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Effective-medium approximation for lattice random walks with long-range jumps
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We consider the random walk on a lattice with random transition rates and arbitrarily long-range jumps. We
employ Bruggeman’s effective-medium approximation (EMA) to find the disorder-averaged (coarse-grained)
dynamics. The EMA procedure replaces the disordered system with a cleverly guessed reference system in a
self-consistent manner. We give necessary conditions on the reference system and discuss possible physical
mechanisms of anomalous diffusion. In the case of a power-law scaling between transition rates and distance,
lattice variants of Lévy-flights emerge as the effective medium, and the problem is solved analytically, bearing
the effective anomalous diffusivity. Finally, we discuss several example distributions and demonstrate very good
agreement with numerical simulations.

DOI: 10.1103/PhysRevE.94.012135

I. INTRODUCTION

Anomalous diffusion is a random transport phenomenon
characterized by a nonlinear growth of the typical dispersion
length with time. The dispersion length can be identified with
the mean-squared displacement, when it is finite. Then one has

〈X2(t)〉 ∼ tγ . (1)

Here γ is the characteristic exponent of anomalous diffusion.
The case γ < 1 is usually coined subdiffusion, whereas
one speaks about superdiffusion when γ > 1. Superdiffusion
appears in plasmas [1,2], diffusive light transmission [3],
and active particles [4]. It appears in the nonphysical fields
as well: in random searches [5,6], the motion of living
organisms [7,8], like animals [9,10] or humans [11–14]. It
is also important in epidemic spreading as infected individuals
move superdiffusively [15–18]. The transport in strongly
disordered systems is usually found to be anomalous, see
Ref. [19], however, due to different physical reasons that
vary from one situation to another [20]. In a lattice model,
the disorder may be represented by random transition rates
that describe a random walker’s jumps between different sites
[19,21]. Using Arrhenius’s law, the rates can be converted
into energy differences. Hence, such models are known as
random-barrier, random-trap, or random-potential models in
the physics literature [20,22–24], but variants are known as
random-conductance model in mathematics [25], as the master
equation also governs the electrical potential of a random
resistor network. The randomness reflects the possibly vague
knowledge about the microscopic dynamics of the diffusing
particles.

Although random master equations pose a rather generic
model, they are very difficult to treat analytically. It is desirable
to consider a disorder-average of the medium that is homoge-
neous, translationally invariant, and can faithfully replace the
original disordered system. Such an “homogenization” proce-
dure is often motivated by the observation that a heterogeneous
medium appears homogeneous at larger length scales. As the
random walker explores more and more of the environment, he
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will only “feel” the average medium. Practically, such averages
are performed with effective-medium approximations (EMA)
[26]. They are numerically very successful and therefore of
huge practical relevance [27,28]. One not only uses such
concepts to describe transport (especially in the percolation
problem) [29–31] but also in description of optical phenomena
[32,33].

In principle, the sole necessity for EMA is analytical knowl-
edge about the effective topology and propagator. Therefore, it
has most often been applied to simple-cubic lattices, or other
variants with short-range transitions [21,29], where a certain
jump length threshold cannot be exceeded. An exception is
the work of Parris et al. [34–37]. Starting in the late ’80s, they
investigated long-range hopping, although in the context of
normal diffusion. Later in the 2000s, they considered diffusion
on complex networks and focused on traversal times. EMA has
also been generalized in other directions, e.g., with anisotropic
transitions; see Ref. [38].

When the nodes of a complex network are embedded in
space, i.e., in a spatial network [39], long-range connections
may arise due to inhomogeneous embedding or due to
empirical necessity. In a network theoretical treatment, the
focus lies on topology; transport is quantified via shortest
paths or first-passage times. Here we take a different approach:
we find an effective topology that exhibits the same behavior
in terms of the (anomalous) diffusion constant K , whose
physical dimensions mμ/s also encode the scaling between
travel time and displacement. This average over the disordered
environment restores translational invariance and enables
easier analytical treatment of such models.

EMA can be considered a method of comparison between
a disordered model and an arbitrary reference model. When
the correct reference model is chosen, EMA results in a finite
effective diffusivity, and in a Markovian description of the
disordered system. If the effective diffusivity is either zero or
infinite, i.e., nonfinite, the reference model is not appropriate.
Either a different reference model needs to be considered or
a non-Markovian description has to be employed. The latter
has been done, e.g., in Refs. [40,41]. In this paper, however,
we concentrate on a Markovian description. The main aim
of this paper is demonstrating that Bruggeman’s variant of
EMA [42] can easily be applied to models with more than
just nearest-neighbor transitions. We consider infinite lattices,
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which are densely connected, and show that they behave like
Lévy-flights—or show normal behavior. By discussing under
which conditions the effective coefficient of normal diffusion
is nonfinite, one can identify mechanisms of anomalous
diffusion, as was done in Ref. [24].

The rest of the paper is structured in the following way: in
Sec II we introduce Bruggeman’s EMA and discuss necessary
conditions on the reference model. In Sec. III we introduce
the lattice Lévy-flight, in Sec. IV we discuss some examples,
and Sec. V is devoted to numerical simulations. We close with
discussion of the results and summary in Sec. VI.

II. THE EFFECTIVE MEDIUM APPROXIMATION

Let us start with a master equation for transport in a random
environment:

ρ̇(x; t) = (�ρ)(x; t) :=
∑
y∈�

w(x, y)[ρ( y; t) − ρ(x; t)]. (2)

The particles move on a lattice (or graph, or network) �

and jump with a symmetric rate w(x, y) from one site to the
other. Later we will consider the d-dimensional square lattice
with lattice constant a; i.e., � = aZd . The environment is
modeled via the transition rates w(x, y) that are assumed to
be independently distributed for each link (x, y). Throughout
the text, we will abbreviate the links with ξ = (x, y), and will
write |ξ | = |x − y| for the distance crossed by the link. In case
a transition is forbidden, w(x, y) is put to zero. We assume that
the resulting graph is connected. We are interested in a proper
averaging procedure, which replaces the random transition
rates with appropriate deterministic ones. That means we are
looking for a deterministic function r∗(x, y), such that

ρ̇(x; t) = (�∗ρ)(x; t) :=
∑
y∈�

ρ( y; t) − ρ(x; t)

r∗(x, y)
(3)

has the same qualitative (coarse-grained) behavior as the first
equation. This will be the effective-medium approximation of
Bruggeman. We will call Eq. (3) the “reference model” and
Eq. (2) the “original” one. All reference quantities are denoted
with stars; bare quantities belong to the disordered original
model. r∗(x, y) has the dimension of a time and it is in fact the
mean time for the transition from x to y. Later, we will identify
w(x, y) with conductances and r∗(x, y) with resistances, hence
the notation. Only for arbitrary notational reasons we are using
rates in the original model and inverse rates in the reference
model. A sketch of the replacement by the effective medium
can be inspected in Fig. 1.

In contrast to prior treatments of the problem, we admit
“long-range jumps.” That means that it is possible to find a
transition (or jump, or link) ξ with nonvanishing rate, which
crosses a distance comparable to the lattice diameter. In case
that � is infinite, this means that for any length crossed,
we find nonvanishing transition rates. If there exists an L,
such that w(x, y) = 0 almost surely for every |x − y| > L,
an infinite system would only have short-range jumps. (For
a finite system, one would need to compare L to some
typical system size.) It will turn out that the presence of
long-range jumps is not sufficient to generate superdiffusion;
they have to be “strong enough.” The notions of “diameter,”

FIG. 1. Sketch of EMA. The above depicted original lattice with
long-range connections is replaced by the regular one below. In the
original lattice bonds may be present or missing, and their strength
may vary randomly. After the EMA procedure, all bonds are present
and the strength only depends on the distance of the connected lattice
sites.

“crossed distance,” as well as computation of the mean-squared
displacement, and thus the whole diffusion problem, assume
that the graph is embedded in some (Euclidean) space that
provides a meaningful definition of distance between the nodes
or, alternatively, a definition of the node’s position.

We think about the original model’s rates as following a
deterministic trend with random fluctuations, i.e., w(x, y) =
K(x, y)/f (x, y). Here f (x, y) denotes the deterministic spatial
dependence and K(x, y) are independent, identically dis-
tributed random variables. The dimension of f (x, y) is a power
of meters, e.g., mμ, and K has the dimension of diffusivity, i.e.,
mμ/s. Furthermore, we assume f (x, y) to be translationally
invariant and isotropic, meaning it is only a function of |x − y|.
Both assumptions are in no way crucial to EMA but simplify
our arguments. As the assumption’s consequence, we also split
an effective generalized diffusivity K∗ from r∗(x, y) by writing
1/r∗(x, y) = K∗/f ∗(x, y).

Candidates for the reference model will be lattice Lévy
flights, which have 1/r∗(x, y) = (adK∗)/|x − y|d+μ. It will
be shown that such a system’s behavior is only sensitive to
the asymptotic behavior of r∗(x, y) for large |x − y| (which is
assumed to be a power law). Hence, we actually treat a whole
class of disordered systems, indexed by the real parameter μ.

Our long-range jump model is very similar to the model
for exciton transport on a polymer chain considered in
Ref. [43]. In this model, excitons can perform long jumps
to far-away monomers that are close in Euclidean space.
Although the resulting motion scales like normal diffusion, it
shows paradoxical behavior as the mean-squared displacement
still diverges. The reason is a strong correlation between the
shortcuts. Such correlations are out of the current paper’s
scope. We only investigate independent links.

We repeat here two derivations of EMA that can also be
found in Refs. [29] and [23], as well as in textbooks [26].
In contrast to those references, we refrain from assuming a
special topology of the reference model.

A. Electrical formulation

The symmetry of the rates makes Eq. (2) equivalent to
Kirchhoff’s equations for the evolution of electric potential
ρ(x) in a network of random conductances w(x, y) with
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fixed capacitances [19]. In the stationary limit, the theory
of Bruggeman proposes to replace the random conductances
w(x, y) with deterministic effective conductances 1/r∗(x, y) in
such a way, that the average change in the stationary potential
vanishes.

Assume � would be finite and we insert and extract
some current on both ends of the effective medium. A
stationary voltage profile will be assumed, as well as some
stationary current. The effective conductance is the ratio of
both. Afterwards, we take the thermodynamical limit and
restore � to infinite size; the stationary current and the
gradient of the potential will both vanish, but their ratio,
the effective-medium conductance, is correctly defined. This
defines the effective diffusivity as the ratio of the diffusive flux
and the concentration drop along a large part of the medium.

Now we fix one link ξ = (x, y) of the (infinite) effective
medium. An electric current (alternatively the diffusive flux)
I (ξ ) is applied at x and extracted at y. According to Ohm’s
law, the voltage drop U (ξ ) measured between those nodes is
given by

U (ξ ) = R∗(ξ )I (ξ ), (4)

where R∗(ξ ) = R∗(x, y) is the total resistance of the effective-
medium lattice between the nodes x and y. In the effective
medium, there is a resistor r∗(ξ ) placed between the links. This
resistor is now replaced by the original random link 1/w(ξ ).
When the same current as before is applied, the voltage drop
U ′(ξ ) of the lattice with impurity is given by

U ′(ξ ) =
[

1

R∗(ξ )
+ w(ξ ) − 1

r∗(ξ )

−1]
I (ξ ). (5)

In a correctly chosen effective medium, both expressions give
the same value, when averaged over the impurity w(ξ ), i.e.,
0 = 〈U (ξ )〉 − U ′(ξ ). When the effective medium replaces the
random environment faithfully, this is true for all applied
currents I (ξ ) and all choices of the links ξ . After dividing the
equation by I (ξ )[R∗(ξ )]2, we obtain a set of self-consistency
equations that can be solved for r∗(ξ ):

0 =
〈

R∗(ξ ){w(ξ ) − [r∗(ξ )]−1}
1 + R∗(ξ ){w(ξ ) − [r∗(ξ )]−1}

〉
w(ξ )

. (6)

Note that above expectation always exists, because the expres-
sion inside the brackets is bounded by unity. (We will show
later that R∗(x, y)/r∗(x, y) is always smaller than one. Hence
the expression has a singularity at negative w(x, y), where the
distribution of w(ξ ) has no support.) If the distribution of w(ξ )
depends on ξ , this procedure has to be repeated for each class
of bonds and all equations have to be solved simultaneously.

This formula has been known for many decades and has
been used many times successfully. Although it is not exact,
it works well for systems reasonably far away from the
percolation threshold. As we show later, the systems with
long-range connections that we treat here are always far away
from the percolation threshold. In the short-range case, it can
be augmented by the rigorous Hashin-Shtrikman bounds [26].
Please observe that we made no assumptions on the reference
model, yet. The key ingredient to solve Eq. (6) is knowledge
about the total resistance R∗(x, y) between two nodes of
the effective lattice, which is a legitimate entity from graph

theory called the resistance distance [44]. It is computed from
the resolvent of the lattice Laplacian �∗ and its definition
represents an additional self-consistency requirement, since
it relates r∗(x, y) and R∗(x, y). Thus, when the resistance
distance of a certain lattice Laplacian can be found, we can
use EMA to replace the random Laplacian from Eq. (2)
with a deterministic one. To see clearer the relation between
the resistance distance and the resolvent, we reformulate the
approximation procedure.

B. Resolvent formulation

When the lattice Laplacian � in Eq. (2) has symmetric
rates, we can rewrite it by sorting it by links, instead of sorting
by lattice sites. An arbitrary order is introduced among the
lattice sites and the Laplacian is written in a quasidiagonal
manner. This is possible if there are at most countably infinite
many lattice sites. We use quantum mechanical notation. The
function ρ is represented by the ket |ρ〉. The ket |x0〉 is a
function that is zero everywhere but at x, where it is unity. The
bra 〈x0| on the other hand evaluates a function at x0. Hence,
we have ρ(x) = 〈x|ρ〉 and 〈x| y〉 = δx, y. We write

� =
∑

x, y∈�

w(x, y)[|x〉〈 y| − |x〉〈x|]

=
∑
x∈�

∑
y: y>x

w(x, y)[|x〉〈 y| − |x〉〈x|]

+
∑
x∈�

∑
y: y<x

w(x, y)[|x〉〈 y| − |x〉〈x|]

=
∑
x∈�

∑
y: y>x

w(x, y)[|x〉〈 y| + | y〉〈x| − |x〉〈x| − | y〉〈 y|]

(7)

In the last line, we reordered the second pair of sums and
interchanged the summation indices x ↔ y. Defining the new
ket |ξ〉 := |x〉 − | y〉, we have

� =
∑

ξ ′∈L(�)

w(ξ ′)|ξ ′〉〈ξ ′|, (8)

where the sum runs over all links of the lattice �. One has to
keep in mind that this is not a diagonalization of the operator,
since the |ξ ′〉’s do not represent a basis.

In the same way, the reference operator is reordered:

�∗ :=
∑

ξ ′∈L(�)

|ξ ′〉〈ξ ′|
r∗(ξ ′)

. (9)

By taking Laplace transform of Eq. (2), we can represent its
formal solution in terms of the resolvent, or Green’s operator
G(s) := [s − �]−1. Let’s say we already know the resolvent
G∗(s) = [s − �∗]−1 of the reference model. Then we fix a
link ξ and replace the effective-medium conductance with the
original one. That means we consider

�∗ + D̂ :=
∑

ξ ′∈L(�)

|ξ ′〉〈ξ ′|
[

1 − δξ ,ξ ′

r∗(ξ ′)
+ δξ ,ξ ′w(ξ )

]
, (10)
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where δξ ,ξ ′ is a Kronecker-symbol. Finally, we express the re-
solvent of �∗ + D̂ in terms of G∗(s). We use a Neumann series
of G∗(s)D̂ and the fact that D̂ = |ξ〉{w(ξ ) − [r∗(ξ )]−1}〈ξ | has
only one nonvanishing entry to write

〈x|[s − �∗ − D̂]−1| y〉 − 〈x|G∗(s)| y〉
= 〈x|[1 − G∗(s)D̂]−1G∗(s)| y〉 − 〈x|G∗(s)| y〉
= 〈x|(G∗ + G∗D̂G∗+G∗D̂G∗D̂G∗ + · · · )| y〉−〈x|G∗| y〉

= 〈x|G∗(s)|ξ〉 〈ξ |D̂|ξ〉
1 − 〈ξ |G∗(s)|ξ〉〈ξ |D̂|ξ〉 〈ξ |G∗(s)| y〉, (11)

where 1 is the identity operator, and we omitted the arguments
in the third line to save space. The EMA-requirement is that
the left-hand side of this equation vanishes on the average.
We identify 〈ξ |D̂|ξ〉 = w(ξ ) − [r∗(ξ )]−1, and take the average
on both sides of the equation. Multiplying the equation by
the factor 〈ξ |G∗(s)|ξ〉/(〈x|G∗(s)|ξ〉〈ξ |G∗(s)| y〉), we recover
Eq. (6). We can as well identify the resistance distance in
the effective medium with −〈ξ |G∗(s)|ξ〉. In the stationary
limit t → ∞ (corresponding to s → 0 in Laplace domain),
we recover the standard textbook definition of the resistance
distance, see, e.g., Ref. [44]:

R∗(x, y) := −(〈x| − 〈 y|)(�∗)−1(|x〉 − | y〉). (12)

This quantity is also related to the mean first passage time
from x to y [35]. We see that the relation between r∗(x, y) and
R∗(x, y) indeed is quite complicated, since it involves finding
the Green’s function. This may be the reason why only certain
models have been used in effective-medium theory so far, in
particular only short-range models.

Retaining the s-dependence in the propagator G∗(s) leads
to temporal memory in the reference system, making Eq. (3)
a generalized master equation. The consequences of this
decision are discussed, e.g., in Ref. [45]. Hence, above
derivation is also the starting point of a non-Markovian EMA
theory; this is necessary when the stationary limit is not finite.
In this case, we do not consider �∗ as a good candidate
to describe the behavior of Eq. (2). Here, we will rather
adjust the reference model than losing Markov-property. In
the case of nonfinite EMA diffusivities, we will say that EMA
“failed.” In short-range models, this is the case, e.g., in the
barrier model in one dimension [19]. The existence of some
extremely weak links impairs the diffusion process and leads
to subdiffusion: The effective diffusivity vanishes. EMA also
fails when one tries to compare a long-range model with a
short-range reference model. In this case, when the original
diffusion process is superdiffusive, the reference model cannot
capture this feature and the effective diffusivity is infinite. In
both cases a non-Markovian description via generalized master
equations could be used, but we rather look for the correct
reference model.

In both derivations we neglected correlations between
the bonds, as we only replaced one effective link with its
original. This renders our theory suboptimal for problems
with correlated links, e.g., the site percolation problem or the
random walk on a polymer chain; see Ref. [43]. However,
EMA theories for correlated links exist as well [46].

Let us now set out to investigate some of the properties of
Eq. (6).

C. A necessary condition on the reference topology

Again, fix one link ξ and let’s assume that we know
the value of R∗(ξ ). Consider w(ξ ) and assume that with
probability cξ the link exists, i.e., w(ξ ) = 0 with probability
1 − cξ . Whence, its probability density function (pdf) reads
(1 − cξ )δ(w) + cξpξ (w), where pξ denotes the pdf of the
nonzero rates. We assume that �∗ is chosen such that
1/r∗(ξ ) = 0 on that particular link, i.e., the link does not exist
in the effective medium. Then, by Eq. (6),

0 = 0 + cξ

∫ ∞

0
dw pξ (w)

R∗(ξ )w(ξ )

1 + R∗(ξ )w
. (13)

Since the integrand is positive, the integral does not vanish and
this equation cannot be solved, unless cξ = 0. We conclude that
the reference model must have a link, whenever the original
lattice could have a link. It must be chosen accordingly. In
particular, when long-range connections are possible, i.e.,
when cξ > 0 for any ξ , short-range models have to be
abandoned. This is the reason why classical EMA, which
usually compares with a simple cubic lattice, must fail in the
superdiffusive setting. We have to choose a long-range model
as well. One of them, the lattice Lévy flight, is presented later.

D. Scaling transition rates and small resistance expansion

Let us now assume that the rates w(ξ ) are following a
deterministic spatial dependence with random fluctuations,
hence w(ξ ) = K(ξ )/f (ξ ) and the pdf pξ of w(ξ ) has a scaling
form. In this case, we can write

pξ (w) = f (ξ )p̃[wf (ξ )]. (14)

The spatial dependence f (ξ ) allows us to define an anoma-
lous “bond-diffusivity” K(ξ ) := w(ξ )f (ξ ). It is anomalous
because its units are [K] = [f (ξ )]/s, and [f (ξ )] is not
necessarily m2. The bond diffusivity does not depend anymore
on the link or distance ξ , except for stochastic fluctuations.
The ξ -dependence is absorbed into the scaling function f (ξ ).
Consequently, we change the integration variable in Eq. (6)
to K . It is reasonable to also split up the reference model’s
transition rate by writing 1/r∗(ξ ) = K∗/f ∗(ξ ). It is equally
easy to see that in order to solve Eq. (6), we have to identify
f ∗(ξ ) = f (ξ ). The effective-medium anomalous diffusivity
K∗ enters as a constant factor in Eq. (3). This factor will
appear in R∗(x, y) as well, hence the “reduced resistance”
ε∗(ξ ) := R∗(ξ )/r∗(ξ ) is independent of K∗. Therefore, we
can rewrite Eq. (6) in terms of K∗ and ε∗:

0 =
∫ ∞

0
dK p̃(K)

ε∗(ξ )
(

K
K∗ − 1

)
1 + ε∗(ξ )

(
K
K∗ − 1

) . (15)

It is used to determine the effective anomalous diffusivity
K∗. In the same line of thought we have determined the
spatial dependence of the reference model’s rate: The spatial
dependence of the effective transition rates is the scaling
function of the original rates’s pdf.

A problem of the last equation is its dependence on the
link ξ . This problem is resolved in two cases. First, when
the reference topology is a simple-cubic lattice, i.e., when
there are no long-range jumps. Then there is only one class
of links; ε∗ is a fixed number and not a function of ξ . The
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second solution is an asymptotic argument. Remember that
R∗(x, y) is the resistance between x and y of the total lattice,
whereas r∗(x, y) is the single resistor placed on the link (x, y).
Hence, R∗(x, y) consists of r∗(x, y) and possibly many other
parallel resistors; consequently we can expect that ε∗(x, y) =
R∗(x, y)/r∗(x, y) � 1. We can even expect the ratio to be much
smaller than unity, when the lattice is highly connected. The
integrand of Eq. (15) is a geometric series in ε∗( K

K∗ − 1), which
can be expanded if ε∗ is sufficiently small:

0 =
∞∑

m=1

(−ε∗(ξ ))m
〈(

K
K∗ − 1

)m〉
. (16)

As is clearly seen, another requirement of the expansion is the
finiteness of all moments of K . Under these conditions, we
can solve the equation for K∗ in leading order of ε∗(ξ ):

K∗ = 〈K〉 + O(ε∗(ξ )), (17)

which is independent on the link ξ . As we proceed to show
in the next section, the reduced resistance ε∗ decays with
distance. That means, we will find a positive exponent γ ,
such that ε∗(ξ ) = O(ξ−γ ) for large ξ . This translates Eq. (17)
into an asymptotic statement for long ranges, because O(ε∗)
for small ε∗ is then equivalent to O(ξ−γ ) for large ξ .

The result of Eq. (17) is probably the most important of
the whole paper and it is quite remarkable as well. We hereby
have shown that the effective-medium anomalous diffusivity
for a long-range problem is equal to the arithmetic mean of
the anomalous bond diffusivity. Note that the arithmetic and
the inverse harmonic mean diffusivity, i.e., 〈K〉 and 1/〈1/K〉,
are the rigorous Wiener bounds for the true diffusivity of the
disordered system Eq. (2); see Ref. [26]. Hence, we have
shown that the upper bound is assumed in leading order. A
system with long-range connections behaves like a random
resistor network where all conductances are parallel.

Equation (17) also indicates that K∗ diverges when 〈K〉
diverges as well. In this case, expansion of the geometric
series is not allowed, and one has to solve Eq. (15) directly,
if possible. If even that is not possible, effective anomalous
diffusivity is infinite and we declare that “EMA failed,” that
means we declare the inadequacy of the reference model.
This inadequacy must also be declared in the inverse case,
when K∗ vanishes, which only happens for special topologies.
Still, one can proceed with the chosen reference model and
use frequency-dependent EMA. This introduces memory and
non-Markovianity in the description. In this paper, we will not
do so.

We also remark that the expansion leading to Eq. (17)
works regardless of the scaling assumption on w(ξ ). Whenever
R∗(x, y) is small compared to r∗(x, y), and when all the
moments of the transition rates do not diverge, expansion of
the geometric series in Eq. (6) bears

1

r∗(ξ )
= 〈w(ξ )〉 + O

(
R∗(ξ )

〈(
w(ξ ) − 1

r∗(ξ )

)2
〉)

. (18)

The scaling assumption is not necessary, neither is the
decomposition r∗(ξ ) = f ∗(ξ )/K∗, but it can drastically reduce
the complexity of the problem.

E. The coefficient of normal diffusion

Let us briefly discuss when normal diffusive behavior
can be expected and how the effective anomalous diffusivity
K∗ is connected with the effective coefficient of normal
diffusion. To do so, we take the results of the previous
subsection. The correct reference topology has been found,
the pdf of the transition rates showed scaling behavior, and
we have also found the effective-medium Laplacian with
some r∗(ξ ) = f ∗(ξ )/K∗. We now investigate the effective
coefficient of normal diffusion, D∗, which can be defined as the
time derivative of the mean-squared displacement, 2dD∗ :=
(d)/(dt)〈(X∗(t))2〉. When we identify the space � = aZd with
a d-dimensional lattice, this quantity reads in the reference
model

D∗ = K∗

2d

∑
x,ξ∈aZd

x2 ρ(x + ξ ; t) − ρ(x; t)

f ∗(ξ )

= K∗

2d

∑
x′,ξ∈aZd

ρ(x′; t)
(x′ − ξ )2 − x′2

f ∗(ξ )

= K∗

2d

∑
x′∈aZd

ρ(x′; t)
∑
ξ∈Zd

ξ 2

f ∗(ξ )

= K∗C∗
2

2d
. (19)

We reordered the double sum in the second line. After that,
we identified the first series with the normalization of ρ.
The second series is identified as a constant that we call the
“connection factor” C∗

2 The summand proportional to 2x′ξ
vanishes due to symmetry. (We assumed isotropy: f ∗(ξ ) =
f ∗(|ξ |).)

The connection factor tells us about the strength of the long-
range connections. It only depends on the reference topology
and not on the fluctuations of the bond strength. It is zero only
when all nodes of the graph are isolated. For a d-dimensional
simple cubic lattice, C∗

2 assumes the value 2d. It diverges when
the long-range connections are too strong, i.e., when 1/f ∗(ξ )
decays slower than |ξ |−d−2.

This equation is analog to Eq. (2) of Ref. [24], however,
without disorder in the site potentials. Following their ratio-
nale, we can identify mechanisms of anomalous diffusion by
discussing when the coefficient of normal diffusion becomes
nonfinite, that means it is either zero or infinity. If this
coefficient vanishes, the process is subdiffusive; if it diverges
the process must be superdiffusive. This is possible when
the connection-factor is zero or infinite, i.e., nonfinite, or
when the effective-medium bond diffusivity 〈K〉 is nonfi-
nite. We already discussed that the connection factor may
diverge for too-pronounced long-range jumps. It vanishes
only when there is no transport at all. The bond diffusivity
〈K〉 encodes the fluctuation strength of the original transition
rates. It may diverge when the transition rates lack a finite
first moment. It may vanish in a percolation-like situation,
like in the one-dimensional barrier model or on a finitely
ramified fractal. However, in the presence of long-range
connections, the effective topology is nowhere close to finitely
ramified; it is rather close to a complete graph. Hence, the
coexistence of subdiffusion due to percolation, i.e., 〈K〉 = 0
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and superdiffusion due to long-range connections, C∗
2 = ∞,

is impossible. Also, EMA is known to give bad results in the
percolation regime, as the real topology cannot be compared to
the effective-medium topology anymore. In general, when the
bond diffusivity is nonfinite, one can use frequency-dependent
EMA, see, e.g., Refs. [40,41,45], to find an effective-medium
description with memory. This description, however, is not
Markovian anymore. Introducing memory results in explicit
dependence on the initial state and aging; see, e.g., Ref. [47, ch.
4] or Ref. [48]. Hence, our theory reproduces the long-known
truth that anomalous superdiffusion is caused by long-range
jumps (diverging C∗

2 ) or by positive correlations between the
steps (divergence of 〈K〉, memory effects). Subdiffusion is
only possible when 〈K〉 vanishes, i.e., when the reference
topology is fractal, e.g., on a percolation cluster. Since all con-
sidered models in this manuscript obeyed a detailed balance
condition, these are mechanisms of anomalous diffusion near
equilibrium. In the language of Refs. [24] and [20], this is
“structural disorder.”

Hence, it has been shown that long-range models show
normal diffusion (finite D∗), whenever the long-range connec-
tions are “weak,” i.e., decay faster than |ξ |−d−2. In that case,
the diffusion equation is a good description of the sufficiently
coarse-grained model. We now turn to a situation where this is
not possible. Then the long-range transition rates decay slowly,
as a power law |ξ |−d−μ with μ < 2. The appropriate reference
models are the lattice Lévy flights.

III. A LATTICE LÉVY-FLIGHT MODEL

In this section, we consider a possible deterministic refer-
ence model that features strong long-range jumps. Jumps of
arbitrary length are allowed but are penalized with a power-law
function that decays slowly enough. The medium is isotropic
and translationally invariant, which allows us to use Fourier
techniques. Under these conditions, the random walk in the
effective medium will behave similar to the famous Lévy flight.
For a simpler notation, we only treat the one-dimensional case
here. The computation is valid for any dimensions, though, as
we show in the Appendix. The corresponding master equation
reads

ρ̇(x; t) = Kμ�μρ(x; t) := Kμ

∑
ξ∈aZ

a
ρ(x + ξ ; t) − ρ(x; t)

|ξ |1+μ
.

(20)

Here Kμ is the anomalous diffusivity of dimension mμ/s and
μ is the scaling index. We take μ ∈ (0,2). Smaller values lead
to diverging diagonal elements of the Laplacian and would
force us to only treat finite lattices; the thermodynamical
limit would not be possible anymore. Larger values of μ

suppress long jumps too much, as we have seen in the
discussion of the coefficient of normal diffusion. The sum can
be seen as a discretized version of the Riesz-Feller derivative∫
R dξ [φ(x + ξ ) − φ(x)]|ξ |−1−μ. All Lévy-flight quantities

are denoted with a μ subscript.
The solution of the equation is given in terms of the Fourier

symbol Sμ(k) of the operator Kμ�μ. It is defined as the

operator’s action in Fourier space:

Sμ(k) := e−ikxKμ�μeikx = Kμ

∑
ξ∈aZ

a
eikξ − 1

|ξ |1+μ

= aKμ[Li1+μ(eika) + Li1+μ(e−ika) − 2ζ (1 + μ)].

(21)

Here Liα(z) := ∑∞
n=1(zn/nα) is the Polylogarithm function.

Evaluated at z = 1 it is equal to the Riemann-Zeta function,
ζ (α). The symbol can be expanded for small k and the
expansion gives

Sμ(k) = −CμKμ|k|μ + O(k2), (22)

with the positive constant Cμ := 2| cos(μπ/2)�(−μ)|.
Such an expansion is always possible, even when the

effective-medium transition rates only asymptotically behave
as a power law. Let us assume that 1/r∗(ξ ) = |ξ |−1−μ +
o(|ξ |−1−μ), with some positive constant μ, and |ξ | = |x − y|
for ξ = (x,y). Assuming the relation is valid from some large
distance on, say L, we can split up the series at L, apply the
asymptotic formula on one part and get

∑
|ξ |�L

(eikξ − 1)

(
1

r∗(ξ )
− 1

|ξ |1+μ

)
+

∑
ξ∈aZ

eikξ − 1

|ξ |1+μ
. (23)

The first sum is finite. A straight-forward Taylor expansion
shows that it is of order O(k2) for small k. The second series
again gives the Polylogarithms and restores the prior result,
Eq. (22). This shows that the lattice Lévy-flight of scaling
index μ is equivalent to a whole class of processes, defined
by the asymptotic behavior of r∗(ξ ). Therefore, the expansion
of the geometric series, performed in Eq. (17), is justified in
retrospect. In case 1/r∗(ξ ) decays more rapidly than |ξ |−3, the
connection factor C̃2 := ∑

ξ∈aZ ξ 2/r∗(ξ ) converges, and the
Fourier symbol grows quadratically in k for small arguments.
This, again, justifies that our main focus is on μ ∈ (0,2).

The resolvent of Kμ�μ is given by [s − Sμ(k)]−1 in
Fourier-domain. From Eq. (12), we see that the resistance
distance is given by

Rμ(ξ )i = a

2π

∫ π
a

− π
a

dk
2 − eikξ − e−ikξ

−Sμ(k)

= 2a|ξ |μ−1

πCμKμ

∫ π |ξ |
a

0
dκ

1 − cos (κ)

κμ
. (24)

In the last equality, the symmetry of the integrand was
exploited, Eq. (22) was used, and finally the variable transform
κ := k|ξ | was applied. The integral converges at zero because
it is O(κ2−μ) and μ < 2. Let us discuss its large |ξ | behavior:
If 1 < μ < 2, the integrand decays fast enough at infinity, so
that the limit |ξ | → ∞ can be taken, and the integral is finite.
Consequently, Rμ(ξ ) = O(|ξ |μ−1). On the other hand, for 0 <

μ < 1 the integral does not converge for |ξ | → ∞, but grows
at most as fast as |ξ |1−μ, so that R(ξ ) approaches a constant. For
μ = 1 the integral grows at most logarithmically. In summary,
the resistance distance behaves as Rμ(ξ ) = O(|ξ |max (μ−1,0)),
or as R1(ξ ) = O(ln |ξ |) for μ = 1. But more importantly, the
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reduced resistance εμ := Rμ/rμ decays:

εμ(ξ ) := Rμ(ξ )

rμ(ξ )
= O (|ξ |− min (μ+1,2)) = o (1), |ξ | → ∞.

(25)

For the marginal case μ = 1, we have ε1(ξ ) = O (ξ−2 ln |ξ |) =
o (1) as well. Hence, for the lattice Lévy-flight our asymptotic
theory from the last section holds perfectly.

All asymptotic arguments, from Eq. (22) and forward, also
hold in the normal diffusive case when

∑
ξ 2/r∗(ξ ) is finite.

In that case, the leading order of S∗(k) is quadratic in k and,
as a consequence, R∗(ξ ) grows at most linearly with distance.
Linear growth appears, however, only in one dimension. In two
dimensions R∗(ξ ) grows logarithmically, in higher dimensions
it saturates.

For higher dimensions, i.e., � = aZd , all arguments can be
repeated. We provide this information in the Appendix.

IV. EXAMPLES

In this section we discuss some exemplary distributions
p̃(K) and compute the effective-medium diffusivity K∗, via
Eq. (15). We solely stick to scaling distributions, therefore
all results of this section may hold for lattices with strong
long-range jumps in any dimension. Three distributions where
chosen: (i) the binary mixture, because Eq. (15) can be
solved exactly for this case; (ii) a power-law distribution with
extremely small transition rates. In the nearest-neighbor case,
this distribution leads to subdiffusion (this is the random barrier
model); and (iii) a Pareto distribution. This distribution lacks
higher moments and we show how the expansion Eq. (17) as
well as EMA itself fail, meaning that we can not find a solution
to Eq. (15).

A. The binary distribution

For most distributions, computing the expectation in
Eq. (15) results in a transcendental equation for K∗. One
exception is the dichotomous distribution, when the bond
diffusivity is K0 with probability c and K1 with probability
1 − c, i.e.,

p̃(K) = cδ(K − K0) + (1 − c)δ(K − K1). (26)

Plugging this distribution into Eq. (15) leads to a quadratic
equation that can be solved for K∗. One of the solutions is
negative for all ε∗ and can be neglected; we obtain

K∗ = K̃(ε∗) +
√

K̃(ε∗) + ε∗

1 − ε∗ K0K1, (27)

with

K̃(ε∗) = 1

2

[
c − ε∗

1 − ε∗ K0 − 1 − c − ε∗

1 − ε∗ K1

]
. (28)

Some remarks are in place: First, in the limit ε∗ → 0 we
recover Eq. (17) and have K∗ = 〈K〉 = cK0 + (1 − c)K1.
Corrections are of order O(ε∗(ξ )), and vanish for large ξ .
Second, we can consider the percolation problem by setting
K1 to zero. This gives

K∗ = c − ε∗

1 − ε∗ K0, (29)

and shows that the percolation threshold for this problem
is ccr = ε∗, consequently ccr = 0 in the asymptotic limit.
This means the system always percolates, which is not
surprising, considering the highly connected topology in
the d-dimensional lattice Lévy-flight. This result may be
contrasted with the result for d-dimensional simple cubic
systems. Here, ε∗(x, y) = R∗(x, y)/r∗(x, y) = 1/d and EMA
predicts ccr = 1/d. The discrepancy reflects the fact that the
lattice Lévy flight model has an infinite-dimensional topology,
since all nodes are connected with each other.

In Fig. 2 the effective diffusivity is plotted against the
reduced resistance ε∗. The upper left panel, Fig. 2(b), shows the
result of the dichotomous distribution for different contrasts
z := K1/K0. As the contrast increases, one class of bonds
becomes negligible and the curves tend to the ones of the
“percolation” case, depicted in the upper right panel, Fig. 2(c).
However, in both cases K∗ assumes a finite value as ε∗
approaches zero. Keep in mind that only the value of K∗ for
ε∗ → 0 matters, since all corrections can be asymptotically
neglected. They will not alter the diffusive behavior.

B. Power-law distribution

The next distribution is a power-law one:

p̃(K) = α

K0

(
K

K0

)α−1

�(K0 − K)�(K), (30)

where �(z) is the Heavyside step function. If K is distributed
like this, 1/K has a Pareto distribution. To compute the
expectation in Eq. (15), we first use the identity z

1+z
= 1 − 1

1+z
,

then we identify the remaining integral with a hypergeometric
one [49]. The effective diffusivity is defined by the implicit
equation

0 = 1 − 1

1 − ε∗ 2F1

[
− ε∗

1 − ε∗
K0

K∗

∣∣∣∣ (α),(1)

(α + 1)

]
. (31)

In the one-dimensional next-neighbor model with α < 1, this
distribution leads to subdiffusion as it lacks a harmonic mean
〈1/K〉, and the mean transition time diverges. Like higher
dimensional models, the long-range model retains its diffusive
properties. The roots of this equation neither diverge nor
vanish, the reason is topology. Broken or very weak links
can easily be avoided.

The results from the last equation are shown in the lower
left panel, Fig. 2(d), for different values of α. As in the
dichotomous distribution, K∗ approaches a finite value as ε∗
approaches zero.

C. Pareto distribution

The last example is a Pareto distribution for the transition
rates:

p̃(K) = α

K0

(
K

K0

)−α−1

�(K − K0). (32)

We consider this case because this distribution lacks moments
of higher order than α. Consequently, the expansion that leads
to Eq. (17) is prohibited for α < 1. We cannot approximate
the effective diffusivity with the average transition rate, as
the latter diverges. Using the same steps as before, together

012135-7



FELIX THIEL AND IGOR M. SOKOLOV PHYSICAL REVIEW E 94, 012135 (2016)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

E
ff

ec
ti

ve
 d

if
fu

si
vi

ty
 K

*

Reduced resistance ε

(a)

Binary, finite
Binary, infinite

Power-law

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

K
*

ε

(b)
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

K
*

ε

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

K
*

ε

(d)
 0
 2
 4
 6
 8

 10

 0  0.2  0.4  0.6  0.8  1

K
*

ε

(e)

FIG. 2. Effective diffusivity. The effective diffusivity is plotted against the reduced resistance for different distributions. The curves were
obtained by numerical solution of Eqs. (27), (31), and (33). Except for the Pareto distribution, the limit value for ε → 0 is finite and served
as normalization (by fixing K0). Note the different scale for the Pareto distribution. (a) Comparison between different distributions: Binary
distribution with c = 0.5 and contrast z = 5, power-law distribution with α = 0.75, and percolation case with c = 0.75 (infinite contrast).
Description is given for the curves from top to bottom on the right-hand side. These distributions have been used for the simulations as well.
(Right) All values given from top to bottom: (b) binary distribution with fixed c = 0.5 and finite contrast z = 5 (red), 50 (green), 500 (blue);
(c) binary distribution with infinite contrast and c = 0.75 (blue), 0.50 (green), 0.25 (red); (d) power-law with α = 1.5 (black), 1.25 (cyan), 1.0
(magenta), 0.75 (blue), 0.5 (green), 0.25 (red); (e) Pareto distribution with α = 0.25 (red), 0.5 (green), 0.75 (blue), 1.0 (magenta), 1.25 (cyan),
1.5 (black). The effective-bond diffusivity diverges here for α � 1, indicating the failure of our EMA-ansatz.

with the variable transformation z := 1/K , we find a similar
hypergeometric function that defines K∗:

0 = 1 − α

α + 1

K∗

ε∗K0
2F1

[
−1 − ε∗

ε∗
K∗

K0

∣∣∣∣(α + 1),(1)

(α + 2)

]
.

(33)

For α � 1, numerical inversion of this equation shows a di-
vergence at ε∗ → 0, indicating the failure of our EMA model.
In this case, the lattice Lévy flight is not the correct reference
model to describe the diffusion process. Two possible ways
are open to deal with this problem: finding a better reference
Laplacian, i.e., modifying Eq. (20), or introducing memory
and losing the Markov property in the description.

The numerical inversion for the Pareto distribution is shown
in the lower right panel, Fig. 2(e). Since the distribution
has no mean value for α < 1, K∗ diverges as ε∗ → 0, and
effective-medium theory cannot be used to replace the original
system with a lattice Lévy flight. Here the diffusive behavior
is indeed altered by the distribution of the transition rates. In
fact, the fluctuations of the individual elements overwhelm the
deterministic spatial dependence of the transition rates.

V. NUMERICAL VERIFICATION

Effective medium theory’s main purpose is quantitative
applicability. Therefore, we shortly discuss how to perform
numerical experiments on Eq. (2) and how to determine the
effective quantities.

A. Simulation scheme

For a fixed random environment, i.e., the set of all transition
rates w(x, y), Eq. (2) describes a random walk. The random
walker’s probability, p(x, y), to jump from x to another lattice

site y, and its the mean sojourn time, τ (x), are given by

p(x, y) = w(x, y)∑
z∈�

w(x,z)
, τ (x) = 1∑

z∈�

w(x,z)
. (34)

The time needed for this transition is an exponentially
distributed random variable whose mean is the inverse of
the sum of rates. This way one obtains the random walker’s
trajectory X(t) in the random environment. The procedure is
repeated for many samples of the environment, and averages
are taken from such an ensemble, whence the average is taken
with respect to environment and thermal history of the walker.

B. Measuring the effective quantities

When the reference model is known, validity of the effective
medium can be tested by investigating the characteristic
function of the random walk. It is the expectation value
〈exp[ikX(t)]〉, i.e., Fourier-transform of the pdf of the random
walker’s position X(t). The pdf of X(t) is also the propagator,
consequently the characteristic function is the inverse Laplace
transform of G∗(s) = [s − S∗(k)]−1, which is an exponential.
In case the random walk is symmetric, the odd component
of the expectation vanishes and it suffices to take the cosine
function 〈cos[kX(t)]〉. Finally, taking the logarithm of the
characteristic function results in a linear law in time:

ln〈eikX(t)0〉 = ln 〈cos[kX(t)]〉 = S∗(k)t. (35)

Fitting the logarithm of the empirical characteristic function
against time reveals S∗(k).

When the functional form of the symbol is known,
parameters like K∗ or μ can be fitted from the result. For
the Lévy-flight this would be an asymptotic power-law fit. The
problem is to determine a good range of wave vectors for the
fit.
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FIG. 3. Measurements of the Fourier symbol. The symbol was determined from numerical simulations like described in the main text. We
performed simulations with μ = 1.5 for the binary distribution with c = 0.5 and contrast z = 5, for percolation with c = 0.75, as well as for the
power-law distribution with α = 0.75 (all left). Description is given for the curves from top to bottom on the left-hand side. The random walk
with Pareto-distributed transition rates (α = 0.75) is shown on the right-hand side. The thick theory curve is the prediction from Eq. (21). The
left-hand plot shows great agreement for intermediate values of k, spanning two orders of magnitude from k = 0.01 to k = 1. Better agreement
for small k can be achieved by using larger lattices, better agreement for large k is achieved by considering smaller total simulation times. For
the Pareto distribution (right-hand side), the lattice Lévy flight is not an appropriate effective-medium description. Hence, this curve does not
match the theory, neither in offset nor in slope.

Using the characteristic function is necessary in the case of
long-range connections, because the mean squared displace-
ment is no longer finite. Lower moments of fractional order are
hard to access analytically. Therefore, we followed the idea of
Ref. [50], to inspect the characteristic function.

C. Pitfalls

Several practical problems appear when one performs the
numerics. All of them are due to the finiteness of the lattice.
First of all, one should keep in mind that the highest possible
resolution of wave vectors is k = 2πm/L, where L is the
length of the lattice and m is an integer. Second, the random
walker quickly enters stationary state. Due to long-range
jumps, equilibration essentially starts with the first or second
jump. In practice, the interesting small |k| behavior gets
pushed to the origin and cannot be resolved properly when
the observation time is too large.

Finally, the Fourier symbol of the finite lattice differs from
the infinite lattice’s symbol. In a finite lattice, the symbol is a
finite sum; ultimately it behaves like k2 for small wave vectors.
Therefore, an asymptotic expansion of the empiric symbol may
not be captured by the asymptotic expression given by Eq. (22)
for very small |k|. The best range for fitting the symbol hence
is an intermediate one, not too small and not too large. The
situation becomes worse for smaller μ.

D. Results of the numerical investigation

We performed Monte Carlo simulations as described above
using ensembles of 2048 random walkers (each in its own
environment sample), on a one-dimensional lattice with L =
8192 sites and lattice constant a = 1. Each trajectory was
recorded 129 times until final time 4. The symbol was inferred
from a linear fit of Eq. (35), evaluated for wave vectors k =
2πm/L, with an integer 0 < m < L/2. We simulated all above
discussed examples; the result can be seen in Fig. 3.

We found that for large k the symbol enters a noisy regime,
which can be shifted to the right when smaller final times
are considered. This is to be expected, since the characteristic
function decays exponentially in time, making it harder to
obtain larger values of the symbol.

It can be seen that except for the Pareto distribution, all
curves fall to the prediction given by Eq. (21). This can be
seen best in the double-logarithmic plot on the right-hand side.
However, due to finite-size effects, this agreement only holds
for intermediate values of k. We refrained from fitting the
symbol, since the diffusivities have already been normalized
to unity. As expected, the Pareto curve is way off and has a
lower slope than the other curves, indicating a much faster
motion than in the other examples.

VI. SUMMARY AND DISCUSSION

EMA puts us in the position of replacing a randomly
disordered diffusion system with a deterministic reference
model. We worked out two restrictions on the reference model:
first, it has to possess a link, wherever the original model could
have a link. And second, the spatial decay of the reference
model’s transition rates is given by the scaling of the original
rates’ pdf, provided the mean transition rates are finite. With
those rules, EMA can be applied with any reference network,
for which the propagator (or the resistance distance in the
static case) is known. By inspecting the effective coefficient
of normal diffusion, we also discussed some mechanisms of
anomalous diffusion. The resistance distance for the lattice
Lévy flight was computed and several example distributions
were discussed. We showed that the predictions obtained from
EMA excellently agree with random-walk simulations.

EMA’s main advantage from the analytical point of view
is the ability to treat a disordered system equivalent to a
translationally invariant one. The emergence of translational
invariance is a consequence of homogenization: at large
enough length scales, a disordered system behaves like an
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ordered, homogeneous one. This enables the analytician to
use Fourier transform (which was our main tool to derive the
theory of lattice Lévy-flights). Hopefully this technique will
be employed in the mean-field description of more complex
problems with random long-range connections, like synchro-
nization or infection spreading, [51–54].

In this paper, we focused on infinite systems, when the term
“free diffusion” makes sense. Then a proper thermodynamic
limit can be taken. This rules out the small world and
scale-free networks considered in Refs. [35–37], for they
do not penalize long jumps with a distance factor, as we
did. EMA can be applied for any finite graph, but taking
the lattice size to infinity can result in diverging diagonal
elements of the effective-medium Laplacian. We have shown
that a system with strong long-range jumps (whose transition
rates decay with a power-law) can be described by lattice
Lévy-flights and hence after taking some continuum limit
with a space-fractional diffusion equation, see Ref. [55], or
a Langevin equation with white stable non-Gaussian noise.
We also showed that EMA can also fail and bear a vanishing
or diverging effective-bond diffusivity K∗. Although a zero
effective-bond diffusivity is impossible in the long-range case,
divergence is indeed possible, as was shown with the Pareto
distribution. The correct choice of the reference model is still
an open question. The authors’ educated guess is that the Pareto
distribution may not admit a reference model with a proper
thermodynamical limit.
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APPENDIX: HIGHER-DIMENSIONAL
LATTICE LÉVY FLIGHTS

In this Appendix, we derive asymptotic expressions for
the Fourier symbol and the resistance distance in arbitrary
dimensions. The Laplacian and the master equation take the
form

ρ̇(x; t) = Kμ,d

∑
y∈aZd

ad ρ( y; t) − ρ(x; t)

|x − y|d+μ
. (A1)

The Fourier symbol of this operator is given by

Sμ,d (k) = Kμ,d

∑
ξ∈aZd

ad eikξ − 1

|ξ |d+μ
. (A2)

Unfortunately, this series cannot easily be expressed in terms
of some special function, as was the case for one dimension.

Instead, we will approximate the series with an integral and
switch to spherical coordinates. The approximation can be
justified by, e.g., the Euler-MacLaurin formula:

Sμ,d (k) = Kμ,d

∫
Sd−1

dn
∫ ∞

0
dξ ξd−1 eiξ kn − 1

ξd+μ

= Kμ,d |k|μ
∫
Sd−1

dn
∫ ∞

0
dκ

eiκekn − 1

κ1+μ

= −Cμ,dKμ,d |k|μ. (A3)

Here, the outer integral is the angular integration over the
(d − 1) sphere. In the second line we changed the integration
variable to κ := ξ |k|. The integrand decays faster than κ−1

for large κ . By isotropy the integrand behaves like κ1−μ for
small κ (the first order vanishes when the angular integration
is performed). Since μ < 2, the double integral converges
to a negative number and we call it −Cμ,d . Higher-order
corrections are introduced by rigorous application of Euler-
MacLaurin formula.

Let us now turn to the resistance distance. It is given by the
integral over the Brillouin zone B := [−π/a,π/a)d :

Rμ,d (ξ ) =
( a

2π

)d
∫
B

dk
2 − 2 cos (kξ )

−Sμ,d (k)
. (A4)

As before, this integral converges at k = 0. We will proceed to
show that it grows slower than |ξ |d+μ, hence, that the reduced
resistance decays, just like in the one-dimensional case. Note
first that the integrand is nonnegative for all k, hence we can
enlarge the integration domain from a cube to a sphere with
radius

√
dπ/a to derive an upper bound for Rμ,d . Then again,

we switch to spherical coordinates k =: nk and introduce κ :=
k|ξ |. We obtain

Rμ,d (ξ ) <
2|ξ |μ−d

Cμ,dKμ,d

( a

2π

)d
∫
Sd−1

dn

×
∫ √

dπ |ξ |
a

0
dκ

1 − cos
(

κξn
|ξ |

)
κμ+1−d

. (A5)

The large |ξ |-behavior of the remaining integral is limited by
the power factor κd−1−μ. The integral converges when μ > d.
Otherwise, it grows at most like |ξ |d−μ or logarithmically
in the marginal case μ = d. Together with the prefactor we
have

Rμ,d (ξ ) < O (|ξ |max (0,μ−d)), (A6)

or R1,1(ξ ) < O (ln |ξ |). For the reduced resistance we obtain

εμ,d (ξ ) < O (|ξ |− min (μ+d,2d)), (A7)

or ε1,1(ξ ) < O (|ξ |−2 ln |ξ |) in the marginal case.
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