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Perturbative expansion for the maximum of fractional Brownian motion
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Brownian motion is the only random process which is Gaussian, scale invariant, and Markovian. Dropping
the Markovian property, i.e., allowing for memory, one obtains a class of processes called fractional Brownian
motion, indexed by the Hurst exponent H . For H = 1/2, Brownian motion is recovered. We develop a perturbative
approach to treat the nonlocality in time in an expansion in ε = H − 1/2. This allows us to derive analytic results
beyond scaling exponents for various observables related to extreme value statistics: the maximum m of the
process and the time tmax at which this maximum is reached, as well as their joint distribution. We test our
analytical predictions with extensive numerical simulations for different values of H . They show excellent
agreement, even for H far from 1/2.
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I. INTRODUCTION

Random processes are ubiquitous in nature. Though many
processes can successfully be modeled by Markov chains and
are well analyzed with tools of statistical mechanics, there
are also interesting and realistic systems which do not evolve
with independent increments and, thus, are non-Markovian,
i.e., history dependent. Dropping the Markov property, but
demanding that a continuous process be scale-invariant and
Gaussian with stationary increments, defines an enlarged
class of random processes, known as fractional Brownian
motion (fBm). Such processes appear in a broad range of
contexts: anomalous diffusion [1], diffusion of a marked
monomer inside a polymer [2,3], polymer translocation
through a pore [3–6], single-file diffusion in ion channels [7,8],
dynamics of a tagged monomer [9,10], finance (fractional
Black-Scholes, fractional stochastic volatility models, and
their limitations) [11–13], hydrology [14,15], and many more.

While averaged quantities have been studied extensively
and are well characterized, it is often more important to
understand the extremal behavior of a process, or the time
when it satisfies a given criterion [16]. These quantities
are associated with failure of fracture or earthquakes, stock
market crashes, breakage of dams, the time when one has
to heat, etc. The three arcsine laws of Brownian motion are
well-studied examples. They state that for a Brownian process
Xt , with 0 < t < 1 and X0 = 0, three observables Y have the
same cumulative distribution function, (1), the arcsine law,
equivalent to the probability density, (2):

Pr(Y < y) = 2

π
arcsin(

√
y) (1)

⇔ P(y) = 1

π
√

y(1 − y)
. (2)

The observables in question are (see Fig. 1) as follows.
(1) First (Lévy’s) arcsine law: The time when the process

Xt is positive (horizontal red lines in Fig. 1):

t+ :=
∫ 1

0
�(Xt ) dt. (3)
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(2) Second arcsine law: The last time the process is at its
initial position (vertical blue line in Fig. 1):

tlast := sup{t ∈ [0,1],Xt = 0}. (4)

(3) Third arcsine law: The time at which the process Xt

achieves its maximum (which is almost surely unique) (vertical
green line in Fig. 1):

tmax := t, s.t. Xt = sup{Xs,s ∈ [0,1]}. (5)

While these laws are well studied for Brownian motion,
little is known about their generalization to other random
processes. In this article, we generalize the third arcsine law to
fractional Brownian motion and obtain the distribution of the
achieved maximum.

Fractional Brownian motion is a random process Xt

characterized by the Hurst exponent H , which quantifies the
growth of the two-point function in time:

〈(Xt − Xs)
2〉 = 2|t − s|2H . (6)

Up to now, analytical tools to study its extreme-value statistics
(EVS) were available only for Brownian motion, i.e., H =
1/2. In this article, we aim to extend this to H �= 1/2. This
is achieved by constructing a path integral and evaluating

FIG. 1. The three arcsine laws discussed in the text. tmax (vertical
green line) is the time at which the process achieves its maximum. tlast

(vertical blue line) is the last time at which the process is at its starting
value X0 = 0. Finally, t+(horizontal red lines) is the time spent in the
positive half-space, which is the sum of the red intervals.
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it perturbatively around a Brownian, setting H = 1/2 + ε.
This technique was introduced in Ref. [17]. We calculate the
probability distribution of the maximum m of the process and
the time tmax at which the maximum is reached, as well as their
joint distribution. A short account of this work was published
in Ref. [18].

The article is structured as follows: Section II defines the
fBm, discusses its relation to anomalous diffusion, and defines
the observables related to extremal value statistics we wish to
study.

Section III introduces the path integral we need to calculate,
followed by its perturbative expansion in ε = H − 1/2. This
defines the main integrals to be calculated, for which we also
give a diagrammatic representation. As the calculations are
rather tedious, they are relegated to Appendix C.

Section IV presents our results: We start by recalling scaling
relations in Sec. IV A, before introducing our most general
formula, the probability of starting at m1 > 0, of reaching the
minimum x0 ≈ 0 at time t , and of finishing at time T > t in
m2. This allows us to derive several simpler results: first, the
distribution of times at which the maximum is achieved, for a
Brownian known as the third arcsine law (Sec. IV C); second,
the distribution of the value of this maximum; and third, the
joint distribution of the maximum, and the time at which this
maximum is taken.

Extensive numerical simulations for different values of H

test these analytical predictions in Sec. V.
Conclusions are given in Sec. VI, followed by several

appendices: Appendix A gives details on the perturbation
expansion. Appendix B reviews results from [17], including
a new derivation of the latter. Appendix C calculates the
main new, and most difficult, contribution. Appendix D gives
details on the corrections to the third arcsine law, while for the
attained maximum and its cumulative distribution this is done
in Appendixes E and F. Appendix G gives a list of inverse
Laplace transforms used. Finally, in Appendix H it is verified
that the second cumulant is correctly reproduced.

II. FRACTIONAL BROWNIAN MOTION
AND OBSERVABLES

A. Definition of fBm

Fractional Brownian motion is a generalization of standard
Brownian motion to other fractal dimensions, introduced in its
final form by Mandelbrot and Van Ness [19]. It is a Gaussian
process (Xt )t∈R, starting at 0, X0 = 0, with mean 〈Xt 〉 = 0
and covariance function (variance)

〈XtXs〉 = s2H + t2H − |t − s|2H . (7)

A fBm Yt starting at a nonzero value y = Y0 is defined as Yt =
Xt + y, with Xt as above. The parameter H ∈ (0,1) appearing
in Eq. (7) is the Hurst exponent. Standard Brownian motion
corresponds to H = 1/2; there the covariance function, (7),
reduces to 〈XtXs〉 = 2 min(s,t). Unless H = 1/2, the process
is non-Markovian, i.e., its increments are not independent. For
H > 1/2 they are positively correlated, whereas for H < 1/2
they are anticorrelated:

〈∂tXt ∂sXs〉 = 2H (2H − 1)|t − s|2(H−1). (8)

It is important to note that the process is stationary, as the
second moment (and thus the whole distribution) of the
increments is a function of the time difference |t − s| only:

〈(Xt − Xs)
2〉 = 2|t − s|2H . (9)

The fact that a fBm process is non-Markovian makes its
study difficult, as most of the standard stochastic-process
tools (decomposing transition probabilities into products of
propagators or writing the evolution of a density using a
Fokker-Plank equation) rely on the Markov property.

B. Anomalous diffusion

Anomalous diffusion is another interesting property of fBm.
It is characterized by nonlinear growth (for H �= 0.5) of the
second moment of the process,〈

X2
t

〉 = 2t2H . (10)

For H < 1/2, fBm is a subdiffusive process, while for H >

1/2, it is superdiffusive.
Anomalous diffusion is usually implied by a stronger

property (but equivalent in the case of a Gaussian process):
self-similarity to exponent H . This means that rescaling time
by λ > 0 and space by λ−H leaves every averaged observable
〈O[Xt ]〉 defined on the process invariant,

〈O[λ−HXλt ]〉 = 〈O[Xt ]〉. (11)

This property is stronger in the sense that the growth of every
moment, and not just the second one, is governed by the same
exponent H : 〈Xn

t 〉 ∼ tnH .
It is well known that standard Brownian motion is the only

continuous process with stationary, independent (Markovian),
and Gaussian increments. As a consequence, every process
in this class is 1

2 -self-similar, i.e., exhibits normal diffusion.
To obtain an anomalous diffusive process, one of these three
hypotheses has to be removed. This gives three main classes
of anomalous diffusion:

(i) Heavy tails of the increments (Levy-flight process) or
heavy tails in the waiting time between increments (CTRW
processes); these processes are non-Gaussian.

(ii) Time dependence of the diffusive constant: the distri-
bution of the increments is time dependent, i.e., the process
has nonstationary increments.

(iii) Correlations between increments: the process is non-
Markovian.

fBm is the only process which is Gaussian, has stationary
increments, and statistically self-similar. As the first two
hypotheses are natural in a large class of processes appearing in
nature, and self-similarity to exponent H �= 1/2 is equivalent
to anomalous diffusion for a Gaussian process, fBm appears
to be an important representative of anomalous diffusion.

Interestingly, several processes commonly used in physics,
mathematics, and computer science belong to the fBm class.
For example, it was recently proven that the dynamics of a
tagged particle in single-file diffusion (cf. [8,20–22]) has,
at long times, the fBm covariance function, (7), with Hurst
exponent H = 1/4.
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C. Extreme-value statistics

The objective of this article is to study fBm in the context
of what is now called extreme-value statistics. While the
knowledge of averages or of the typical behavior is an
important step in understanding and comparing stochastic
models to experiments or data, there are situations where the
interest lies in the extremes or rare events. For example, the
physics of disordered systems at low temperatures is governed
by states with a (close to) minimal energy in the random energy
landscape. Extreme weather conditions are of importance in
the dimensioning of infrastructures such as dams and bridges.
More generally, extreme-value questions appear naturally in
many optimization problems.

The simplest and first case studied for these EVS was
the distribution of the maximum of a large number N of
independent and identically distributed random variables,
which is now well understood in the large-N limit thanks to
the classification of the Fisher-Tippett-Gnedenko theorem: De-
pending on the initial distribution of the variables, the rescaled
maximum follows either a Weibull, a Gumbel, or a Fréchet
distribution [16,24]. This is the equivalent of the central-limit
theorem, which classifies the sums, or equivalently averages,
of a large number of independent identically distributed (i.i.d.)
variables.

The case of strongly correlated variables was a natural ex-
tension to this problem, as many physically relevant situations
present significant deviations from the i.i.d. case. Many results
were derived for random walks and Brownian motion [25,26].
The distribution of the largest eigenvalue is also a central
question in random matrix theory [27]. Finally, some previous
studies of the context of non-Markovian processes can be
found in Refs. [28–30].

In this article we study the extremal properties of an fBm
Xt . The main observables are the maximum m = maxt∈[0,T ] Xt

and the time tmax at which this maximum is reached. Figure 2
shows an illustration for different values of H , using the
same random numbers for the Fourier modes. We denote

FIG. 2. Two realizations of fBm paths for different values of H ,
generated using the same random numbers for Fourier modes in the
Davis and Harte procedure [23]. The observables m and tmax are
shown.

their respective probability distributions P T
H (m) and P T

H (t).
Previous studies of these distributions, focusing on the small-
scale behavior, can be found in Refs. [31,32].

These observables are closely linked to other quantities of
interest, such as the first-return time, the survival probability,
the persistence exponent, and the statistics of records.

III. THE PERTURBATIVE APPROACH

A. Path-integral formulation and the action

Following the ideas in Refs. [17,33,34] we start with the
path integral,

Z+(m1,t1; x0; m2,t2)

=
∫ Xt1+t2 =m2

X0=m1

D[X] �[X] δ
(
Xt1 − x0

)
e−S[X]. (12)

It sums over all paths Xt , weighted by their probability e−S[X],
starting at X0 = m1 > 0, passing through x0 (close to 0) at time
t1, and ending in Xt1+t2 = m2 > 0, while staying positive for
all t ∈ [0,T = t1 + t2]. The latter is enforced by the product of
Heaviside functions �[X] :=∏t1+t2

s=0 �(Xs). This path integral
depends on the Hurst exponent H through the action. Since
Xt is a Gaussian process, the action S can (at least formally)
be constructed from the covariance function of Xt ,

S[X] = 1

2

∫
t1,t2

Xt1G(t1,t2)Xt2 . (13)

Here 〈Xt1Xt2〉 = G−1(t1,t2). This, however, is not enough
to evaluate the path integral, (12), since it is not evident
how to implement the product of � functions. Following the
formalism in Ref. [17], we use standard Brownian motion as a
starting point for a perturbative expansion, setting H = 1

2 + ε,
with ε a small parameter; then the action at first order in ε is
(we refer to the Appendix in Ref. [17] for the derivation)

S[X] = 1

4Dε,τ

∫ T

0
Ẋ2

τ1
dτ1

− ε

2

∫ T −τ

0
dτ1

∫ T

τ1+τ

dτ2
Ẋτ1Ẋτ2

|τ2 − τ1| + O(ε2). (14)

The time τ is a regularization cutoff for coinciding times (a
UV cutoff). We will see that it has no impact on the distribution
of observables which can be extracted from the path integral.
(One can also introduce discrete times spaced by τ [17].)

The first line of Eq. (14), which we denote S0[X], is the
action for standard Brownian motion, with a rescaled diffusion
constant

Dε,τ = 1 + 2ε[1 + ln(τ )] + O(ε2) 
 (eτ )2ε. (15)

It is a dimensionful constant, as fBm and standard Brownian
motion do not have the same time dimension. The second
line, which we denote S1[X], is the first correction to the
action. It is nonlocal in time, which implies that the process
is non-Markovian [even if we neglect O(ε2) terms]. We check
this expansion of the action in Appendix H, where we compute
the covariance of the process from a path integral and recover
Eq. (7) at first order in ε.

As we see in Sec. IV, this path integral Z+(m1,t1; x0; m2,t2),
in the limit of x0 → 0, encodes a plethora of information about
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the maximum of the process: both distributions, P T
H (m) and

P T
H (t), can be extracted from it, as well as the joint distribution.

Further, the distributions are the same as in the case of an fBm
bridge.

It is important to note that the limit of x0 → 0 is nontrivial,
as it forces the process to go close to an absorbing boundary
which leads to nontrivial scaling involving the persistence
exponent θ defined in Sec. IV A, below.

B. The order-0 term

Having expressed the perturbative expansion of the action,
the main task is to compute the path integral, (12), at first order
in ε and in the limit of small x0. Expanding the exponential of
the action in Eq. (12),

e−S[X] = e−S0[X](1 − S1[X] + · · · ), (16)

allows us to compute the path integral perturbatively in the
nonlocal interaction S1[X], defined as the second line of
Eq. (14):

S1[X] = −ε

2

∫ T −τ

0
dτ1

∫ T

τ1+τ

dτ2
Ẋτ1Ẋτ2

|τ2 − τ1| . (17)

This gives

Z+(m1,t1; x0; m2,t2)

= Z+
0 (m1,t1; x0; m2,t2) + εZ+

1 (m1,t1; x0; m2,t2) + O(ε2).
(18)

Z+
0 is the term with no nonlocal interaction, while εZ+

1 is
the term with one interaction (it is proportional to ε because
the nonlocal interaction itself has an amplitude of order ε).
Formally, the order-0 term is

Z+
0 (m1,t1; x0; m2,t2)

=
∫ Xt1+t2 =m2

X0=m1

D[X] �[X] δ
(
Xt1 − x0

)
e−S0[X], (19)

where S0 is the action of a standard Brownian motion,

S0[X] = 1

4Dε,τ

∫ t

0
Ẋ2

τ1
dτ1. (20)

Since Brownian motion is a Markov process, this action is local
in time. It allows us to write the path integral as a product:

Z+
0 (m1,t1; x0; m2,t2)

=
∫ Xt1 =x0

X0=m1

D[X]�[X]e−S0[X]
∫ XT =m2

Xt1 =x0

D[X]�[X]e−S0[X]

= P +
0 (m1,x0,t1)P +

0 (x0,m2,t2). (21)

In the second line, the constraint δ(Xt1 − x0) is enforced by the
boundary conditions of the path integral. In the last line, we
have expressed each path integral in terms of the propagator
P +

0 (x1,x2,t) of standard Brownian motion, constrained to the
positive half-space. It is obtained via the method of images,

P +
0 (x1,x2,t) = 1√

4πDt

(
e− (x1−x2)2

4Dt − e− (x1+x2)2

4Dt

)



x1→0

x1x2
e− x2

2
4Dt√

4πD3t3
, (22)

for an arbitrary diffusive constant D. We now use that the
diffusive constant is Dε,τ = 1 + O(ε). This allows us to
express the path integral, (12), at leading order in ε, and in
the limit of small x0, as

Z+
0 (m1,t1; x0; m2,t2) 


x0→0
x2

0
m1m2e

− m2
1

4t1
− m2

2
4t2

4πt
3/2
1 t

3/2
2

+ O(ε). (23)

To include the order-ε term in the diffusive constant to get the
full result for Z+ at order ε, we use Eq. (15) expanded in ε:

Z+
0 


x0→0
x2

0
m1m2e

− m2
1

4t1
− m2

2
4t2

4πt
3/2
1 t

3/2
2

{
1 + ε[1 + ln(τ )]

(
m2

1

2t1
+ m2

2

2t2
− 6

)}

+O(ε2). (24)

It is interesting to note that the order-ε term appearing here
can also be computed from the result, (23), as

2(1 + ln(τ ))
(
t1∂t1 + t2∂t2

)
Z+

0 . (25)

C. The first-order terms

To go beyond Brownian motion and include non-Markovian
effects, i.e., interactions nonlocal in time, we need to compute
the first-order correction in the expansion, (18), which is called
Z+

1 and reads

Z+
1 (m1,t1; x0; m2,t2)

= 1

2

∫ T −τ

0
dτ1

∫ T

τ1+τ

dτ2

∫ XT =m2

X0=m1

D[X]
Ẋτ1Ẋτ2

|τ2 − τ1|
× δ
(
Xt1 − x0

)
�[X] e−S0[X]. (26)

As before, we denote T = t1 + t2. To compute Z+
1 , we

decompose it into three terms, distinguished by their time
ordering. Denote Z+

α the part where τ1 < τ2 < t1, Z+
β the part

where t1 < τ1 < τ2, and Z+
γ the term where τ1 < t1 < τ2. Then

Z+
1 (m1,t1; x0; m2,t2) = Z+

α (m1,t1; x0; m2,t2)

+Z+
β (m1,t1; x0; m2,t2)

+Z+
γ (m1,t1; x0; m2,t2). (27)

In the first term, the interaction affects only the process in
the time interval [0,t1], and there is no coupling with the
process in the time interval [t1,t1 + t2]. This leads, as shown
in Appendix A, to a factorized expression for Z+

α :

Z+
α (m1,t1;x0; m2,t2) = P +

1 (m1,x0,t1)P +
0 (x0,m2,t2). (28)

Here P +
1 (m,x0,t) is the order-ε correction to the propagator

of fBm in the half-space (i.e., constrained to remain positive).
This object, which we need in the limit of x0 → 0, was studied
and computed in Ref. [17]. The result is recalled in Appendix B
and recalculated using more efficient technology developed
here. The second term is similar to the first, swapping the two
time intervals:

Z+
β (m1,t1; x0; m2,t2) = P +

0 (m1,x0,t1)P +
1 (x0,m2,t2). (29)

The third term, Z+
γ , is more complicated, as the interaction

couples the two time intervals [0,t1] and [t1,T = t1 + t2]. We
can still take advantage of locality in time of the action S0 to
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m1

x1

x2

x0

m2

s1

τ1

s1 + y

t1

s2 + y

t1 + t2

s2

τ2
time

space

m1

x1

x2

x0

m2

s1

τ1

s1 + y
τ2

s1

t1 + t2

s2

t1
time

space
(a) (b)

FIG. 3. (a) Graphical representation of the contribution Z+
γ to the path integral Z+(m1,t1; x0; m2,t2) given in Eq. (12). The red curve

represents the nonlocal interaction in the action [second line of Eq. (14)], while blue lines are bare propagators. We also indicate the Laplace
variable which appears in each time slice in Eq. (32). (b) Graphical representation of Z+

α .

write the path integral, (26), with time integrals restricted to 0 < τ1 < t1 < τ2 < T , as a product of simpler path integrals:

Z+
γ (m1,t1; x0; m2,t2) = 1

2

∫ t1

0
dτ1

∫ T

t1

dτ2

τ2 − τ1

∫
x1,x2>0

∫ Xτ1 =x1

X0=m1

D[X]�[X]e−S0[X]
∫ Xt1 =x0

Xτ1 =x1

D[X]�[X]Ẋτ1e
−S0[X]

×
∫ Xτ2 =x2

Xt1 =x0

D[X]�[X]e−S0[X]
∫ XT =m2

Xτ2 =x2

D[X]�[X]Ẋτ2e
−S0[X]. (30)

In this expression, all path integrals can be expressed in terms of the bare propagator P +
0 ; we refer to Appendix A for how to deal

with the terms containing Ẋ. We have not written the cutoff τ , as there are no short-time divergences that need to be regularized
(contrary to the terms Z+

α and Z+
β ). The structure of the time integrals, which are products of convolutions, suggests the use of

Laplace transforms (with respect to the time variables: t1 → s1, t2 → s2). This and the identity

1

τ2 − τ1
=
∫

y>0
e−y(τ2−τ1) (31)

give us a simple form for the double Laplace transform of Z+
γ , which we denote with a tilde (for details see Appendix A):

Z̃+
γ (m1,s1; x0; m2,s2) = 2

∫
x1,x2,y>0

P̃ +
0 (m1,x1; s1) ∂x1 P̃

+
0 (x1,x0; s1 + y)P̃ +

0 (x0,x2; s2 + y) ∂x2 P̃
+
0 (x2,m2; s2). (32)

The Laplace-transformed constrained propagator appearing
in this expression is

P̃ +
0 (x1,x2; s) =

∫ ∞

0
dt e−stP +

0 (x1,x2,t)

= e−√
s|x1−x2| − e−√

s(x1+x2)

2
√

s



x1→0

x1e
−√

sx2 . (33)

The Laplace transformation gives another simplification: the
space dependence is now exponential, compared to the Gaus-
sian form of P +

0 (x1,x2,t), which renders the space integrations
elementary. (Without the Laplace transform, already the first
space integration gives an error function, and the remaining
integrations are highly nontrivial.) Nevertheless, the final result
for Z+

γ (m1,t1; x0; m2,t2) is complicated and requires us to
compute the three integrals in Eq. (32) and two inverse Laplace
transformations. These steps are performed in Appendix C.

D. Graphical representation

It is useful to give a diagrammatic representation of the
terms of the perturbative expansion; see Fig. 3. We denote
bare propagators, (33), with solid blue lines. The interaction
between two points, (τ1,x1) and (τ2,x2), is represented by the

red curves. As can be seen from Eq. (32), it acts as 2∂x1 on the
propagator starting at x1 and 2∂x2 on the propagator starting
at x2; it also translates the Laplace variable of each time
slice between these two points by +y. The space variables
x1 and x2 and the interaction variable y (which has the inverse
dimension of time) have to be integrated from 0 to ∞. In case
of divergences, the integration has to be cut off with a large-y
cutoff (cf. Appendix G for the link between the short-time
cutoff τ and the large-y cutoff).

The contribution of Z+
γ is computed in detail in Appendix C

and represented in Fig. 3(a), together with the contribution of
Z+

α , in Fig. 3(b).

IV. ANALYTICAL RESULTS

We present here some known scaling results about extremal
properties of fBm. We then show how our perturbative expan-
sion, and the computation of Z+(m1,t1; x0; m2,t2), allows us
to obtain analytical results on the distributions beyond these
scaling arguments. Some of our results have been presented in
a Letter [18].

A. Scaling results

Let us start with the the survival probability S(T ,x), and
the persistence exponent θ , defined for any random process Xt
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with X0 = x > 0 as

S(T ,x) := prob(Xt � 0 for all t ∈ [0,T ])

∼
T →∞

T −θx+o(1). (34)

For a review of these concepts in the context of theoretical
physics, we refer to [35]. In a large class of processes the
exponent θ is independent of x and characterizes the power-law
decay for the probability of long positive excursions. For fBm
with Hurst exponent H it was shown that θx = θ = 1 − H

[32,36]. To understand the link of S(T ,x) with the maximum
distribution for fBm, we use the self-affinity of the process Xt

to write P T
H (m) as

P T
H (m) = 1√

2T H
fH

(
y = m√

2T H

)
. (35)

Here f is a scaling function depending on H . The survival
probability is related to the maximum distribution by

S(T ,x) =
∫ x

0
P T (m) dm =

∫ x√
2T H

0
fH (y) dy. (36)

This states that due to translational invariance a realization
of a fBm starting at x and remaining positive is the same
as a realization starting at 0 and having a minimum larger
than −x. Finally, the symmetry x → −x (for an fBm starting
at X0 = 0) gives the correspondence between minima and
maxima. These considerations allow us to predict the scaling
behavior of P T

H (m) at small m from the large-T behavior of
S(T ,x) [32],

f (y) ∼
y→0

yα ⇔ S(T ) ∼ T −(α+1)H , (37)

and, finally,

P T
H (m) ∼

m→0
m

θ
H

−1 = m
1
H

−2. (38)

For the distribution of the time at which the maximum is
achieved we can estimate the behavior close to the origin by
assuming that small values of the maximum are reached close
to the origin. Starting with

P T
H (m)dm = P T

H (t)dt (39)

and using scaling, m ∼ tH , we obtain

P T
H (t) ∼ P T

H (m)
dm

dt
∼ (tH )

1
H

−2tH−1 ∼ t−H . (40)

This should be valid when t → 0 (or m → 0). By time-reversal
symmetry t → T − t , we also have

P T
H (t) ∼

t→T
(T − t)−H . (41)

B. The complete result for Z+(m1,t1; x0; m2,t2)

We present here the final result for Z+, defined in Eq. (12),
at order ε. This path integral was first expanded [cf. Eq. (18)]
by treating the nonlocal term in the action, (14), perturbatively.
The first term Z+

0 of this expansion is given in Eq. (24),
while the second term Z+

1 was split into three contributions:
Z+

α , Z+
β , and Z+

γ [see Eq. (27)]. The first two terms can be
obtained explicitly from (B8), while the third one is computed
in Appendix C, the result being split among (C13), (C29),
and (C45).

In order to display a compact form, we choose T ≡ t1 +
t2 = 1 (which is equivalent to rescaling m1 and m2 by T −H and
t1 and t2 by T −1) and introduce new rescaled (dimensionless)
variables:

y1 = m1√
2tH1

, y2 = m2√
2tH2

, (42)

t1 = ϑ, t2 = 1 − ϑ. (43)

With these new variables, the final result is

Z+(m1,t1; x0; m2,t2) 

x0→0

x2−4ε
0

y1y2 exp
(− 1

2y2
1 − 1

2y2
2

)
2π [ϑ(1 − ϑ)]2H

{
1 + ε

[
I(y1)

(
1 +

√
1 − ϑ

ϑ

y2

y1

)
+ I(y2)

(
1 +

√
ϑ

1 − ϑ

y1

y2

)

+
(
1 − y2

2

)
I(

√
1 − ϑy1)√

ϑ(1 − ϑ)y1y2
+
(
1 − y2

1

)
I(

√
ϑy2)√

ϑ(1 − ϑ)y1y2
− I(

√
1 − ϑy1 + √

ϑy2)√
ϑ(1 − ϑ)y1y2

+ 2
(1 − ϑ)y2

1 + ϑy2
2 − 1√

ϑ(1 − ϑ)y1y2

+ (y2
1 − 2

)(
ln
(
2y2

1

)+ γE
)+ (y2

2 − 2
)(

ln
(
2y2

2

)+ γE
)− 4 − 2γE

]}
+ O(ε2). (44)

The special function I appearing in this expression is

I(z) = z4

6
2F2

(
1,1;

5

2
,3;

z2

2

)
+ π (1 − z2) erfi

(
z√
2

)

− 3z2 +
√

2πe
z2

2 z + 2 . (45)

C. The third arcsine law: Distribution of the time
when the maximum is reached

To simplify the result, (44), we can extract from it the
distribution of a single observable. We start with the probability
distribution PH (t) of tmax, the time when the fBm achieves its
maximum. For Brownian motion (H = 1/2), this distribution

is well known as the third arcsine law, because the cumulative
distribution involves the arcsin function [cf. Eq. (1)],

P T
1
2

(t) = 1

π
√

t(T − t)
for t ∈ [0,T ]. (46)

Until now, only scaling properties were known for this
distribution in the general case [37], as recalled in Eq. (40).

The path integral, (12), in the limit of x0 → 0, selects paths
which go through x0 ≈ 0+ at time t1 while staying positive.
This means that we sum over paths reaching their minimum
(in the interval [0,t1 + t2], which is almost surely unique) at t1,
starting at m1, and ending at m2. This is equivalent to summing
over paths starting at 0, reaching their minimum with value
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−m1 at time t1, and ending at m2 − m1. Integrating over m1 and
m2 finally gives the sum over all paths reaching their minimum
in t1, independent of the value of this minimum, and the end
point. Up to a normalization, this is the probability distribution
of tmin. By symmetry, this is the same as the distribution of tmax.
Formally, it reads

P T
H (t) = lim

x0→0

1

ZN

∫
m1,m2>0

Z+(m1,t ; x0; m2,T − t). (47)

The normalization ZN depends on x0 and T . It ensures that
P T

H (t) is normalized; it can be expressed in terms of Z+ as

ZN (x0,T ) =
∫ T

0
dt

∫
m1,m2>0

Z+(m1,t ; x0; m2,T − t). (48)

At order 0, starting from Eq. (23) and integrating over m1 and
m2 allows us to recover Eq. (46) with normalization ZN = x2

0 .
For the order-ε correction, the integrations over m1 and m2

are lengthy. This is done in Appendix D. It allows us to write
an ε expansion for the distribution of tmax in the form

P T
H (t) = P T

1
2

(t) + ε δP T (t) + O(ε2). (49)

The result, (D13), reads

δP T (t) = 1

π
√

t1t2

{√
t1

t2

[
π − 2 arctan

(√
t1

t2

)]

+
√

t2

t1

[
π − 2 arctan

(√
t2

t1

)]
− ln(t1t2) + cst

}
,

(50)

where t1 = t and t2 = T − t . It takes a simple form if we
exponentiate this order-ε correction:

P T
H (t) = 1

π [t(T − t)]H
exp

(
εF
(

t

T − t

))
+ O(ε2). (51)

The term ln(t1t2) = ln (t(T − t)) in δP T (t) gives the expected
change, from Eqs. (40) and (41), in the scaling form of
the arcsine law,

√
t(T − t) → [t(T − t)]H . The regular part

induces a nontrivial change in the shape,

F(u) = √
u[π − 2 arctan(

√
u)]

+ 1√
u

[
π − 2 arctan

(
1√
u

)]
+ cst. (52)

The time-reversal symmetry t → T − t (corresponding to
u → u−1) is explicit and the constant ensures normalization.
The contribution of F(u) to the probability that the maximum
is attained at time t is quite noticeable, as shown in Fig. 4.

D. The distribution of the maximum

We now present results for the distribution of the maximum
P T

H (m). For standard Brownian motion

P T
1
2

(m) = e− m2

4T√
πT

, m > 0. (53)

On the other hand, the scaling results presented in Sec. IV A
predict that for any H , P T

H (m) behaves at a small scale as
m1/H−2, as given in Eq. (38).

FIG. 4. Distribution of tmax for T = 1 and H = 0.25 (red curves)
or H = 0.75 (blue curves) given in Eq. (51) (solid lines) compared
to the scaling ansatz, i.e., F = cst. (dashed lines) and numerical
simulations (dotted lines). For H < 0.5 realizations with tmax ≈ T/2
are less probable (by about 10%) than expected from scaling. For
H > 0.5 the correction has the opposite sign.

Using our path integral, we can go farther. Similarly to the
distribution of tmax, the distribution of the maximum m itself
can be extracted from Z+, defined in Eq. (12):

P T
H (m) = lim

x0→0

1

ZN

∫ T

0
dt

∫
m2>0

Z+(m,t ; x0; m2,T − t). (54)

The details of these computations (integrations over t and m2)
are given in Appendix E. Its ε expansion, recast in exponential
form, leads to the scaling form of Eq. (35), with

fH (y) =
√

2

π
e− y2

2 eε[G(y)+cst] + O(ε2). (55)

The constant term ensures normalization. Figure 5 shows the
form of this scaling function for different values of H , as well
as a first comparison to numerical simulations. The function
G involves a combination of special functions denoted I in

FIG. 5. Scaling function fH (y) for the distribution of the max-
imum, as defined in Eq. (35), for different values of H : H = 0.25
(red curve), H = 0.4 (yellow curve), H = 0.6 (green curve), and
H = 0.75 (blue curve). Solid lines represent the analytic prediction
from our perturbative theory (at first order in ε) given in Eq. (55);
symbols are results from numerical simulations (cf. Sec. V).
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Eq. (45) and logarithmic terms,

G(y) = I(y) + (y2 − 2)[γE + ln(2y2)]. (56)

It has different asymptotics for small and large y:

G(y) ∼
{−2 ln(y) for y → ∞,

−4 ln(y) for y → 0.
(57)

The second line implies that P T
H (m) ∼ m−4ε when m → 0,

which is consistent (at order ε) with the scaling result, (38),
1
H

− 2 = −4ε + O(ε2). Formulas (55)–(57) also predict the
distribution at large m. It is known that the leading behavior
of P T

H (m) is Gaussian, which can be formalized as

lim
y→∞

ln(fH (y))

y2
= −1

2
. (58)

This is a direct consequence of an important theorem in the
theory of Gaussian processes, the Borrel inequality. It states
that for any Gaussian process Xt the cumulative distribution of
its maximum value over the interval [0,T ], m = supt∈[0,T ] Xt ,
verifies

Prob(m > u) � exp

(
− (u − 〈m〉)2

2σ 2

)
, (59)

where 〈m〉 and σ 2 = supt∈[0,T ]〈X2
t 〉 are assumed to be finite.

Specifying this to fBm with T = 1 allows us to derive Eq. (58).
A proof of this theorem and a derivation of its implications for
fBm can be found in Ref. [38].

Our result, (55), goes farther and gives the subleading term
in the large-m (and, equivalently, large-y) regime, a power law
with exponent −2ε + O(ε2). It can be written as

lim
y→∞

ln
(
fH (y) exp

(
y2

2

))
ln(y)

= −2ε + O(ε2). (60)

Comparison of our full prediction (i.e., not only the asymp-
totics) with numerical simulations of the fBm are presented in
Sec. V.

E. Survival probability

The survival probability S(x,T ) is defined as the probability
of a process Xt ’s staying positive up to time t , while starting
at X0 = x:

S(x,t) := prob(Xt > 0,∀t ∈ [0,T ] | X0 = x). (61)

As before, the scaling properties of fBm allow us to write this as
a function of y = x√

2T H
. As mentioned, the survival probability

is the cumulative distribution of the maximum value and reads

S(y) =
∫ y

0
dufH (u), (62)

with fH defined in Eq. (35). Similarly to the other distributions,
we can compute its ε expansion and recast it into an exponential
form to get

S(y) = erf

(
y√
2

)
exp

(
ε
M(y)

erf
(

y√
2

))+ O(ε2). (63)

FIG. 6. Survival probability S(y) for H = 1/2 (solid blue line),
H = 0.75 (dashed red line), H = 0.25 (dot-dashed green line), and
asymptotics S(y) = 1 (dotted black line), in a log-log plot.

The function M(y) is

M(y) =
√

8

π
y 2F2

(
1

2
,
1

2
;

3

2
,
3

2
; −y2

2

)

−
√

2

π
e− y2

2 y3
2F2

(
1,1;

3

2
,2;

y2

2

)

+
√

2πe− y2

2 y erfi

(
y√
2

)

−
[

erf

(
y√
2

)
+
√

2

π
e− y2

2 y

]
[ln(2y2) + γE]. (64)

Some details of its derivation are given in Appendix F and this
result is plotted on Fig. 6.

F. The joint distribution for tmax and m

The result, (44), was obtained by considering paths starting
at X0 = m1 > 0, with an absorbing boundary at x = 0 con-
straining the process to stay positive, as can be seen from the
path-integral definition, (12). Using translational invariance
and the symmetry x ↔ −x of fBm, we can reinterpret this as
the sum over paths starting at X0 = 0, reaching their maximum
(over the interval [0,T = t1 + t2]) of value m1 at time t1, and
ending in XT = m1 − m2 < m1.

The integral over m2 is then, in the limit x0 → 0 and up to
a normalization factor ZN , the joint probability density for a
fBm’s having a maximum value m = m1 at a time t = tmax=t1
over the interval [0,T ]; this we can write as

P T
H (m,t) = lim

x0→0

1

ZN

∫ ∞

0
dm2Z

+(m,t ; x0; m2,T − t). (65)

We recall the result for Brownian motion that we recover for
ε = 0:

P T
1
2

(m,t) = me− m2

4t

2πt3/2
√

T − t
. (66)

To simplify the ensuing discussion, we now consider the
conditional probability

P T
H (m|t) := P T

H (m,t)∫
m>0 P T

H (t,m)
= P T

H (m,t)

P T
H (t)

. (67)
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Interestingly, in the case of Brownian motion, we can make
a change of variables m → y := m/

√
2t such that this con-

ditional distribution function becomes independent of t (or,
equivalently, independent of ϑ = t/T ):

P T
1
2

(m|t) = m
e− m2

4t

2t
= 1√

2t
ye− y2

2 = dy

dm
P 1

2
(y|ϑ), (68)

with

P 1
2
(y|ϑ) = ye− y2

2 . (69)

For H �= 1
2 , this independence is broken, and the result at order

ε can be written as

PH (y|ϑ) = ye− y2

2 eεG(y|ϑ) + O(ε2), (70)

where now y = m√
2tH

(to keep y a dimensionless variable). It
is important to note that the variable y here is not the same as
in Eq. (55), as the maximum m is rescaled by t (the time at
which the maximum is reached), and not by T (the total time
of the process).

The nontrivial correction G(y|ϑ) is obtained from the
result, (44), as

G(y1|ϑ) =
∫

y2>0
y2e

− y2
2
2 [. . . ], (71)

where [. . . ] are the terms in brackets in Eq. (44).
While we can integrate Eq. (44) over y1 and y2 to obtain the

probability that the maximum is attained at time t , we were in
general not able to analytically integrate it solely over y2, due
to the presence of the term I(

√
1 − ϑy1 + √

ϑy2). Exceptions
are the two limiting cases ϑ = 0 and ϑ = 1, for which

G(y|0) = (y2 − 2)[γE + ln(2y2)] + (3 − y2)[I(y) − 2]

1 − y2

+ 2
√

2π

y

⎡
⎣1 − y2 −

e
y2

2 erfc
(

y√
2

)
1 − y2

⎤
⎦, (72)

G(y|1) = (y2 − 2)[γE + ln(2y2)] + I(y) − 2. (73)

Note that PH (y|1) is also the conditional probability that an
fBm path, starting at x0 � 1 and having survived up to time T ,
has the final position m = √

2yT H . This reproduces Eqs. (9)
and (10) in Ref. [17]. These results are represented in Fig. 7.

The asymptotic behaviors for small y are

PH (y|ϑ) ∼ y
1
H

−1 
 y1−4ε + O(ε2). (74)

For large y, the situation is more complicated. For the two
limiting cases the behavior is consistent with

PH (y|0) ∼ y1+2εe−y2/2−√
8πyε + O(ε2), (75)

PH (y|1) ∼ y1−2εe−y2/2 + O(ε2). (76)

It would be interesting to understand this behavior from scaling
arguments.

The conditional probability, (70), is plotted in Fig. 7 for
various value of H , supplemented by results obtained via
numerical integration of Eq. (71) for ϑ = 0.1, 0.5, and 0.9.
It varies smoothly as a function of ϑ .

V. NUMERICAL RESULTS

To validate the perturbative approach used in this article, we
tested our analytical results with direct numerical simulations
of fBm paths. The discretized fBm paths are generated using
the Davis and Harte procedure as described in Ref. [23] (and
references therein). The idea is to take advantage of the station-
arity of the increments and use fast Fourier transformations to
compute efficiently the square root of its covariance function.
This method is exact, i.e., the samples generated have exactly
the covariance function given in Eq. (7), and is adapted to
situations where the length of the path to generate is fixed.
Other simulation techniques exist, reviewed in Ref. [39].

A. The third arcsine law

For the distribution of tmax, we want to test our analytical
results given in Eqs. (51) and (52). Figure 4 shows the good
agreement between theory and numerics. To perform a more
precise comparison, we extract from the numerically computed

(b)(a) (c)

FIG. 7. (a) Conditional probability PH (y|ϑ) for H = 2
3 and various values of ϑ . (b), (c) Same as (a), for H = 3

5 and H = 1
3 . Solid curves

are the analytical prediction, (70), where the scaling functions are given analytically for the two extremal cases, ϑ = 0 and ϑ = 1 [Eqs. (72)
and (73)]; for 0 < ϑ < 1 the curves are obtained via numerical integration. The predicted spread of the curves [which collapse for H = 1

2 to
Eq. (66), plotted with black circles) is well reproduced in the numerics, for both ε > 0 and ε < 0. For ϑ → 1 the agreement with numerics is
remarkable, while for ϑ close to 0, we see significant deviations. These deviations may be due to both discretization effects and ε2 corrections
(they have the same sign for both ε > 0 and ε < 0).
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(b)(a)

FIG. 8. (a) Numerical estimation of F for different values of H in a discrete system of size N = 212, using 108 realizations. Solid curves
represent the theoretical prediction, (52), vertically translated for better visualization. Error bars are 2σ estimates. Note that for H = 0.6,
H = 0.66, and H = 0.8 the expansion parameter ε is positive, while for H = 0.4, H = 0.33, and H = 0.2 it is negative. (b) Deviation for
large |ε| between the theoretical prediction, (52), and the numerical estimations, (77), rescaled by ε [cf. Eq. (78)]. These curves collapse for
different values of H , allowing for an estimate of the O(ε2) correction to P T

H (t), as written in Eq. (79).

distribution P T,H
num (t) an estimation F ε

num of the function F as

F ε
num

(
t

T − t

)
:= 1

ε
ln
(
P T,H

num (t) × [t(T − t)]H
)
. (77)

This function should converge, as ε → 0, to the theoretical
prediction, (52). Obviously, statistical errors become relevant
in this limit due to the factor of ε−1, while for larger ε we expect
to see deviation due to order-ε2 (and larger) corrections, which
are not taken into account in our analytical computations. As
shown in Fig. 8(a), our numerical and analytical results are in
remarkable agreement for all values of H studied, both for ε

positive and for ε negative. This means, in particular, that even
for large values of ε (H = 0.8 or H = 0.2 in the cases studied
here), the order-ε correction is large compared to higher-order
corrections.

The precision of our simulations allows us to numerically
investigate these subleading O(ε2) corrections, extracted as
follows:

F ε
2 (u) = 1

ε

(
F ε

num(u) − F(u)
)

= 1

ε2
ln

(
P T,H

num (t) × [t(T − t)]H

eεF(u)

)
. (78)

This is shown in Fig. 8(b). The collapse of the curves for
different values of ε (once rescaled by ε−1) suggests that there
exists a function F2(u), which would be the limit of F ε

2 (u) as
ε → 0, such that the probability distribution can be written as

P T
H (t) = eεF(u)+ε2F2(u)

[t(T − t)]H
+ O(ε3) . (79)

Our estimation of F2 is plotted in Fig. 8(b). Our perturbative
approach and its diagrammatic representation allow us to write
the integrals needed to compute F2 analytically; this, however,
is left for future work [40].

B. The distribution of the maximum

For the distribution of the maximum we rewrite for-
mula (55) such that the small-m behavior reproduces the exact
scaling result, (38), without changing the result at ε order:

fH (y) =
√

2

π
y

1
H

−2e− y2

2 eε[G(y)+4 ln y+cst] + O(ε2). (80)

To extract the nontrivial contribution from numerical simula-
tions, we study, for T = 1 (see Fig. 9),

m2− 1
H e

m2

4 P 1,H
num (m) = e

ε[G( m√
2

)+4 ln m+cst] + O(ε2). (81)

The left-hand side is evaluated from the normalized binned
distribution of the maximum for each fBm path, denoted
P 1,H

num (m). The right-hand side is the analytical result; the
constant term is evaluated by numerical integration such that
fH (y), given in Eq. (80), is normalized to 1.

The sample size N (i.e., lattice spacing dt = N−1) of the
discretized fBm used for this numerical test is important, as
the samples recover Brownian behavior for m smaller than a
cutoff of order N−H . This can be understood by assuming that
the typical value of the first discretized point X1/N is of order
N−H ; thus for m � N−H ,

P 1,H
num (m) ∼ prob(X1/N = m) ∼ m0. (82)

Far small H the system size necessary to obtain the asymptotic
behavior at a small scale is very large, so we focus our tests
on H > 0.4. Figures 9(a)–9(c) present results for H = 0.4,
H=0.6, and H = 0.75, respectively, without any fitting pa-
rameter. As predicted, convergence to the small-scale behavior
is quite slow. For example, in the H = 0.6 plot [Fig. 9(b)]
the convergence to the small-scale behavior is somewhere
between 10−1 and 10−2 (in dimensionless variables where
we have rescaled the total time to T = 1). This might lead to
an incorrect numerical estimation of the persistence exponent
or other related quantities, if the crossover to the large-scale
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(b)(a) (c)

FIG. 9. (b) The combination, (81), for H = 0.6. The solid line is the analytical prediction exp(ε[G(m/
√

2) + 4 ln m] + cst) of the distribution
of the maximum without its small-scale power law and large-scale Gaussian behavior. Symbols are numerical estimations for T = 1 of the same
quantity, m2−1/H exp(m2/4)P T =1,H

num (m), for different sample sizes. At small scales discretization errors appear. At large scales the statistics is
poor due to the Gaussian prefactor. For the four decades in between, theory and numerics are in very good agreement. (a) Same as (b), for
H = 0.4; (c) same as (b), for H = 0.75. In all cases, the large scale-behavior in both plots is consistent with m2ε .

behavior is not properly taken into account. At large scales,
the numerical data in Fig. 9 grow as m2ε, consistent with the
prediction, (60).

As stated, for H < 0.5 the numerical simulations do not
allow us to investigate the small-scale behavior of the distri-
bution, as can be seen for H = 0.4 in Fig. 9(a). Nevertheless,
the agreement with the theoretical prediction is good in the
crossover region and at the beginning of the tail. The numerical
prefactor of the small-scale power law is also very sensitive
to numerical errors (and probably to ε2 corrections) due to a
vanishing probability when m → 0 for H < 0.5, as shown in
Fig. 5.

VI. CONCLUSIONS

To conclude, we have developed a perturbative approach
for the extreme-value statistics of fractional Brownian motion.
This allows us to derive, to our knowledge, the first analytical
results for generic values of H in the range 0 < H < 1, beyond
scaling relations. The main, and most general, result is the joint
probability of the value of the maximum and the time when
this maximum is reached, conditioned on the value of the end
point, as given in Eq. (44). From this, we extracted a simpler
result, as the unconditioned distribution of the value of the
maximum, as well as the distribution of the time when this
maximum is reached. These two distributions have nontrivial
features, which we compared to numerical simulations. The
remarkable agreement of the simulations with our predictions
is a valuable check of our method. It also shows that the
perturbative approach gives surprisingly good results, even
far from the expansion point H = 1

2 .
The method can be generalized to other cases of interest,

such as the other two arcsine laws, linear and nonlinear drift,

and fractional Brownian bridges. Work in these directions is
in progress.
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APPENDIX A: DETAILS ON THE
PERTURBATIVE EXPANSION

We explicit here details on the steps transforming Eq. (30)
into Eq. (32). We have to deal with terms of the form∫ Xt=x2

X0=x1

D[X]�[X]Ẋ0e
−S0[X]

= lim
δ→0

∫ Xt=x2

X0=x1

D[X]�[X]
Xδ − x1

δ
e−S0[X]

= lim
δ→0

∫ ∞

0
dx

x − x1

δ
P +

0 (x1,x,δ)P +
0 (x,x2,t − δ)

= lim
δ→0

∫ ∞

0
dx 2∂xP

+
0 (x1,x,δ)P +

0 (x,x2,t − δ)

=
∫ ∞

0
dx δ(x − x1)2∂xP

+
0 (x,x2,t)

= 2∂x1P
+
0 (x1,x2,t). (A1)

We first introduced a discretized version of the derivative, then
expressed the path integral in terms of propagators, did an
integration by parts, and, finally, took the limit of δ → 0.

With this result we can express every path integral in
Eq. (30) in terms of the bare propagator P +

0 (x1,x2,t):

Z+
γ (m1,t1,x0,t2,m2)

= 1

2

∫ T

t1

dτ2

∫ t1

0
dτ1

∫
x1,x2>0

P +
0 (m1,x1,τ1) 2∂x1P

+
0 (x1,x0,t1 − τ1) P +

0 (x0,x2,τ2 − t1) 2∂x2P
+
0 (x2,m2,T − τ2)

τ2 − τ1
. (A2)
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We now use the identity 1
τ2−τ1

= ∫
y>0 e−y(τ2−τ1) and perform two Laplace transformations (t1 → s1 and t2 → s2). It is important

to note that the time integrals are, in general, divergent at small times, thus we introduced a short-time cutoff τ in the action [cf.
Eq. (14)]. The short-time cutoff τ corresponds to a large-y cutoff � = e−γE/τ . This value is imposed by the following equality,
valid for all T > 0, in the limit of � → ∞ and τ → 0:∫ T

0
dt

∫ �

0
e−ytdy = ln(T �) + γE + O(e−T �)

!= ln

(
T

τ

)
=
∫ T

τ

1

t
dt. (A3)

To simplify the computations, we introduce new time variables:

T1 = τ1, T2 = t1 − τ1, T3 = τ2 − t1, T4 = t1 + t2 − τ2. (A4)

This gives

Z̃+
γ (s1,s2) = 2

∫
t1,t2>0

e−s1t1−s2t2

∫ t1+t2

t1

dτ2

∫ t1

0
dτ1

∫ �

0
dy e−y(τ2−τ1) P +

0 (t1) ∂P +
0 (τ1 − t1) P +

0 (τ2 − t1) ∂P +
0 (t1 + t2 − τ2)

= 2
∫ �

0
dy

∫
Ti>0

e−(T1+T2)s1e−(T3+T4)s2e−(T2+T3)y P +
0 (T1) ∂P +

0 (T2) P +
0 (T3) ∂P +

0 (T4) . (A5)

The space dependence (i.e., x0, x1, x2 dependence) is omitted for notational clarity. The successive integrations over time variables
transform this expression into a product of Laplace-transformed propagators with different Laplace variables:

Z̃+
γ (m1,s1; x0; m2,s2) = 2

∫ �

0
dy

∫
x1,x2>0

P̃ +
0 (m1,x1,s1) ∂x1 P̃

+
0 (x1,x0,s1 + y)P̃ +

0 (x0,x2,s2 + y) ∂x2 P̃
+
0 (x2,m2,s2). (A6)

This is the formula given in in Eq. (32) in the text, except that here we made explicit the large-y cutoff. As we will see, there is
no large-y divergence here, which renders the cutoff irrelevant. The other time orderings, corresponding to Z+

α and Z+
β , have a

similar structure. For Zα , this gives

Z+
α (m1,t1,x0,t2,m2)

= 1

2

∫ t1

τ1

dτ2

∫ t1

0
dτ1

∫
x1,x2>0

P +
0 (m1,x1,τ1) 2∂x1P

+
0 (x1,x2,τ2 − τ1) 2∂x2P

+
0 (x2,x0,t1 − τ2) P +

0 (x0,m2,t2)

τ2 − τ1
. (A7)

This term is represented diagrammatically in Fig. 3(b); computing the double Laplace transform gives

Z̃+
α (m1,s1; x0; m2,s2) =

[
2
∫ �

0
dy

∫
x1,x2>0

P̃ +
0 (m1,x1,s1) ∂x1 P̃

+
0 (x1,x2,s1 + y) ∂x2 P̃

+
0 (x2,x0,s1)

]
P̃ +

0 (x0,m2,s2). (A8)

In this case, the integrations affect only the first three propagators. The term in brackets is the correction to the constrained
propagator from m1 to x0, with Laplace variable s1. This object was at the center of Ref. [17]; the results are recalled in the next
Appendix. Similarly for Zβ , after the Laplace transformations, the integrations affect only the last three propagators, giving

Z̃+
β (x0,s1; x0; m2,s2) = P̃ +

0 (m1,x0,s1)

[
2
∫ �

0
dy

∫
x1,x2>0

P̃ +
0 (x0,x1,s2) ∂x1 P̃

+
0 (x1,x2,s2 + y) ∂x2 P̃

+
0 (x2,x0,s2)

]
. (A9)

APPENDIX B: RECALL OF THE RESULTS FOR Z+
1 (m,t)

In Ref. [17], the propagator Z+(m,t) for fBm, conditioned to start at x0 ≈ 0+, to remain positive, and to finish in m at time t

was computed at order ε. For standard Brownian motion, this conditioned propagator is

Z+
0 (m,t) = limx0→0

1

x0
P +

0 (x0,m,t) = me− m2

4t

2
√

πt3/2
. (B1)

The term x−1
0 is the normalization (i.e., one divides by the conditional probability). The order-ε correction of this propagator is

given in Eq. (51) of [17]:

Z+
1 (m,t) = Z+

0 (m,t)

[(
m2

2t
− 2

)
(ln(m2) + γE) + I

(
m√
2t

)
+ ln(t) − 2γE

]

= Z+
0 (m,t)[I(z) + z2(ln(2z2) + γE) + (z2 − 1) ln(t) − 4 ln(z) − 4γE]. (B2)

This result assumes a proper normalization of Z+
1 such that x0 and ln(x0) terms cancel, i.e., the limit x0 → 0 is well defined,

and the integral over m is equal to unity. We introduced z := m/
√

2t , and I is the combination of special functions defined in
Eq. (45) and recalled in Eq. (G1).
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We can also use the diagrammatic rules introduced in this article to compute the Laplace-transformed correction to this
propagator (without conditioning). This corresponds to the diagram represented in Fig. 3(b) without the slice on the right:

P̃ +
1 (x0,m,s) = 2

∫ �

0
dy

∫
x1,x2>0

P̃ +
0 (x0,x1,s)∂x1 P̃

+
0 (x1,x2,s + y)∂x2 P̃

+
0 (x2,m,s). (B3)

This is the term appearing in brackets in Eqs. (A8) and (A9). The integrations over space can be done, giving the following
integral, rescaling y → us, and setting m = 1 for simplicity:

P̃ +
1 (x0,1,s) = 1√

s

∫ �/s

0

du

u2
{[(√s − 1)u − 2]e−√

s sinh(
√

sx0) − x0u
√

s e−√
s cosh(

√
sx0)

+√
u + 1[e−√

s
√

u+1(1−x0) + e−√
s
√

u+1(x0+1) − 2e−√
s(

√
u+1+x0) − 2e−√

s(x0
√

u+1+1) + 2e−√
s(x0+1)]}. (B4)

This is a logarithmically diverging integral at large u, which makes the UV cutoff necessary (cf. Appendix A, where we detail
the link between the y cutoff � and the time cutoff τ ). Doing the integration over u, and then taking the limit x0 → 0 as well as
expressing the cutoff � in terms of τ gives

1

x0
P̃ +

1 (x0,m,s) 

x0→0

em
√

s(m
√

s + 1)Ei(−2m
√

s) − e−m
√

s(m
√

s + 1) ln(m
√

s)

+m
√

se−m
√

s

[
ln

(
m2

2τ

)
− 1

]
+ e−m

√
s

[
ln

(
τ 2

2x4
0

)
− 3γE + 4

]
. (B5)

This expression in Laplace variables for the correction to the propagator is a new result [in Ref. [17] a more complicated
transformation was used to derive Eq. (B2)]. The inverse Laplace transform can be done, using Eqs. (G8)–(G11) for the
complicated terms,

P +
1 (x0,m,t)

P +
0 (x0,m,t)



x0→0

I(z) + z2[ln(2z2) + γE] + (z2 − 1)

[
ln

(
t

τ

)
− 1

]
+ ln

(
τ 2

4x4
0z4

)
− 4γE + 2. (B6)

We still need to correct this with the rescaling of the diffusion constant, i.e., taking into account the order-ε correction in Eq. (22)
given the expression of the diffusive constant, (15). This gives

2t∂tP
+
0 (x0,m,t)(1 + ln(τ )) = P +

0 (x0,m,t)(z2 − 3)[1 + ln(τ )]. (B7)

A check of consistency is that this cancels all dependence on τ , and we find, for the propagator at order ε,

P +(x0,m,t) 

x0→0

P +
0 (x0,m,t)

{
1 + ε

[
I(z) + z2(ln(2z2) + γE) + (z2 − 1) ln(t) − ln

(
4x4

0z4
)− 4γE

]}+ O(ε2). (B8)

This propagator, integrated over m, reads, in both time and Laplace variables,∫ ∞

0
dm P̃ +

1 (x0,m,s) 

x0→0

x0√
s

(
3 − 3γE − ln(4sτ ) + ln

(
τ 2

x4
0

))
,

∫ ∞

0
dm P +

1 (x0,m,t) 

x0→0

x0√
πt

(
3 − 2γE + ln

(
tτ

x4
0

))
. (B9)

APPENDIX C: COMPUTATION OF Z+
γ

1. Outline of the calculation

We present here details of the calculation of Z+
γ , starting from its expression in Laplace variables, (32), graphically represented

in Fig. 3. First, we introduce the notation

S(m,x0,s,y) := 1

x0

∫ ∞

0
dx P̃ +

0 (m,x,s) ∂xP̃
+
0 (x,x0,s + y)

= 1

x0

e−(m−x0)
√

s+y − e−(m+x0)
√

s+y + 2e−x0
√

s+y−m
√

s − e−(m−x0)
√

s − e−(m+x0)
√

s

2y
. (C1)

The expression of P̃ +
0 is given in Eq. (33). We see from Eq. (32) that one can write Z̃+

γ (m1,s1; x0; m2,s2) as

Z̃+
γ (m1,s1; x0; m2,s2) = −2x2

0

∫
y>0

S(m1,x0,s1,y)S(m2,x0,s2,y). (C2)
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The minus sign comes from an integration by parts. It is interesting to look at the asymptotics of S in the limit of x0 → 0:

S(m,x0,s,y) 

x0→0

1

y
(e−m

√
s+y

√
s + y − e−m

√
s
√

s + y) ∼
y→∞

e−m
√

s

√
y

. (C3)

This implies that the x0 → 0 limit cannot be taken before integrating over y, as this induces a new large-y, i.e., short-time,
divergence. Taking this limit before integration and regularizing the new divergence with the large-y cutoff � would lead to an
incorrect result. This is expected, as the scaling of the result in terms of x0 depends on H , thus inducing a ln(x0) term at order ε.

In the following, we note S = S̄ + δS with

S̄(m,x0,s,y) := 1

x0

e−(m−x0)
√

s+y − e−(m+x0)
√

s+y + 2e−(x0+m)
√

s − e−(m−x0)
√

s − e−(m+x0)
√

s

2y
, (C4)

δS(m,x0,s,y) := 1

x0

e−x0
√

s+y−m
√

s − e−x0
√

s−m
√

s

y
. (C5)

Denoting Si := S(mi,x0,si,y), the integration over y is a sum of four terms (with the last two related by exchanging point 1 and
point 2): ∫

y>0
S1S2 =

∫
y>0

S̄1S̄2 +
∫

y>0
δS1δS2 +

∫
y>0

S̄1δS2 +
∫

y>0
S̄2δS. (C6)

This leads to the following decomposition of Z+
γ (m1,t1; x0; m2,t2):

Z+
γ = x2

0 [ZA(m1,t1; m2,t2) + ZB(m1,t1; x0; m2,t2) + ZC(m1,t1; m2,t2) + ZC(m2,t2; m1,t1)], (C7)

with

ZA(m1,s1; m2,s2) = −2L−1
s2→t2

◦ L−1
s1→t1

[
limx0→0

∫
y>0

S̄(m1,x0,s1,y)S̄(m2,x0,s2,y)

]
,

ZB(m1,s1; x0; m2,s2) = −2L−1
s2→t2

◦ L−1
s1→t1

[
limx0→0

∫
y>0

δS(m1,x0,s1,y)δS(m2,x0,s2,y)

]
,

ZC(m1,s1; m2,s2) = −2L−1
s2→t2

◦ L−1
s1→t1

[
limx0→0

∫
y>0

S̄(m1,x0,s1,y)δS(m2,x0,s2,y)

]
.

(C8)

We anticipate here that ZA and ZC have a well-defined x0 → 0 limit, and only ZB has a divergence (as shown later). The next step
consists of computing these three integrals over y, taking the limit of small x0, and performing the inverse Laplace transforms
with regard to (w.r.t.) s1 and s2. The order of these manipulations can sometimes be inverted to simplify the calculations.

2. The term ZA

In the first term in Eq. (C8) it is possible to take the x0 → 0 limit inside the integral, as this integrand converges rapidly
enough for large y, given the asymptotic of S̄:

S̄ 

x0→0

e−m
√

s+y
√

s + y − e−m
√

s
√

s

y
. (C9)

This gives ∫
y>0

S̄1S̄2 

x0→0

∫
y>0

(e−m1
√

s1+y
√

s1 + y − e−m1
√

s1
√

s1)(e−m2
√

s2+y
√

s2 + y − e−m2
√

s2
√

s2)

y2
. (C10)

We can do the inverse Laplace transformations s1 → t1 and s2 → t2 before integrating over y, using

L−1
s→t [−e−m

√
s+y

√
s + y] = e− m2

4t

2
√

πt3/2

(
1 − m2

2t

)
e−ty . (C11)

One thus finds

L−1
s2→t2

◦ L−1
s1→t1

∫
y>0

S̄1S̄2 

x0→0

e
− m2

1
4t1

− m2
2

4t2

4πt
3/2
1 t

3/2
2

(
1 − m2

1

2t1

)(
1 − m2

2

2t2

)∫
y>0

(1 − e−t1y)(1 − e−t2y)

y2
. (C12)

Integrating over y and using the definition of ZA, the final result for this term is

ZA(m1,t1; m2,t2) = e
− m2

1
4t1

− m2
2

4t2

2π (t1t2)3/2

(
1 − m2

1

2t1

)(
1 − m2

2

2t2

)
[t1 ln(t1) + t2 ln(t2) − (t1 + t2) ln(t1 + t2)]. (C13)
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3. The term ZB

For the second term in Eq. (C8), the limit x0 → 0 cannot be taken inside the integral, as

δS = 1

x0

e−x0
√

s+y−m
√

s − e−x0
√

s−m
√

s

y



x0→0

e−m
√

s

y
(
√

s − √
s + y) ∼

y→∞ −e−m
√

s

√
y

. (C14)

However, we can extract the diverging part by writing∫
y>0

δS1δS2 = e−m1
√

s1−m2
√

s2 ln
(
x−2

0 + 1
)+

∫
y>0

[
δS1δS2 − e−m1

√
s1−m2

√
s2

y + 1
�
(
y < x−2

0

)]
. (C15)

This expression is constructed such that for all x0 > 0 the term added outside the integral and the term subtracted inside the
integral cancel. The diverging part when x0 → 0 is now the term outside the integral and the integral has a finite limit when
x0 → 0. To proceed, denote K := e−m1

√
s1−m2

√
s2 . We then decompose the integral as a sum of three terms:∫

y>0

[
δS1δS2 − K

y + 1
�
(
y < x−2

0

)] =
∫ x−2

0

0
dy

[
δS1δS2 − K (

√
s1 + y − √

s1)(
√

s2 + y − √
s2)

y2

]

+K
∫ x−2

0

0
dy

[
(
√

s1 + y − √
s1)(

√
s2 + y − √

s2)

y2
− 1

y + 1

]
+
∫ ∞

x2
0

dy δS1δS2. (C16)

In the second term we can take the limit of x0 → 0 to obtain (without the K factor in front)∫
y>0

[
(
√

s1 + y − √
s1)(

√
s2 + y − √

s2)

y2
− 1

y + 1

]

= −
(

2 +
√

s1

s2
+
√

s2

s1

)
ln(

√
s1 + √

s1) + 1

2

√
s1

s2
ln(s1) + 1

2

√
s2

s1
ln(s2) − 1 + ln(4). (C17)

For the first and third terms, we first perform a rescaling of the integration variable (y → x−2
0 v) and then take the limit of x0 → 0:∫ x−2

0

0
dy

[
δS1δS2 − K (

√
s1 + y − √

s1)(
√

s2 + y − √
s2)

y2

]



x0→0
K
∫ 1

0
dv

[
(e−√

v − 1)2

v2
− 1

v

]
, (C18)

∫ ∞

x2
0

du δS1δS2 

x0→0

K
∫ ∞

1
dv

(e−√
v − 1)2

v2
. (C19)

The sum of the last two contributions in the limit of x0 → 0 is

K
∫ ∞

1
dv

(e−√
v − 1)2

v2
+ K

∫ 1

0
dv

[
(e−√

v − 1)2

v2
− 1

v

]
= K[3 − 2γE − 2 ln(4)]. (C20)

Summing all these contributions gives∫
y>0

δS1δS2 

x0→0

e−m1
√

s1−m2
√

s2

[
−
(

2 +
√

s1

s2
+
√

s2

s1

)
ln(

√
s1 + √

s2) +
√

s1

s2
ln(

√
s1) +

√
s2

s1
ln(

√
s2) − 2 ln(2x0) + 2 − 2γE

]
.

(C21)

We now need a series of inverse Laplace transforms obtained in Appendix G. To deal with the double Laplace inversion, we start
with formula (G6) and use the special function J defined in Eq. (G2). Using commutativity of derivation and integration with
the Laplace transform, we can use the identity(

2 +
√

s1

s2
+
√

s2

s1

)
e−m1

√
s1−m2

√
s2 = (∂m1 + ∂m2

)( ∫
m1

+
∫

m2

)
e−m1

√
s1−m2

√
s2 (C22)

to obtain

L−1
s2→t2

◦ L−1
s1→t1

[
e−m1

√
s1−m2

√
s2

(
2 +

√
s1

s2
+
√

s2

s1

)
ln(

√
s1 + √

s2)

]

= (∂m1 + ∂m2

)2⎧⎨⎩e
− m2

2
4t2

− m2
1

4t1

π
√

t1t2

[
J
(

(m2t1 + m1t2)2

4t1t2(t1 + t2)

)
+ 1

2
ln

(
1

4t1
+ 1

4t2

)
− γE

2

]⎫⎬
⎭. (C23)
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For the other terms, the inverse Laplace transforms are decoupled and can be computed from Eq. (G7). We get

L−1
s2→t2

◦ L−1
s1→t1

[
e−m1

√
s1−m2

√
s2

√
s1

s2
ln(

√
s1)

]
= ∂2

m1

⎧⎨
⎩e

− m2
2

4t2
− m2

1
4t1

π
√

t1t2

[
J
(

m2
1

4t1

)
+ 1

2
ln

(
1

4t1

)
− γE

2

]⎫⎬
⎭. (C24)

The sum of all terms, with a prefactor of −2 coming from the definition of ZB , is

ZB(m1,t1; x0; m2,t2) = m1m2e
− m2

2
4t2

− m2
1

4t1

2π (t1t2)3/2
[2 ln(2x0) − 2 + 2γE]

+ 2
(
∂m1 + ∂m2

)2⎧⎨⎩e
− m2

2
4t2

− m2
1

4t1

π
√

t1t2

[
J
(

(m2t1 + m1t2)2

4t1t2(t1 + t2)

)
+ 1

2
ln

(
1

4t1
+ 1

4t2

)
− γE

2

]⎫⎬
⎭

− 2 ∂2
m1

⎧⎨
⎩e

− m2
2

4t2
− m2

1
4t1

π
√

t1t2

[
J
(

m2
1

4t1

)
+ 1

2
ln

(
1

4t1

)
− γE

2

]⎫⎬
⎭+ (1 ↔ 2). (C25)

The derivatives can be computed explicitly, using the relation between I and J given in Eq. (G3):

∂2
m1

⎧⎨
⎩e

− m2
2

4t2
− m2

1
4t1

π
√

t1t2

[
J
(

m2
1

4t1

)
+ 1

2
ln

(
1

4t1

)
− γE

2

]⎫⎬
⎭ = − e

− m2
2

4t2
− m2

1
4t1

4π (t1t2)3/2
t2

[
I
(

m1√
2t1

)
+
(

m2
1

2t1
− 1

)
(ln (4t1) + γE)

]
. (C26)

The same result holds for the term involving ∂2
m2

. For the term involving m1 and m2 simultaneously, we can use almost the same
trick:

(
∂m1 + ∂m2

)2[
e
− m2

2
4t2

− m2
1

4t1 J
(

(m2t1 + m1t2)2

4t1t2(t1 + t2)

)]
= t1 + t2

4t1t2
e
− m2

2
4t2

− m2
1

4t1

[
2(z2 − 1)J

(
z2

2

)
− 2(2z2 − 1)J ′

(
z2

2

)
+ 2z2J ′′

(
z2

2

)]

= − t1 + t2

4t1t2
e
− m2

2
4t2

− m2
1

4t1 I
(

m1t2 + m2t1√
2t1t2(t1 + t2)

)
. (C27)

The second line is the explicit derivative of the first line, expressed, for simplicity, in terms of the variable

z = m1t2 + m2t1√
2t1t2(t1 + t2)

. (C28)

The combination of J and its derivatives appearing in the second line is exactly the function I, as can be checked from Eq. (G3).
After these simplifications,

ZB 

x0→0

e
− m2

2
4t2

− m2
1

4t1

2π (t1t2)3/2

{
2m1m2[ln(2x0) + γE − 1] − (t1 + t2)

[
I(z) + (z2 − 1)

(
ln

(
4t1t2

t1 + t2

)
+ γE

)]

+ t2

[
I
(

m1√
2t1

)
+
(

m2
1

2t1
− 1

)
(ln(4t1) + γE)

]
+ t1

[
I
(

m2√
2t2

)
+
(

m2
2

2t2
− 1

)
(ln(4t2) + γE)

]}
. (C29)

4. The term ZC

For this term, we can take the limit x0 → 0 inside the integral, as it converges for large y using asymptotics (C9) and (C14),
giving ∫

y>0
S̄1δS2 


x0→0
e−m2

√
s2

∫
y>0

e−m1
√

s1+y
√

s1 + y − e−m1
√

s1
√

s1

y

√
s2 − √

s2 + y

y
. (C30)

To compute the Laplace inversion s1 → t1, we use Eq. (C11):

L−1
s1→t1

[∫
y>0

S̃1δS2

]
= e

− m2
1

4t1

2
√

πt
3/2
1

(
m2

1

2t1
− 1

)
e−m2

√
s2

∫
y>0

(1 − e−t1y)(
√

s2 + y − √
s2)

y2

= e
− m2

1
4t1

2
√

πt
3/2
1

(
m2

1

2t1
− 1

)
e−m2

√
s2

√
s2

∫
v>0

(1 − e−t1s2v)(
√

v + 1 − 1)

v2
. (C31)
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We changed variables y → s2v between the two lines. To perform the inverse Laplace transform w.r.t. s2, we need

L−1
s2→t2

[
e−m2

√
s2

√
s2

e−t1s2v

]
= θ (t2 − vt1)

e
− m2

2

4(t2−vt1)

√
π (t2 − vt1)

. (C32)

Finally, to compute ZC , only the integration over v remains to be done:

ZC(m1,t1; t2,m2) = − e
− m2

1
4t1

√
πt

3/2
1

(
m2

1

2t1
− 1

)∫
v>0

⎛
⎝e

− m2
2

4t2√
πt2

− �(t2 − vt1)
e
− m2

2

4(t2−vt1)

√
π (t2 − vt1)

⎞
⎠√

v + 1 − 1

v2

= − e
− m2

1
4t1 e

− m2
2

4t2

2π (t1t2)3/2

(
m2

1 − 2t1
) t2
t1

∫
v>0

⎛
⎝1 − �

(
t2

t1
− v

)
e
− m2

2
4t2

( 1
1−vt1/t2

−1)√
1 − v t1

t2

⎞
⎠√

v + 1 − 1

v2

= − e
− m2

1
4t1 e

− m2
2

4t2

2π (t1t2)3/2

(
m2

1 − 2t1
)[

ν

∫ ν

0
dv

(
1 − e

−a( 1
1−v/ν

−1)

√
1 − v/ν

)√
v + 1 − 1

v2
+ ν

∫ ∞

ν

dv

√
v + 1 − 1

v2

]
. (C33)

Here we have introduced ν = t2/t1 and a = m2
2/(4t2). Thus the following integrals needs to be computed:

I1(a,ν) = ν

∫ ν

0
dv

(
1 − e

−a( 1
1−v/ν

−1)

√
1 − v/ν

)√
v + 1 − 1

v2
and I2(ν) = ν

∫ ∞

ν

dv

√
v + 1 − 1

v2
. (C34)

The term I2 is easy:

I2(ν) = ν

∫ ∞

ν

dv

√
v + 1 − 1

v2
= √

ν + 1 − 1 + ν asinh

(
1√
ν

)
=
√

t1 + t2

t1
− 1 + t2

t1
asinh

(√
t1

t2

)
. (C35)

The other integral is more involved. To evaluate it, we perform a change of variables:

I1(a,ν) = ν

∫ ν

0
dv

(
1 − e

−a( 1
1−v/ν

−1)√
1 − v

ν

)√
v + 1 − 1

v2
=
∫ ∞

0
dx

(
1√

x + 1
− e−ax

)√
(ν + 1)x + 1 − √

x + 1

x2
. (C36)

To simplify the integrand, we then take its second derivative w.r.t. a:

∂2
a I1(a,ν) = −

∫ ∞

0
dx e−ax(

√
(ν + 1)x + 1 − √

x + 1) = −
√

π
(√

ν + 1e
a

ν+1 erfc
(√

a
ν+1

)− eaerfc(
√

a)
)

2a3/2
. (C37)

The function

f (a) = 1
2 I(

√
2a) + 3a − 1 + a ln(a), (C38)

where I is defined in Eq. (G1) and satisfies

f ′′(a) = −
√

π

2

ea

a3/2
erfc(

√
a). (C39)

We can then express the second derivative of I1 in terms of f :

∂2
a I1(a,ν) = 1

1 + ν
f ′′
(

a

1 + ν

)
− f ′′(a). (C40)

After two integrations over a we obtain, with yet unknown functions A(ν) and B(ν),

I1(a,ν) = (ν + 1) f

(
a

ν + 1

)
− f (a) + B(ν)a + A(ν). (C41)

The small-a behavior of f can be obtained as

f (a) = 2
√

π
√

a + a ln(a) − 2
√

π

3
a3/2 + a2

3
+ O(a5/2). (C42)

We can compare this to the limit when a goes to 0 of the initial integral to determinate the integration constants A and B. The
limit is computed by taking the limit inside the integral, with the result

lim
a→0

I1(a,ν) = 1 − √
ν + 1 + 1

2 (ν + 1) ln(ν + 1) − ϑ ln(
√

ν + 1 + 1). (C43)
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Finally, we get

I1

(
m2

2

4t2
,
t2

t1

)
=
(

1 + t2

t1

)
f

(
m2

2

4t2

t1

t2 + t1

)
− f

(
m2

2

4t2

)
+ 1 −

√
t2 + t1

t1
+ t2 + t1

t1
ln

(√
t2 + t1

t1

)
− t2

t1
ln

(√
t2 + t1

t1
+ 1

)
.

(C44)

This has been checked numerically with excellent precision.
There are a few terms that cancel between I1 and I2, and expressing asinh in terms of ln and f in terms of I, finally, gives

ZC(m1,t1; m2,t2) = e
− m2

1
4t1 e

− m2
2

4t2

2π (t1t2)3/2

(
1 − m2

1

2t1

)[
(t1 + t2) I

(
m2√
2t2

√
t1

t2 + t1

)
− t1I

(
m2√
2t2

)

− 2t2 + t1

(
m2

2

2t2
− 1

)
ln

(
t1

t2 + t1

)
+ t2 ln

(
t1 + t2

t2

)]
. (C45)

We computed numerically the double Laplace transform of (C45) and checked with a high precision the agreement with (C30),
where the integral over y is evaluated numerically.

APPENDIX D: CORRECTION TO THE THIRD ARCSINE LAW

As stated in the text, the distribution of tmax can be extracted from our path integral, (12), as follows:

P T
H (t) = limx0→0

1

ZN (T ,x0)

∫
m1,m2>0

Z+(m1,t ; x0; m2,T − t). (D1)

The order-0 contribution, (23), gives for the normalization

ZN =
∫ T

0
dt

∫
m1,m2>0

Z+
0 (m1,t ; x0; m2,T − t) + O(ε) = x2

0 + O(ε). (D2)

We recover the well-known arcsine law distribution for standard Brownian motion:

P T
1
2

(t) = limx0→0

∫
m1,m2>0 Z+

0 (m1,t ; x0; m2,T − t)

x2
0

=
∫

m1,m2>0

m1m2e
− m2

1
4t1

− m2
2

4t2

4πt
3/2
1 t

3/2
2

= 1

π
√

t(T − t)
. (D3)

Let us now write every term in the ε expansion: ZN = ZN
(0) + εZN

(1) + O(ε2) and Z+ = Z+
(0) + εZ+

(1) + O(ε2). It is important to
note that these terms slightly differ from those in Eq. (18), where the expansion was done w.r.t. the nonlocal perturbation in the
action. As computed in Eq. (24), the term Z+

0 contains some order-ε correction, contrary to Z+
(0), which is defined as the constant

part of Z+ in its ε expansion.
Using these new notations, we have

P T
H (t) = limx0→0

∫
Z+

(0)

ZN
(0)

[
1 + ε

(∫
Z+

(1)∫
Z+

(0)

− ZN
(1)

ZN
(0)

)]
+ O(ε2) = P T

1
2

(t) limx0→0

[
1 + ε

(∫
Z+

(1)∫
Z+

(0)

− ZN
(1)

ZN
(0)

)]
+ O(ε2), (D4)

where the
∫

symbol implicitly denotes integration over m1 and m2. The normalization ensures that the correction to the probability

δP T (t) = P T
1
2

(t) limx0→0

(∫
Z+

(1)∫
Z+

(0)

− ZN
(1)

ZN
(0)

)
(D5)

does not change the normalization, i.e., its integral over t vanishes.
To compute the order-ε correction to the distribution, (D3), we have to compute the integral over m1 and m2 of Z+

α , as well
as Z+

β and Z+
γ (m1,t1; x0; m2,t2). The last term, computed in Appendix C, was decomposed in four terms [see Eq. (C7)]. The

expressions for these terms are given in Eqs. (C13), (C29), and (C45). Using the identity
∫
z>0 e− z2

2 (z2 − 1) = 0, we find the
simplifications ∫

m1,m2>0
ZA =

∫
m1,m2>0

ZC = 0. (D6)
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Thus, the only contribution of Z+
γ comes from ZB , defined in Eq. (C8):

1

x2
0

∫
m1,m2>0

Z+
γ =

∫
m1,m2>0

ZB(m1,t1; x0; m2,t2) = − 2

π
√

t1t2

(
1 + ln

(
4t1t2

t1 + t2

)
− 2 ln(2x0) + 2γE

)
+ 1

t1
+ 1

t2

− t1 + t2

2π (t1t2)3/2

∫
m1,m2>0

e
− m2

1
4t1

− m2
2

4t2 I
(

z = m1t2 + m2t1√
2t1t2(t1 + t2)

)
. (D7)

We have used the identity
∫∞

0 dze−z2/2I(z) = √
2π . To compute the last integral, we use relation (G3), which in this case gives

t1 + t2

2π (t1t2)3/2

∫
m1,m2>0

e
− m2

1
4t1

− m2
2

4t2 I(z) = − 2

π
√

t1t2

∫
m1,m2>0

(
∂m1 + ∂m2

)2[
e
− m2

1
4t1

− m2
2

4t2 J
(

(m1t2 + m2t1)2

4t1t2(t1 + t2)

)]
. (D8)

Only the cross term of the derivatives (i.e., the term with 2∂m1∂m2 ) is not a total derivative and gives a nonzero contribution:

2

π
√

t1t2

∫
m2>0

e
− m2

2
4t2 ∂m1 J

(
(m2t1 + m1t2)2

4t1t2(t1 + t2)

)∣∣∣∣
m1=0

= 2

πt1
arctan

(√
t2

t1

)
. (D9)

The final result for this correction is

1

x2
0

∫
m1,m2>0

Z+
γ = −2

π
√

t1t2

[
ln

(
4t1t2

t1 + t2

)
− 2 ln(2x0) + 1 + 2γE

]
+ 1

t1
+ 1

t2
− 2

πt1
arctan

(√
t2

t1

)
− 2

πt2
arctan

(√
t1

t2

)
.

(D10)

The contributions to the correction from Z+
α and Z+

β are easily computed from their expressions in terms of propagators given in
the text [cf. Eqs. (28) and (29)], and then using formula (B9),

1

x2
0

∫
m1,m2>0

P +
0 (x0,m1,t1)P +

1 (x0,m2,t2) + (1 ↔ 2) 

x0→0

1

π
√

t1t2

[
6 − 4γE + ln(t1t2) + ln

(
τ 2

x8
0

)]
. (D11)

The last term of order ε comes from the rescaling of the diffusive constant, which was made explicit in Eq. (24):

2[1 + ln(τ )]
(
t1∂t1 + t2∂t2

) 1

x2
0

∫
m1,m2>0

Z+
0 = −2

[1 + ln(τ )]

π
√

t1t2
. (D12)

Summing all these contributions at order ε and taking into account the correction from normalization gives the final result for
the order-ε term of the probability,

δP T (t) = 1

π
√

t1t2

{
− ln(t1t2) +

√
t1

t2

[
π − 2 arctan

(√
t1

t2

)]
+
√

t2

t1

[
π − 2 arctan

(√
t2

t1

)]

+ 2 ln(T ) + 4 − 6γE + ln

(
τ 2

x4
0

)
− ZN

(1)(T ,x0)

x2
0

− 2[1 + ln(τ )]

}
, (D13)

with t1 = t and t2 = T − t . As expected, the dependence in
τ vanishes at the end of the computation, and the order ε

of the normalization factor ZN
(1) is fixed by the condition∫ T

0 dt δP T (t) = 0, which gives

ZN
(1) = x2

0 [8 ln(2) + 2 − 6γE − 4 ln(x0)]. (D14)

Equivalently, the constant term, i.e., the second line of
Eq. (D13) becomes −8 ln(2). The interpretation of this result
as well as a comparison to numerical simulations are presented
in the text.

APPENDIX E: DISTRIBUTION OF
THE MAXIMUM OF THE fBm

Similarly to the distribution of tmax, the distribution of m

can be computed from the path integral Z+(m1,t1,x0,m2,t2).
This is done by taking the limit of small x0, the integral over

m2, and the integral over t1 at t1 + t2 = T fixed:

P T
H (m) = lim

x0→0

1

ZN (T ,x0)

∫ m2

0
dm2

×
∫ T

0
dt Z+(m,t,x0,m2,T − t). (E1)

It is useful to note that the integration over t = t1 at fixed
T = t1 + t2 can be replaced by taking the Laplace transform
of Z+ at equal arguments (s1 = s2 = s) and then performing
the inverse Laplace transform s → T . The normalization
ZN (T ,x0) is the same as the one for the distribution of P T

H (t);
expanding in ε thus gives the same structure as (D4), with the∫

symbol now being the integrals over m2 > 0 and t1 ∈ [0,T ].
We start with the contribution of Zγ . As before, the integral

over m2 of ZA vanishes, so this term does not contribute. The
correction from ZB can be computed starting with Eq. (C21),
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taken at equal Laplace variables (i.e., s1 = s2 = s),

∫
m2

∫
t

ZB = 4
e−m

√
s

√
s

[ln(x0) − 1 + γE + 2 ln(2) + ln(
√

s)]. (E2)

To take the inverse Laplace transform, we use Eq. (G8). This gives

∫
m2

∫
t

ZB = 4
e− m2

4T√
πT

[
J
(

m2

4T

)
+ ln

(
4x0√

T

)
+ γE

2
− 1

]
. (E3)

For the contribution of ZC , it is easier to compute the inverse Laplace transform of Eq. (C30) (s1 = s2 = s → T ) before
integrating over y. This gives

∫
m2

∫
t

ZC = −2
e− m2

4T√
πT

∫ ∞

0

dy

y2

[
e− m2

4T
y(
√

1 + y − 1 − y) +
√

1 + y − 1
]
. (E4)

Let us define

IC(a) :=
∫ ∞

0

du

u2
(e−au(

√
1 + u − 1 − u) + √

1 + u − 1). (E5)

After deriving twice w.r.t. a, then integrating twice, and fixing the integration constants, we get

IC(a) = γE + 1 + ln(4) + a[3 − γE − ln(4)] − a2

3
2F2

(
1,1;

5

2
,3; a

)
+ π

2
(2a − 1)erfi(

√
a) − ea

√
πa + (1 − a) ln(a). (E6)

We can express this in terms of the special function I:

IC

(
z2

2

)
= γE + 2 + ln(4) − z2

2
[γE + ln(4)] − 1

2
I(z) +

(
1 − z2

2

)
ln

(
z2

2

)
. (E7)

This has been checked numerically. The final result for this correction is (with z := m/
√

2T )

∫
m2

∫
t

ZC = e− z2

2√
πT

[I(z) + (z2 − 2)(γE + ln(2z2)) − 4]. (E8)

The last corrections are x−2
0

∫
m2

∫
t
Z+

α and x−2
0

∫
m2

∫
t
Z+

β . The first one is easy to compute using the results for the correction to
the propagator recalled in Eq. (B9) and the inverse Laplace transform (G8):

1

x2
0

∫ T

0
dt

∫ ∞

0
dm2 P +

0 (x0,m,t)P +
1 (x0,m2,T − t) 


x0→0
L−1

s→T

[
e−m

√
s

√
s

(
3 − ln(4sτ ) − 3γE + ln

(
τ 2

x4
0

))]



x0→0

e− m2

4T√
πT

[
−2J

(
m2

4T

)
+ ln

(
T

τ

)
+ 2 − 2γE + ln

(
τ 2

x4
0

)]
. (E9)

For the correction from Z+
β , we start with the Laplace expression of the correction to the propagator, (B5), where the integration

over m2 simplifies the last slice to x0√
s
. Then the needed inverse Laplace transform is

1

x2
0

∫ T

0
dt

∫ ∞

0
dm2 P +

1 (x0,m,t)P +
0 (x0,m2,T − t) 


x0→0

1

x0
L−1

s→T

[
P +

1 (x0,m,s)√
s

]



x0→0

e− m2

4T√
πT

[
−2J

(
m2

4T

)
+ m2

2T
ln

(
T

τ

)
+ 2 − 2γE + ln

(
τ 2

x4
0

)]
. (E10)

The final result for this is obtained using Eqs. (G8)–(G11).
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We now give a summary of all corrections, in the limit of x0 → 0:

1

x2
0

∫
t

∫
m2

P +
1 (x0,m,t)P +

0 (x0m2,T − t) 

x0→0

e− m2

4T√
πT

[
−2J

(
m2

4T

)
+ m2

2T
ln

(
T

τ

)
+ 2 − 2γE + ln

(
τ 2

x4
0

)]
,

1

x2
0

∫
t

∫
m2

P +
0 (x0,m,t)P +

1 (x0,m2,T − t) 

x0→0

e− m2

4T√
πT

[
−2J

(
m2

4T

)
+ ln

(
T

τ

)
+ 2 − 2γE + ln

(
τ 2

x4
0

)]
,

∫
t

∫
m2

ZC(m,t ; m2,T − t) 

x0→0

e− m2

4T√
πT

[
I
(

m√
2T

)
+
(

m2

2T
− 2

)(
γE + ln

(
m2

T

))
− 4

]
,

∫
t

∫
m2

ZB(m,t ; m2,T − t) 

x0→0

e− m2

4T√
πT

[
4J
(

m2

4T

)
+ 4 ln

(
4x0√

T

)
+ 2γE − 4

]
,

4(1 + ln(τ ))

x2
0

T ∂T

∫
t

∫
m2

Z+
0 


x0→0

e− m2

4T√
πT

[
1 + ln(τ )

(
m2

2T
− 1

)]
.

(E11)

The last line is the correction to the diffusion constant, i.e., the order-ε term appearing in Eq. (24). The final result at order ε is∫
m2

∫
t

Z+ = e− m2

4T√
πT

{
1 + ε

[
I
(

m√
2T

)
+
(

m2

2T
− 2

)(
γE + ln

(
m2

T

))
+
(

m2

2T
− 1

)
ln(T ) + cst

]}
+ O(ε2). (E12)

To better interpret the different terms, we recast the corrections, especially those as m2

2T
ln(T ) and ln(T ), into an exponential form:

e− m2

4T√
πT

[
1 + ε

(
m2

2T
− 1

)
ln(T )

]
+ O(ε2) = e− m2

4T√
πT

eε m2

2T
ln(T )T −ε + O(ε2) = e

− m2

4T 1+2ε

√
πT 1/2+ε

+ O(ε2). (E13)

This part of the correction gives the correct dimension to
the variables in the order-0 result,

z = m√
2t

→ y = m√
2tH

= m√〈
x2

t

〉 . (E14)

The other parts of the correction, which are a function of
z = m√

2t
and which we call G(z), give a nontrivial change to

the scaling function of the distribution:

P T
H (m) = e

− m2

4T 2H

√
πT H

e
ε[G(z= m√

2t
)+cst] + O(ε2)

= e− y2

2√
πT H

eε[G(y)+cst] + O(ε2). (E15)

We changed the variable in G from z to y, as it does not change
the result at order ε and since it is more consistent in terms of
dimensions. The function G is given by

G(y) = I(y) + (y2 − 2)[ln(2y2) + γE]. (E16)

The function I is regular at y = 0, and its asymptotic behavior
is given in Eq. (G5); this gives the asymptotics for G as

G(y) ∼
{−2 ln(y) for y → ∞,

−4 ln(y) for y → 0.
(E17)

Since these asymptotics are logarithmic, new power laws are
obtained for the density distribution, at botht m → 0 and m →
∞, which multiply the Gaussian term, with

P T
1
2 +ε

(m) × e
m2

4T 1+2ε ∼
{
m−4ε for m → 0,

m−2ε for m → ∞.
(E18)

The constant term in Eq. (E12) is fixed by normalization.
Instead of computing it at order ε, we can also evaluate it
numerically such that (E15) is exactly normalized, and not
only at order ε. This is appropriate for numerical checks and
the procedure we adopted for the latter.

APPENDIX F: SURVIVAL DISTRIBUTION

To compute the survival probability up to time T of an fBm
starting in m, we need to take the primitive function w.r.t. m

of (E12). We can deal with the terms involving I using (G3);
the difficult part comes from∫ y

0
dm e− m2

2 (2 − m2) ln(m). (F1)

To deal with this integration, we consider e− m2

2 ma , compute
the primitive function w.r.t. m, and then take the derivative
w.r.t. a, at a = 0 and a = 2.

The final result can be written as

S(y) = erf

(
y√
2

)
+ εM(y) + O(ε2). (F2)

This is at leading order in ε equivalent to the exponentiated
form given in the text, (63), with the function M given by
Eq. (64).

APPENDIX G: SPECIAL FUNCTIONS AND SOME
INVERSE LAPLACE TRANSFORMS

In our computations there are two combinations of special
functions which appear frequently, and which we denote I and
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J . Their expressions in terms of hypergeometric functions and
error functions are

I(z) = z4

6
2F2

(
1,1;

5

2
,3;

z2

2

)
+ π (1 − z2)erfi

(
z√
2

)

− 3z2 +
√

2πe
z2

2 z + 2, (G1)

J (x) = π

2
erfi(

√
x) − x 2F2

(
1,1;

3

2
,2; x

)
. (G2)

These functions are linked by

∂2
z

[
e− z2

2 J
(

z2

2

)]
= −1

2
e− z2

2 I(z). (G3)

It is useful to give their asymptotics, as their natural definition
in terms of a series does not allow for an efficient evaluation
at large arguments:

J (x) 

x→∞

1

2
[ln(4x) + γE] + 1

4x
− 3

16x2
+ 5

16x3

− 105

128x4
+ O

(
1

x5

)
, (G4)

I(z) 

z→∞ −z2[ln(2z2) + γE] + ln(2z2) + γE + 3

+ 1

2z2
− 1

2z4
+ O

(
1

z5

)
. (G5)

These functions appear in the inverse Laplace transforms
involving ln(x) or Ei(x) functions. We give here the main
nontrivial formulas used to deal with Laplace inversions:

L−1
s2→t2

◦ L−1
s1→t1

[e−m1
√

s1−m2
√

s2 ln(
√

s1 + √
s2)] = ∂m1∂m2

⎧⎨
⎩e

− m2
2

4t2
− m2

1
4t1

2π
√

t1t2

[
2J
(

(m2t1 + m1t2)2

4t1t2(t1 + t2)

)
+ ln

(
1

4t1
+ 1

4t2

)
− γE

]⎫⎬
⎭, (G6)

L−1
s2→t2

◦ L−1
s1→t1

[e−m1
√

s1−m2
√

s2 ln(
√

s1)] = ∂m1∂m2

⎧⎨
⎩e

− m2
2

4t2
− m2

1
4t1

2π
√

t1t2

[
2J
(

m2
1

4t1

)
− ln(4t1) − γE

]⎫⎬
⎭, (G7)

L−1
s→t

[
e−m

√
s

m
√

s
ln(m2s)

]
= e− m2

4t

m
√

πt

[
2J
(

m2

4t

)
+ ln

(
m2

4t

)
− γE

]
, (G8)

L−1
s→t [m

√
se−m

√
s ln(m2s)] = me− m2

4t

2
√

πt3/2

{
−I
(

m√
2t

)
+
(

m2

2t
− 1

)[
ln

(
m2

4t

)
− γE

]}
, (G9)

L−1
s→t

[
em

√
s

m
√

s
Ei(−2m

√
s)

]
= e− m2

4t

2m
√

πt

[
−2J

(
m2

4t

)
+ ln

(
m2

t

)
+ γE

]
, (G10)

L−1
s→t [e

m
√

sEi(−2m
√

s)] = me− m2

4t

4
√

πt3/2

[
2J
(

m2

4t

)
− ln

(
m2

t

)
− γE − 2

√
πt

m
e

m2

4t erfc

(
m

2
√

t

)]
. (G11)

To derive Eq. (G6), we start with an integral representation of the logarithm:

ln(
√

s1 + √
s2) =

∫ ∞

0

dα

α
(e−α − e−α(

√
s1+√

s2)). (G12)

We now compute the inverse Laplace transform of this integral representation, with the exponential prefactor

L−1
s2→t2

◦ L−1
s1→t1

[e−m1
√

s1−m2
√

s2 (e−α − e−α(
√

s1+√
s2))]

= m1m2e
− m2

1
4t1

− m2
2

4t2

4π (t1t2)3/2

[
e−α −

(
1 + α

m2

)(
1 + α

m2

)
e
−α2( 1

4t1
+ 1

4t2
)−α( m1

2t1
+ m2

2t2
)
]
. (G13)

To simplify this expression, it is useful to take the primitive w.r.t. m1 and m2:

∫
m1,m2

L−1
s2→t2,s1→t1

[e−m1
√

s1−m2
√

s2 (e−α − e−α(
√

s1+√
s2))] = e

− m2
2

4t2
− m2

1
4t1

π
√

t1t2

e−α − e
−α2( 1

4t1
+ 1

4t2
)−α( m1

2t1
+ m2

2t2
)

α
. (G14)

We still have to deal with the integration over α, which is now an integral of the form∫
α>0

e−α − e−α2A−αB

α
. (G15)
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We can compute this integral by deriving w.r.t. A, integrating over α, and then integrating over A; alternatively, we can use the
same strategy with B. The two results are∫

α>0

e−α − e−α2A−αB

α
= 1

2

(
π erfi

(
B

2
√

A

)
+ ln(A) − 2 ln(B) − γE

)
− B2

2F2
(
1,1; 3

2 ,2; B2

4A

)
4A

+ CB, (G16)

∫
α>0

e−α − e−α2A−αB

α
= π

2
erfi

(
B

2
√

A

)
− B2

2F2
(
1,1; 3

2 ,2; B2

4A

)
4A

+ CA. (G17)

Thus

CA − CB = 1
2 [ln(A) − 2 ln(B) − γE], (G18)

and the case A = 0, B = 1 allows us to conclude that CA = 1
2 ln(A) − γE

2 and CB = ln(B). The final result for the integral is

∫
α>0

e−α − e−α2A−αB

α
= π

2
erfi

(
B

2
√

A

)
− B2

2F2
(
1,1; 3

2 ,2; B2

4A

)
4A

+ 1

2
ln(A) − γE

2

= J
(

B2

4A

)
+ 1

2
ln(A) − γE

2
. (G19)

We checked this result numerically with a very good precision.
Applying this formula to the integral over α and specifying A = 1

4t1
+ 1

4t2
and B = m1

2t1
+ m2

2t2
, we obtain Eq. (G6). The same

computation, with A = 1
4t1

and B = m1
2t1

, gives Eq. (G7).
To derive Eq. (G10) (with m = 1, for simplicity), we start with the integral representation of the exponential integral function:

e
√

sEi(−2
√

s) = −
∫ ∞

0

e−√
s−x

√
s
(
2
√

s + x
) dx = −

∫ ∞

0

e−√
s(2y+1)

y + 1
dy. (G20)

Doing the inverse Laplace transform inside the integral leads to

L−1
s→t [e

√
sEi(−2

√
s)] = −

∫ ∞

0

(2y + 1)e− (2y+1)2

4t

2
√

πt3/2(y + 1)
dy = − e− 1

4t√
πt3/2

∫ ∞

0

te−u

√
4tu + 1 + 1

du

=
e− 1

4t

[
6t
(
πerfi

(
1

2
√

t

)+ ln(t) − γ + 2
)− 2F2

(
1,1; 2, 5

2 ; 1
4t

)]
24

√
πt5/2

− 1

2t
. (G21)

To express this result in terms of our special function J , we can use the following relation between hypergeometric functions:

2F2

(
1,1; 2,

5

2
; a

)
= 3 2F2

(
1,1;

3

2
,2; a

)
− 3

[
ea
√

π
4a

erf(
√

a) − 1
]

a
. (G22)

This can be checked by Taylor expansion. With that, and the definition of J in Eq. (G2), we obtain the announced result, (G11).
Equation (G10) is obtained from there by taking one derivative.

APPENDIX H: CHECK OF THE COVARIANCE FUNCTION

As a check of the action, we computed the two-point correlation function (i.e., the covariance function). The needed path
integral is

〈
Xt1Xt2

〉 = ∫
x

∫ XT =x

X0=0
D[X]Xt1Xt2e

−S[X]. (H1)

At first order in ε, we can expand this path integral using Eq. (14) :

〈
Xt1Xt2

〉 = 〈Xt1Xt2

〉
0 + ε

2

∫ t−τ

0
dτ1

∫ t

τ1+τ

dτ2

〈
Xt1Xt2Ẋτ1Ẋτ2

〉
0

τ2 − τ1
+ O(ε2). (H2)

Here, averages 〈·〉0 are performed with the action S0[X] given in Eq. (20), i.e., the action of standard Brownian motion with
diffusive constant Dε,τ = 1 + 2ε[1 + ln(τ )] + O(ε2). This action is quadratic, and using Wick contractions allows us to write〈

Xt1Xt2Ẋτ1Ẋτ2

〉
0 = 4(min(t1,t2)δ(τ1 − τ2) + θ (t1 − τ1)θ (t2 − τ2) + θ (t1 − τ2)θ (t2 − τ1)) + O(ε). (H3)

In this equation, we used only the zeroth order for the diffusive constant [Dε,τ = 1 + O(ε)]; the first term does not contribute
since τ1 and τ2 do not coincide due to the time regularization.
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The last two terms require us to compute the integrals:∫ min(t1,t2−τ )

0
dτ1

∫ t2

τ1+τ

dτ2
1

τ2 − τ1
+
∫ min(t2,t1−τ )

0
dτ1

∫ t1

τ1+τ

dτ2
1

τ2 − τ1

= t1 ln(t1) + t2 ln(t2) − |t1 − t2| ln |t1 − t2| − 2 min(t1,t2)(ln(τ ) + 1). (H4)

We now sum all contributions to order ε, the Brownian result with the rescaled diffusive constant being 〈Xt1Xt2〉0 = 2Dε,τ

min(t1,t2). This gives〈
Xt1Xt2

〉 = 2Dε,τ min(t1,t2) + 2ε (t1 ln(t1) + t2 ln(t2) − |t1 − t2| ln |t1 − t2|) − 4ε min(t1,t2)(ln(τ ) + 1) + O(ε2)

= 2 min(t1,t2) + 2ε (t1 ln(t1) + t2 ln(t2) − |t1 − t2| ln |t1 − t2|) + O(ε2)

= t1+2ε
1 + t1+2ε

2 − |t1 − t2|1+2ε + O(ε2). (H5)

The τ dependence of the diffusive constant and of the first correction to the action cancel, and we recover the fBm correlation
function at first order in ε. We also see that the correction to the diffusive constant is equivalent to setting ln(τ ) = −1.
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