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Strange scaling and relaxation of finite-size fluctuation in thermal equilibrium

Yoshiyuki Y. Yamaguchi*

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, 606-8501 Kyoto, Japan
(Received 10 March 2016; published 22 July 2016)

We numerically exhibit two strange phenomena of finite-size fluctuation in thermal equilibrium of a
paradigmatic long-range interacting system having a second-order phase transition. One is a nonclassical
finite-size scaling at the critical point, which differs from the prediction by statistical mechanics. With the
aid of this strange scaling, the scaling theory for infinite-range models conjectures the nonclassical values of
critical exponents for the correlation length. The other is relaxation of the fluctuation strength from one level to
another in spite of being in thermal equilibrium. A scenario is proposed to explain these phenomena from the
viewpoint of the Casimir invariants and their nonexactness in finite-size systems, where the Casimir invariants are
conserved in the Vlasov dynamics describing the long-range interacting systems in the limit of large population.
This scenario suggests appearance of the reported phenomena in a wide class of isolated long-range interacting
systems.
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I. INTRODUCTION

Studying fluctuation is one of the central issues in large
systems. Physical importance of fluctuation can be found
in Johnson-Nyquist noise [1,2], fluctuation-induced tunnel-
ing [3,4], and the fluctuation theorem [5–7]. The fluctuation
is also investigated in mathematical models of XY rotors
on networks [8] and of coupled oscillators [9]. In this
article we concentrate on finite-size fluctuation in isolated
Hamiltonian systems having long-range interaction, which we
call long-range systems, and include self-gravitating systems,
plasmas, two-dimensional fluids, and so on (see Refs. [10–12],
for instance). We numerically reveal a strange scaling and
relaxation of finite-size fluctuation in thermal equilibrium of a
long-range system. We stress that the latter relaxation means
that the strength of fluctuation is not constant but temporally
grows from one level to another in spite of being in thermal
equilibrium. In order to describe a possible mechanism, we
start from sketching the relaxation process in long-range
systems.

A remarkable dynamics in long-range systems is the
appearance of the so-called quasistationary state (QSS), whose
lifetime diverges as the population of the system increases
[13–15]. The QSSs are widely observed in nature: Galax-
ies [16] and the great red spot of Jupiter [17] are considered
examples of QSSs. Temporal evolution of a long-range system
is governed by the Vlasov equation, or the collisionless
Boltzmann equation, in the limit of large population [18–20],
and QSSs are interpreted as stable stationary solutions to the
Vlasov equation [14,15] which are possibly out of equilibrium.
The appearance of QSSs is explained by the existence of the
Casimir invariants, which are infinite numbers of invariants of
the Vlasov dynamics. We note that the Casimir invariants are
written in the form

∫
c(f (q,p))dqdp, with any differentiable

function c and the one-particle distribution function f (q,p) on
the one-particle phase space of position q and momentum p.
Finite-size effects play the role of collision, and the collision
term drives the system from a QSS to thermal equilibrium
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by breaking the Casimir constraints. We remark that N -body
systems are exactly described by a Vlasov-type equation, the
Klimontovich equation [10], but the Casimir-type functionals
lose the role of invariants. Indeed, in the Klimontovich
equation, the distribution function f (q,p) consists of the sum
of Dirac’s δ functions, and, for instance,

∫
[f (q,p)]2dqdp

diverges due to squares of the δ functions.
QSSs are observed even applying an external force to

the system. The external force drives the system from an
initial state, for instance a thermal equilibrium state, to a
QSS before going towards a forced thermal equilibrium state.
For the system having a second-order phase transition, the
long lifetime of QSSs makes it possible to define the critical
exponents for the response in QSSs, γ± and δ, around and at
the critical point, respectively. Hereafter, the subscript + (−)
indicates that the variable is defined in the disordered (ordered)
phase. Linear [21,22] and nonlinear [23–25] response theories
based on the Vlasov description reveal that γ+ = 1 but γ− =
1/4 [26] and δ = 3/2 [23,24] in the Hamiltonian mean-field
(HMF) model [27,28], while equilibrium statistical mechanics
gives γ± = 1 and δ = 3. The former nonclassical critical
exponents are again explained by the Casimir constraints,
which suppress the response.

We note that the strange critical exponents for the response
are obtained not in the forced thermal equilibrium but in
QSSs. However, if the fluctuation-response relation holds,
then anomalous fluctuation appears in nonforced thermal
equilibrium. Similarly, relaxation of the strength of finite-size
fluctuation can be expected since the nonclassical values of γ−
and δ come from the Casimir constraints, but the finite-size
effects slowly release the system from the constraints as the
sketched relaxation process.

To examine the above scenario, we perform direct N -body
simulations in the HMF model. We remark that validity of the
fluctuation-response relation is not obvious since the response
theories [21–25] are based on the Vlasov dynamics in which
the limit of large population is taken. We therefore first confirm
the fluctuation-response relation for off-critical points, and
report the strange scaling at the critical point corresponding
to the nonclassical critical exponent δ = 3/2. After that, we
show that the strength of finite-size fluctuation relaxes from
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one level to another in thermal equilibrium. We underline
that, since the scenario is based on the existence of the
Casimir invariants, the reported phenomena are not limited
in the HMF model, but can be expected in generic long-range
systems. In addition, we discuss that the scaling theory [29–31]
conjectures nonclassical values of critical exponents for the
correlation length with the aid of the strange scaling.

This article is constructed as follows. We introduce the
HMF model in Sec. II with a short review of results by
statistical mechanics. In Sec. III the two main phenomena
are reported by performing direct N -body simulations in the
HMF model, and a scenario based on the Casimir invariants
is proposed to understand the phenomena. We consider the
scaling theory in Sec. IV, which conjectures the critical
exponents for correlation length. The final section (Sec. V)
is devoted to a summary and discussions.

II. THE MODEL

The HMF model is a paradigmatic long-range system and
is expressed by the N -body Hamiltonian

HN =
N∑

j=1

p2
j

2
+ 1

2N

N∑
j,k=1

(1 − mj · mk) − h ·
N∑

j=1

mj , (1)

where mj = (cos qj , sin qj ) is a XY spin and h = (hx,hy) is
the external force. The particles are confined on the unit circle,
and qj ∈ (−π,π ] and pj ∈ R are the phase of j th particle and
the conjugate momentum, respectively. The factor 1/N in the
potential term is added to ensure extensivity of energy. The
magnetization (order parameter) vector of the HMF model is
defined by the arithmetic mean of mj as

M = (Mx,My) = 1

N

N∑
j=1

mj . (2)

The HMF model has the second-order phase transition between
the disordered phase (T > Tc) and the ordered phase (T < Tc)
with the critical temperature Tc = 1/2 [28].

We denote the canonical average of M by 〈M〉 and define
the isothermal zero-field susceptibility tensor χT = (χT

ab) as

χT
ab = ∂〈Ma〉

∂hb

∣∣∣∣
h=0

, (a,b ∈ {x,y}). (3)

It is straightforward to prove the relation

trχT = N

T
(〈M2〉 − 〈M〉2) (4)

for h = 0 from the explicit expression of 〈M〉 and the
definition of χT. We note 〈M〉 = 0 from symmetry of the
system. Further derivations give〈

M2〉 = O
(
N−1/2) at T = Tc. (5)

See Refs. [31,32], for instance.
The magnetization vector fluctuates around M = 0 in the

disordered phase, and there is no special direction on the two-
dimensional M plane. On the other hand, in the ordered phase,
the Goldstone mode appears, and the zero-field susceptibility
diverges for this direction [22,33]. This fact suggests to
observe the amplitude of magnetization only. Taking the above

discussions into account, we compute the finite-size fluctuation
separately in the ordered and the disordered phases by the
quantity

VM (N ) =
{〈M2〉 (T � Tc),
〈‖M‖2〉 − 〈‖M‖〉2 (T < Tc).

(6)

The fluctuation-response relation is written in the form

NVM (N )

T
= εχT

xx, ε =
{

2 (T � Tc),
1 (T < Tc), (7)

where the factor ε comes from the dimensionality of the
observables, M and ‖M‖, and the rotational symmetry for
T � Tc.

In the next section we perform numerical simulations
without thermal noise (microcanonical setting), and hence we
also introduce the isoentropic zero-field susceptibility tensor
χE for comparison. It is derived by considering the adiabatic
process and the conservation of energy (see the Appendix
for the derivation). In general, the existence of invariants
suppresses the susceptibility and the isoentropic susceptibility
satisfies the inequality χE

xx � χT
xx accordingly [34,35].

III. NUMERICAL RESULTS

We numerically integrate the canonical equations of motion
associated with the Hamiltonian (1) by using the fourth-order
symplectic integrator [36] with the fixed time step �t = 0.1.
We introduced the Hamiltonian (1) with the external field h, but
it is added for defining the susceptibility. In all the simulations
reported hereafter, the external field is set as zero, h = 0,
although we mention the external field from the viewpoint of
a response theory.

The initial values of N pairs of (qj ,pj ) are randomly picked
up from the equilibrium one-particle distribution function

feq(q,p) = e−H (q,p)/T /

∫ π

−π

dq

∫ ∞

−∞
dpe−H (q,p)/T , (8)

where the one-particle Hamiltonian is

H (q,p) = p2/2 − M cos q (9)

and M = ‖M‖ is the spontaneous magnetization in thermal
equilibrium satisfying the self-consistent equation

M = I1(M/T )

I0(M/T )
, (10)

with In the modified Bessel functions of the first kind. For
T � Tc, this equation has the unique solution M = 0, but for
T < Tc, there are the solutions of M = 0 and M > 0. We adopt
the latter by thermal stability.

We remark again that temperature T , appearing in Eqs. (8)
and (10), just parametrizes the family of feq. The simulations
are performed following the canonical equations of motion as-
sociated with the Hamiltonian (1) under h = 0, and no thermal
noise is applied. We also remark that the total momentum is
conserved under h = 0 and is zero in averages. However, the
zero total momentum does not prevent magnetization M from
rotating, since the center of mass of qj is defined on R, but
the magnetization is defined on the unit circle. For T � Tc, the
magnetization M actually fluctuates on the two-dimensional
plane as defined in Eq. (6).
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We compute M(t) numerically and replace the canon-
ical averages in VM (N ) [Eq. (6)], with the time averages
defined by

〈M2〉t = 1

tav

∫ tav+tini

tini

M2(t)dt, (11)

for instance. We further take the average of VM (N ) over
100 realizations of initial states, but denote it by VM (N )
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FIG. 1. Comparison between the finite-size fluctuation NVM/T

(points) and the zero-field susceptibility εχV
xx obtained in the Vlasov

dynamics, whose level is reported by the black solid lines. The
dot-dashed gray and the dashed light-blue lines in the ordered phase
(T < Tc = 1/2) are isothermal χT

xx and isoentropic χE
xx zero-field

susceptibilities [26], respectively, while they coincide with the Vlasov
one in the disordered phase. Points are averages over 100 realizations.
Averaging time tav for one realization is tav = 100, and tini = 0.
N = 102 (red triangles), 103 (blue diamonds), 104 (magenta inverse
triangles), and 105 (orange circles). (a) VM is defined by Eq. (6).
(Inset) Double-logarithmic graph in the ordered phase with the
horizontal axis of the reduced temperature τ . Slopes of the two
green dotted guide lines are −1 and −1/4 from top to bottom, where
the former corresponds to γ− = 1 for χT

xx and χE
xx and the latter

corresponds to γ− = 1/4 for χV
xx . (b) VM is defined by the second line

of Eq. (6) for both the ordered and the disordered phases with ε = 1.

for simplicity. The initial time tini will be used to examine
whether the prepared initial states are in thermal equilibrium,
and tini = 0 if no special comment is given.

The finite-size fluctuation NVM/T is compared with the
zero-field susceptibility χV

xx obtained theoretically [22] from
the Vlasov dynamics in Fig. 1(a). They are in good agreement
in the ordered phase and for large T in the disordered phase.
Even around the critical point of the disordered phase, we can
find a tendency of convergence of the fluctuation to the Vlasov
susceptibility level as N increases. Moreover, for the reduced
temperature τ = |T − Tc|/Tc, the scaling of NVM/T ∝ τ−1/4

is found in the ordered phase corresponding to the nonclassical
exponent γ− = 1/4 defined by χV

xx ∝ τ−γ− , while the classical
exponent is γ− = 1 for both χT

xx and χE
xx [see the inset of

Fig. 1(a)]. We recall that existence of invariants suppresses the
susceptibility, and the relation χT

xx � χE
xx � χV

xx is reasonable.
Thus, we conclude that the fluctuation-response relation holds
even under the Casimir constraints and the finite-size effects.
The validity of the definition of VM [Eq. (6)] is confirmed by
testing the second line of (6) for the disordered phase with
setting ε = 1 in the fluctuation-response relation (7). If we
observe the amplitude of M only, we miss the fluctuation-
response relation in the disordered phase T > Tc, as shown in
Fig. 1(b).

The susceptibility diverges at the critical point due to
nonlinearity of the response, and the nonlinearity is indicated
by the critical exponent δ. Denoting the magnetization under
the external field h = ‖h‖ by Mh, the critical exponent is
defined by Mh ∝ h1/δ . The classical value is δ = 3, but in the
Vlasov dynamics, δ = 3/2 is obtained by a nonlinear response
theory [23]. The theory derives the self-consistent equation for
Mh, which induces the Landau-like pseudofree energy per one
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FIG. 2. Finite-size fluctuation VM at the critical point T = Tc.
Points are averages over 100 realizations. Averaging times tav for one
realization are 102 (red squares), 103 (blue triangles), 104 (magenta
circles), and 105 (black inverse triangles). tini = 0. The solid lines are
computed by the least-mean square method in the displayed intervals,
and their slopes are −0.779, −0.770, and −0.779 from bottom to top.
The upper and the lower black dashed lines have the slopes −1/2 and
−1, respectively, for comparison. (Inset) The vertical axis is VMN 4/5

to enhance difference among tav.
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FIG. 3. Fluctuation NVM/T as a function of tav. tini = 0.
(a) T = 0.45; (b) T = 0.40. In both panels N = 100 (red trian-
gles) and 1000 (blue diamonds). The black and the light-blue
horizontal lines represent levels of the Vlasov and the isoentropic
susceptibilities.

particle,

g(Mh) = a(T − Tc)(Mh + h)2 + b(Mh + h)δ+1 − hMh,

(12)

where a and b are assumed to be positive constants. In this
framework a realized Mh satisfies the equation dg/dMh = 0.
We remark that the expression (12) is obtained by expanding
the self-consistent equation with respect to the small external
force h. The expansion is performed in the homogeneous
disordered phase [23], and the validity of (12) is guaranteed
in this phase accordingly. To make a relation between the
critical exponent δ and the finite-size fluctuation at the critical
point, we assume that the fluctuation level is determined by the
equation Ng(M) = � with a certain value �. This assumption
implies the scaling of VM (N ) ∝ N−2/(δ+1) at the critical point.
The classical value δ = 3 gives the classical scaling of (5), but
the nonclassical value δ = 3/2 in the Vlasov dynamics gives
the scaling of VM (N ) ∝ N−4/5. This prediction is confirmed
in Fig. 2 and holds even for a rather small system as N � 100
with a short time averaging time tav = 100. We remark that
the scaling tends to approach to the classical one, N−1/2, as tav

increases.
Up to here we have shown that the finite-size fluctuation

relates to the response. Moreover, as found in Fig. 1, there is a
gap between the Vlasov and the isoentropic susceptibilities in
the ordered phase. Thus, one may expect that the fluctuation,
NVM (N )/T , temporally evolves from the former level to the
latter. This expectation is confirmed in Fig. 3 for T = 0.45
and 0.40 by varying the averaging time tav. The initial increase
for tav � 10 is a natural consequence from the definition
of VM as the time average, and hence we omit it. The
fluctuation is, for N = 1000, once trapped at the Vlasov
level around tav = 10–1000 and goes towards the isoentropic
level.

Exactly saying, the distribution function (8) represents
thermal equilibrium in the limit N → ∞, but the simulations
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FIG. 4. The same with Fig. 3, but tini = 105.

were performed for finite N . If the prepared initial states are not
thermal equilibrium states but nearby nonequilibrium QSSs,
then the plateaus in Fig. 3 may just correspond to the trapping
in QSSs as the relaxation process sketched in Sec. I. To
exclude this possibility, we change the initial time, tini in (11),
from 0 to 105, where 105 is long enough to reach thermal
equilibrium even if the prepared states are the nearby QSSs
(see Fig. 3). Temporal evolution with tini = 105 is reported
in Fig. 4 and is qualitatively the same as in Fig. 3 (tini = 0).
We therefore conclude that the observed temporal evolution of
fluctuation is not the relaxation process from nonequilibrium
QSS to thermal equilibrium, but is realized in thermal
equilibrium.

A qualitative change of dynamics between a short- and a
long-time intervals is also captured in Fig. 5 by computing
power spectra of M2(t) with N = 1000. The power spectra,
each of which is the average over 100 realizations, are divided
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FIG. 5. Power spectra of M2(t) for T = 0.40 (red solid line),
0.45 (blue dashed line), 0.49 (magenta dotted line), and 0.50 (black
dot-dashed line) with N = 1000. Power spectra for T > Tc are also
computed up to T = 0.60 (not shown), and they are similar with for
T = 0.50 except for slight changes of slopes in a small f region.
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into the short-time interval corresponding to f � 0.01 and the
long-time one having algebraic dampings as f −a with a from
1.0 to 1.4.

Putting all together, we can now make a scenario of the
finite-size fluctuation in the long-range systems. In the limit
N → ∞, the infinite Casimir invariants divide the phase space
into their level sets, and any initial state belongs to one
of them and cannot escape from the level set. When N is
finite, invariance of the Casimir invariants is no longer exact
but approximate. Nevertheless, in the short-time interval, the
system fluctuates along the pseudolevel set, which induces
the suppressed fluctuation, as VM ∼ N−4/5 at the critical
point. As time goes on, the system is released from the
pseudoconstraints, and the classical scaling VM ∼ N−1/2

recovers in the long-time interval. Temporal evolution of
the finite-size fluctuation can be understood as the releasing
process from the iso-Casimir contour. In other words, even
in thermal equilibrium, the long-range systems have a kind
of relaxation process from constrained states (corresponding
to QSSs in thermal equilibrium) to unconstrained states. An
important remark is that this process is not special: Any
initial equilibrium states must evolve under the pseudo- but
unavoidable Casimir constraints.

IV. SCALING THEORY

We further investigate the finite-size fluctuation from the
viewpoint of the scaling theory [29]. One hypothesis of the
scaling theory is that the finite-size scalings are controlled
by the dimensionless quantity ξ/L, where ξ and L are the
correlation length and the system length, respectively. The
infinite-range models, including the HMF model, have no con-
cept of both lengths, but a scaling theory has been proposed for
such models by replacing ξ/L with Nc/N [30,31], where Nc

is the coherent number. It is supposed that Nc ∝ ξdu ∝ τ−duν

with du the upper critical dimensionality and ν defined by ξ ∝
τ−ν for the mean-field universality class. In other words, Nc

corresponds to the number of particles within the correlation
length ξ . In this setting, ν∗ = duν plays the role of ν, and the
scaling function for χxx , denoted by Fχ , can be introduced
as

χxx = Nγ/ν∗
Fχ (τN1/ν∗

). (13)

Combining the above expression with the fluctuation-response
relation (7), we have

N1−γ /ν∗
VM (N )

T
= εFχ (τN1/ν∗

). (14)

The scaling (14) is examined in Fig. 6(a) for the disordered
phase, and the scaling function Fχ can be observed. In the
ordered phase, the susceptibility χxx scales as χxx ∝ τ−γ− ,
but this scaling is not excellent even for rather small τ , and
observation of the scaling function is hard accordingly. The
susceptibility is represented as χxx = (1 − D)/D [22], which
defines D, and D shows a beautiful scaling as shown in the
inset of Fig. 6(b). We therefore examine the scaling for D,
which suggests

Nγ−/ν∗
−

NVM (N )/T + 1
= FD(τN1/ν∗

−). (15)
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FIG. 6. Examinations of the scaling theory. (a) Disordered phase;
(b) ordered phase. (Insets) χxx for the Vlasov dynamics (blue dashed
lower lines) and 1/D (red solid upper lines). The vertical black
segments mark the computing interval of τ .

The scaling function FD is clearly observed in Fig. 6(b), and
hence we may also expect the scaling function Fχ in the
ordered phase for small values of τ .

The scaling theory suggests the values of critical exponents
ν+ and ν− for the correlation length. We showed that
VM (N ) ∝ N−4/5 at the critical point τ = 0, and hence the
relation (14) determines ν∗

+ = 5 and ν∗
− = 5/4 from γ+ = 1

and γ− = 1/4 [22], respectively. Thus, inputting du = 4,
although validity of the value is still not clear in the constrained
equilibrium states (corresponding to QSSs), ν+ = 5/4 and
ν− = 5/16 can be conjectured, while ν = 1/2 in the classical
mean-field theory. These exponents should be tested in the α-
HMF model [37], for instance, in which interaction depends on
the distance between a pair of interacting particles. We remark
that the exponent ν− = 5/16 satisfies the scaling relation
β(1 + δ) = duν− with the exponents β = 1/2 and δ = 3/2,
while the scaling relation does not hold in the homogeneous
disordered side. We also remark that, in the Vlasov dynamics,
the Widom equality γ = β(δ − 1) also holds in the ordered
phase, but does not hold in the disordered phase.
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V. SUMMARY AND DISCUSSIONS

We investigated the finite-size fluctuation in thermal equi-
librium of the HMF model. We have confirmed that the
fluctuation-response relation holds even under the Casimir
constraints and finite-size effects. This relation induces the
strange scaling of VM (N ) ∝ N−4/5 at the critical point instead
of N−1/2 predicted by statistical mechanics. Further, we
reported relaxation of the strength of finite-size fluctuation not
to but in thermal equilibrium. These phenomena are explained
by the existence of the Casimir invariants, which are pseu-
doinvariants in finite-size long-range systems. Therefore, these
phenomena can be expected in generic systems. In addition,
the strange scaling with the scaling theory conjectures critical
exponents for the correlation length.

Clarifying the pseudoinvariants in finite-size systems has
to be done for further confirmation of the scenario proposed in
this article. One possible direction might be to analyze a finite-
size system directly. For instance, such an analysis provides
a remarkable time scale of O(N2/5), at which the ballistic
approximation breaks down in the homogeneous phase [38].

We end this article by giving eight remarks. First, the
linear and the nonlinear response theories are simply re-
produced [24] by the so-called rearrangement formula [25].
It is worth extending the powerful formula for finite-size
systems. Second, the evolution of finite-size fluctuation is
not expected in the disordered phase, since there is no gap
between the Vlasov susceptibility and the isoentropic one.
Third, nonexactness of the Casimir invariants is a crucial
point for the evolution. Exact invariants of the translational
and the angular momenta break the equipartition of kinetic
energy in small clusters, but this phenomenon is understood
by inputting the invariants into statistical mechanics [39].
Fourth, spring-chain systems with hard springs [40] may have
pseudoconstraints, lengths of bonds. The linked particles can
be considered as models of molecules, for instance; thus, it
might be interesting to investigate the finite-size fluctuation in
such models. Fifth, the strange scaling is observed for a rather
small N , say N � 100, when the averaging time is short. This
observation suggests that we need to consider the wreck of
Casimir invariants even in small systems and might give a
new perspective to understand more realistic systems. Sixth,
it might be interesting to investigate the crossover time from
the Vlasov fluctuation to the isoentropic one. The lifetime of
a QSS with a finite magnetization is of O(N ) [41–43], and
one may expect the same scaling since temporal evolution
of the fluctuation is similar with the relaxation process from
an initial state to equilibrium via QSSs and is observed in
the ordered phase. Seventh, it might be also interesting to
study the so-called 1/f fluctuation observed in Fig. 5 from
the viewpoint of existence of pseudoinvariants. Finally, we
note that the exponent ν∗ = 5/4 is numerically observed in
the Kuramoto model with a deterministic choice of natural
frequencies [9].
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APPENDIX: SUSCEPTIBILITIES

We apply the external magnetic field of amplitude h to
the x direction and derive the isothermal and the isoentropic
susceptibilities for the direction, which are simply denoted by
χT and χE, respectively, by dropping the subscripts. Under
the external field h, the magnetization Mh is written with the
susceptibility χ as

Mh = M + hχ + O(h2), (A1)

and the one-body Hamiltonian Hh is

Hh = p2/2 − (Mh + h) cos q. (A2)

Suppose that the thermal equilibrium state is described by the
one-body Boltzmann distribution (8) by replacing H with Hh

and T with the effective temperature Th, which is always T in
the isothermal process, but Th = T + M2

h − M2 + 2h(Mh −
M) for small h in the isoentropic process due to the energy
conservation. Omitting O(h2) terms, we have

Th = T + h�T, �T =
{

0 (isothermal),
2MχE (isoentropic).

(A3)

The magnetization Mh satisfies the self-consistent equation

Mh = I1((Mh + h)/Th)

I0((Mh + h)/Th)
, (A4)

and the susceptibility is computed by expanding the above
equation with respect to the small h. Using the derivatives of
the modified Bessel functions,

I ′
0(z) = I1(z), I ′

1(z) = I0(z) + I2(z)

2
, (A5)

the self-consistent equation (A4) is expanded up to the linear
order as

χ = B(M/T )

(
1 + χ

T
− M

T 2
�T

)
, (A6)

where

B(z) = I0(z)[I0(z) + I2(z)] − 2[I1(z)]2

2[I0(z)]2
. (A7)

Substituting �T [Eq. (A3)] for each of the isothermal and the
isoentropic processes, the susceptibilities are obtained as

χT = B(M/T )

T − B(M/T )
(A8)

and

χE = B(M/T )

T − B(M/T )(1 − 2M2/T )
, (A9)

with the solution M to the self-consistent equation (10).
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