of Eq. (42)
the signature of the joint action of NPR events and FBM
generating fluctuations is given by the power index of A which
is | — o + 2H o rather than 2 H. There is no memory-induced
localization.

To support our arguments on the memory-induced localiza-
tion, in spite of the striking difference with the rigorous result
of Ref. [23], we make the numerical calculation of Fig. 2. This
figure refers to the case where y is very close to the border limit
y =1 and we think that the agreement between numerical
results and theoretical prediction is satisfactory. However,
Fig. 3 shows that the theoretical prediction of Ref. [23] on

10' I \3 I
10 107 10

4

FIG. 3. The single trajectory time average evaluation of the
second moment of Eq. (26) as a function of A. H = 0.75, « = 0.4,
L = 10°. The black dots denote the numerical results and the dashed
green line is the fitting yielding the slope 1.244. According Eq. (43),
the slope of the straight line is 1 —« +2aH = 1.2. Note that
2H =1.5.
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the power index of A is correct. In the concluding remarks we
shall come back to discuss the conflict between the predictions
of this article and the earlier work of Ref. [23].

C. Ensemble average

In the operational time scale the diffusion process is
described by

1 x?
Pr, (X,Ty) = ———€xp (——) (44)
' /antle Zkfdsz

Moving from the operational to the clock time, we get

1 exp ( x? )
[2mkT 2krytt

45
where B(¢,7,) denotes the distribution density of time ¢
interpreted as the diffusion variable of the discrete time n
that in the asymptotic limit becomes the continuous variable
7y [26,27]. The clock time ¢ is related to the operational time
7y by the relation of Eq. (20), which is a consequence of the
fact that 7 plays the role of diffusional variable. This yields

pela) = /O de,B(t.y)

Ty X t*. 46)

We can find the scaling n generated by Eq. (45) with the
following intuitive argument. The distribution B(¢,ty ) sets the
constraint T, = t“ As a consequence, the variable x, which is
proportional to ‘L’w , turns out to be proportional to ¢", with

n=ouaH. 47)

This result can be obtained in a more rigorous way by
noticing that the scaling of Eq. (46) corresponds to

B(t,1y) = —F(:f) (48)

By plugging B(t,ty) of Eq. (48) into Eq. (45) and replacing
the integration variable 7, with y = 7, /1%, we obtain

1 x?
pclx,t) = e 81\ 2ha ) (49)
where
T ayF ! & 50
gH(Z)Z/(; y ()’)W exp [_W]’ (50)

thereby yielding a more rigorous derivation of the scaling of
Eq. (47).

Note that thanks to the earlier work of Ref. [28] the Mittag-
Leffler function is connected to 5(z,7y ) through

E (—t%) = /OO dry B(t,Ty) exp(—Tys) (51)
0

for s — 0. /}s a consequence, the double Laplace transform
of B(t,ty), B(u,s), reads

(52)
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In the special case o = 0.5 inverse-Laplace transforming
Eq. (52) gives

ﬂ_ (53)

B(t,ty) = Jorn)

Using Eq. (45) we get

2 2
o0 exp ——‘” exp [—;W]
pc(x,1) —/ -

2H
21 127

dry.  (54)

On the basis of earlier arguments it is straightforward to
prove that this equation can be written under the form

1 X
pete.n) = —zF (=5 ). (55)
For example, in the case H = 1 we get
(1) = —=K ( 'x') (56)
X, = = = k)
Pc T 0 NGT

where K((z) is the modified Bessel function of the second kind.
Note that Eq. (56) refers to the case « = 0 and H = 1, namely
the case where y of Eq. (34) is y = 2. Thisis a condition where
(82(A)) = 0, according to the theoretical and numerical results
of Sec. III B. In fact, as stressed in Sec. I C, localization occurs
when y > 1. The localization of a single trajectory is a clear
manifestation of ergodicity breaking, because the localization
of a single trajectory is derived from the statistical analysis in
time, departing from the ensemble average analysis yielding
no localization. Ergodicity breaking can also be realized as the
ensemble and time analysis bringing two different scalings. We
notice, in fact, that the scaling of Eq. (56), ensemble analysis, is
n = 1/2,in accordance with Eq. (47), whereas the localization
(82(A)) = 0, observed doing time analysis, suggests that the
single trajectories have the scaling n = 0.

D. Concluding remarks on this first form of joint action

We see that this form of joint action generates ergodicity
breaking. In fact, the ensemble average analysis yields Eq. (36)
and, consequently, the scaling of Eq. (47), n =« H. The
time average analysis, on the contrary, generates a scaling
dependent on whether the prescription of Eq. (41) or the
prescription of Eq. (42) is adopted. In the former case

n=H (57)
and in the latter

-«

2

thereby yielding ergodicity breaking regardless of what pre-
scription is adopted. The three scalings are identical only in the
absence of the Feller cascade, @ = 1, a property reminiscent
of the results of Refs. [3,4].

From a theoretical point of view, averaging on infinitely
many single trajectory realization casts some doubts on the
prescription of Eq. (41) and especially on the scaling of
Eq. (57). However, the observation of single trajectories, with
the adoption of time averages, shows that the dependence
on L of Eq. (36) is a correct prediction, thereby supporting

1
n=Ha+

(58)
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our conclusion that y > 1 generates localization, whereas
the ensemble average generates a sub-diffusion process more
pronounced than that of CTRW, with nevertheless the nonva-
nishing scaling n = o H.

IV. JOINT ACTION OF NPR EVENTS
AND SBM FLUCTUATIONS

The second form of joint action is realized by adopting
SBM rather than FBM and by assuming that SBM is activated
in the clock time. The runner, however, spends a large part of
her time sleeping. She jumps only when she is awake.

The ensemble average is established through the formula

() = / d / dLEE D), (59)
Lo Lo

where £*(¢) denotes the fluctuation perceived by the runner.
This fluctuation differs from the vanishing value only when
the runner is awake. The sleeping condition is equivalent to
setting £*(¢) = 0. In this case, the joint action of the Feller
cascade and the SBM diffusion time dependence yields

(EVOE + 1) = ffc—_ftz””am, (60)
with the constant k being determined by the prescription of
Eq. (8) and the constant A by the prescription of Eq. (19).
In this section we focus only on the scaling at the level of
ensemble statistics and at the level of time statistics. Therefore,
for simplicity’s sake, we set 2kA = 1. By plugging Eq. (60)
with 2kA = 1 into Eq. (59), we obtain

1

(x2(1)) = m[IZH—H-a _ L3H71+a]. 61)
Notice that
2H — 1+« =2n, (62)
where
n= 21_1_#. (63)

This is the scaling generated by the generalized diffusion
equation proposed by the authors of Ref. [19]. When n > 0
and ¢t > Lo, Eq. (61) becomes

(x*(1)) = iﬁ". (64)
2n

It is worth noting that Ref. [19] does not discuss the
dynamics of this process when n < 0. As a result of the
theoretical approach illustrated in this paper, we reach the
compelling conclusion that this negative scaling leads to an
exact localization. In fact, when n < 0, Eq. (61) yields

(2(0) = ZL[% - %ﬂ} 65)
Inl| L t

This prediction is supported by the numerical results of Fig. 4.
Notice that both Eq. (64) and Eq. (65) yield for n — O the
logarithmic scaling x> ~ In¢. Figure 5 supports this prediction
in the case n < 0.
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10" 102 10° 10*
t

FIG. 4. The ensemble average of the second moment (x2(t))
for different values of H and «. All the curves were generated
from the average of 10* realizations. From the top to the bottom:
H=0450=09; H=045,0 =0.6; H=0.10,0 =0.9; H =
0.10, o = 0.5. All the straight lines but the bottom one are guidelines
indicating the scaling 2n = (2H — 1 + «). Note that for the bottom
curve, corresponding to 2n = —0.2, the numerical result fits the
guideline straight curve with vanishing slope.

What about the analysis of single trajectories in this case?
To do the time average analysis we must adopt

_ 1 L
(82(A) = = | (x() —x(t + A)P)dt
Lo
1 L
= — dtC(A,t), 66
), tC(AL1) (66)

where the function C(A,f) reads
+A t+A
C(A.n= / dt, / diEWEP®)), (67
t t
with the correlation function (&®)(¢,)£™(t,)) given by

1
(EPED D) = 51T — 0. (68)

h
7 ! -]
5 ./ |
o
0} 4
A e
N\; 4t /,r” |
\% d
/,4

3F /,/s’/ 1
2% | |

0 1

10 ¢ 10

FIG. 5. Numerical evidence that n < 0 makes x proportional to
Int. H = 0.1, « = 0.6. The black dots are the numerical results and
the red dashed line is a linear-log fitting with the slope 1.23. Note that
with these values the scaling of Eq. (63) becomes negative, n = —0.1.
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By plugging Eq. (68) into the right-hand side of Eq. (67) we
get

C(At) = %[(r + A — 2], (69)

Doing the usual Taylor series expansion with the assumption
A <t and neglecting the terms of higher order in A/f, we
obtain

C(A,1) = AP, (70)
Plugging C(A,t) of Eq. (70) into the right-hand side of Eq. (66)

and integrating over t we get

(52(A)) = Z%[Lz'7 —L"]. (1)

When n > O and L > L, we get

A
L1-21 %
When n < Oand L > Ly Eq. (71) becomes

_ B LO 2[n] LO 20|
(82(A) = A(f) [1 - <T) ; (73)

yielding a vanishing second moment for Ly/L — 0.

(82(A)) = (72)

V. CONCLUDING REMARKS

This article affords a solution to the question raised by
the authors of Ref. [19] on the interpretation of the scaling
generated by the diffusion equation

9" =D ” 74
Pl = DO plx.), (74)

where the fractional derivative rests on the Caputo prescrip-
tion [29] and, according to Eq. (9),

D(t) = ct?H1, (75)

The authors of Ref. [19] proved that this diffusion equation
generates the scaling of Eq. (63) but they were unable to
establish the nature of the individual stochastic trajectories. An
important result of this article is the discovery that the single
trajectories corresponding to this scaling are those illustrated
in Sec. IV. The research that we did to answer this question led
us to establish that the condition n — 0 yields the logarithmic
scaling x> ~ Int, regardless of whether the vanishing value of
n is realized moving from 1 > 0 or from n < 0. This process
is characterized by ergodicity breaking and it is remarkable
that the condition < 0 corresponds to a perfect localization,
as proved by Eq. (73).

Much more surprising is the result that we obtain thanks
to the joint action of NPR and FBM, as illustrated in Fig. 1.
In this case, the localization induced by ergodicity breaking
is realized with H > 0.5 corresponding to superdiffusion. In
the whole region of the memory-induced localization y > 1,
the ensemble scaling n = o H applies and & < 0.5 makes <
0.5, even in the condition of maximal FBM superdiffusion,
H = 1. Thus, the wholeregion y > 1 corresponds to ensemble
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subdiffusion. However, the memory-induced localization of
this article is not a trivial consequence of analyzing the
time average of single trajectories when we have ensemble
subdiffusion. In fact, the conditions o = 0.6, for instance,
with H = 1 yields n = 0.6, namely superdiffusion, and with
H = 0.75 yields n = 0.45, namely subdiffusion. Yet, both
conditions are characterized by y < 1, y = 0.8, the former,
and y = 0.6, the latter, and, consequently, in neither conditions
memory-induced localization is produced. In conclusion, we
may have ensemble subdiffusion and no localization with time
averages on the single trajectories.

The adoption of the prescription of Eq. (42) adopted by the
authors of Ref. [23] casts some doubts on this effect, insofar
as it yields the theoretical prediction of Eq. (43), with no
localization effect. However, we note that this theoretical pre-
diction is based on the assumption that the ensemble average
commutes with the time integration, making Eq. (27) turn into
Eq. (28). This property is correct if the ensemble average of
the time averages is done on infinitely many realizations. The
numerical results of Fig. (1) are obtained making an ensemble
average over 10 single-trajectory realizations and the results
of Fig. (2) and of Fig. (3) are based on single trajectories.
They show that the scaling prediction of Eq. (57) is incorrect
and that probably averaging over a suitably large number of
realizations would lead to the scaling of Eq. (58). We believe
that the correct theoretical prediction of Eq. (43) corresponds
to the superposition of infinitely many single realizations, each
of which is has an almost fixed nonvanishing value §2, namely
a localized single trajectory.

In conclusion, the memory-induced localization is a single-
trajectory property and we are convinced that this result may
lead to a new vision of memory and renewal processes. To
shape this vision, it may be convenient to consider FBM
with the second moment increasing as t*# as an indication of
randomness quite distinct from that signaled by the occurrence
of renewal events. The correlation function of Eq. (5) is
compatible with the derivation from the Hamilton formalism
and, consequently, with the Laplace determinism [30,31]. This
suggests that the entropy increase in this case is due to the lack
of information generated by a contraction over the irrelevant
variables that, in spite of being ignored, are responsible for the
slow decay of this correlation function. The second moment
increasing as t“, on the contrary, has a completely different
meaning. In the operational time, in fact, any time step is
characterized by the action of a random event, thereby forcing
the second moment to increase linearly with 7. As a matter
of fact, as we have seen, t* = 7y, in line with the extended
definition of Lyapunov coefficient adopted by Korabel and
Barkai to adapt it to the occurrence of rare events of the
o < 1 condition [32]. In this case, when we depart from
the singularity condition H = 0.5, where £ is completely
uncorrelated, and we move towards H = 1 with the decay
of the correlation function of Eq. (5) becoming slower and
slower, the correlated fluctuation & has the effect of completely
quenching the action of NPR randomness at the critical value
H. = 1/[2(1 — «)], corresponding to the critical slowness of
Eq. (38). Although we have been referring ourselves to this
phenomenon as memory-induced localization, imagining the
FBM memory as the cause of the effect, this may be probably
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equivalent to interpret the rare events of the condition @ < 1 as
the cause of the effect, being a physical condition that makes
the decay of correlation function of Eq. (5) infinitely slow.
The settlement of these problems require further studies
and a promising research direction is suggested by the recent
work of Marzen and Crutchfield [33] where infinite memory
and renewal events are discussed using the mutual information

PHYSICAL REVIEW E 94, 012136 (2016)

between past and future and the amount of information from
the past required to exactly predict the future.
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